Properties

Label 115.4.g.a.16.1
Level $115$
Weight $4$
Character 115.16
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 16.1
Character \(\chi\) \(=\) 115.16
Dual form 115.4.g.a.36.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.13461 + 3.61754i) q^{2} +(-7.41459 + 4.76507i) q^{3} +(-2.12225 - 14.7606i) q^{4} +(2.07708 + 4.54816i) q^{5} +(6.00407 - 41.7592i) q^{6} +(30.1381 - 8.84935i) q^{7} +(27.8349 + 17.8884i) q^{8} +(21.0541 - 46.1020i) q^{9} +O(q^{10})\) \(q+(-3.13461 + 3.61754i) q^{2} +(-7.41459 + 4.76507i) q^{3} +(-2.12225 - 14.7606i) q^{4} +(2.07708 + 4.54816i) q^{5} +(6.00407 - 41.7592i) q^{6} +(30.1381 - 8.84935i) q^{7} +(27.8349 + 17.8884i) q^{8} +(21.0541 - 46.1020i) q^{9} +(-22.9640 - 6.74283i) q^{10} +(-10.6474 - 12.2878i) q^{11} +(86.0708 + 99.3310i) q^{12} +(9.76032 + 2.86589i) q^{13} +(-62.4585 + 136.765i) q^{14} +(-37.0729 - 23.8253i) q^{15} +(-37.4969 + 11.0101i) q^{16} +(6.29904 - 43.8108i) q^{17} +(100.779 + 220.676i) q^{18} +(-20.4034 - 141.909i) q^{19} +(62.7254 - 40.3112i) q^{20} +(-181.294 + 209.225i) q^{21} +77.8269 q^{22} +(21.8728 + 108.114i) q^{23} -291.623 q^{24} +(-16.3715 + 18.8937i) q^{25} +(-40.9623 + 26.3249i) q^{26} +(29.7049 + 206.602i) q^{27} +(-194.582 - 426.076i) q^{28} +(15.4948 - 107.769i) q^{29} +(202.398 - 59.4295i) q^{30} +(221.688 + 142.471i) q^{31} +(-32.2511 + 70.6200i) q^{32} +(137.498 + 40.3731i) q^{33} +(138.742 + 160.117i) q^{34} +(102.847 + 118.692i) q^{35} +(-725.174 - 212.930i) q^{36} +(168.893 - 369.824i) q^{37} +(577.317 + 371.019i) q^{38} +(-86.0249 + 25.2592i) q^{39} +(-23.5441 + 163.753i) q^{40} +(4.07059 + 8.91336i) q^{41} +(-188.591 - 1311.68i) q^{42} +(-101.393 + 65.1614i) q^{43} +(-158.778 + 183.240i) q^{44} +253.410 q^{45} +(-459.668 - 259.769i) q^{46} -253.723 q^{47} +(225.560 - 260.310i) q^{48} +(541.446 - 347.966i) q^{49} +(-17.0304 - 118.449i) q^{50} +(162.057 + 354.854i) q^{51} +(21.5883 - 150.150i) q^{52} +(187.836 - 55.1537i) q^{53} +(-840.505 - 540.160i) q^{54} +(33.7712 - 73.9487i) q^{55} +(997.191 + 292.802i) q^{56} +(827.488 + 954.972i) q^{57} +(341.287 + 393.867i) q^{58} +(540.807 + 158.795i) q^{59} +(-272.998 + 597.782i) q^{60} +(-600.889 - 386.168i) q^{61} +(-1210.30 + 355.376i) q^{62} +(226.557 - 1575.74i) q^{63} +(-284.251 - 622.422i) q^{64} +(7.23840 + 50.3442i) q^{65} +(-577.054 + 370.850i) q^{66} +(-443.032 + 511.286i) q^{67} -660.041 q^{68} +(-677.347 - 697.394i) q^{69} -751.761 q^{70} +(152.696 - 176.221i) q^{71} +(1410.73 - 906.619i) q^{72} +(11.2815 + 78.4646i) q^{73} +(808.438 + 1770.23i) q^{74} +(31.3581 - 218.101i) q^{75} +(-2051.36 + 602.333i) q^{76} +(-429.631 - 276.107i) q^{77} +(178.279 - 390.376i) q^{78} +(766.632 + 225.103i) q^{79} +(-127.959 - 147.673i) q^{80} +(-308.603 - 356.147i) q^{81} +(-45.0041 - 13.2144i) q^{82} +(-159.114 + 348.412i) q^{83} +(3473.03 + 2231.98i) q^{84} +(212.342 - 62.3492i) q^{85} +(82.1045 - 571.049i) q^{86} +(398.638 + 872.895i) q^{87} +(-76.5609 - 532.493i) q^{88} +(912.509 - 586.434i) q^{89} +(-794.342 + 916.720i) q^{90} +319.519 q^{91} +(1549.40 - 552.299i) q^{92} -2322.61 q^{93} +(795.325 - 917.854i) q^{94} +(603.045 - 387.553i) q^{95} +(-97.3805 - 677.296i) q^{96} +(117.830 + 258.011i) q^{97} +(-438.443 + 3049.44i) q^{98} +(-790.660 + 232.159i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.13461 + 3.61754i −1.10825 + 1.27899i −0.151383 + 0.988475i \(0.548373\pi\)
−0.956870 + 0.290517i \(0.906173\pi\)
\(3\) −7.41459 + 4.76507i −1.42694 + 0.917038i −0.427020 + 0.904242i \(0.640437\pi\)
−0.999918 + 0.0127954i \(0.995927\pi\)
\(4\) −2.12225 14.7606i −0.265281 1.84507i
\(5\) 2.07708 + 4.54816i 0.185779 + 0.406800i
\(6\) 6.00407 41.7592i 0.408525 2.84135i
\(7\) 30.1381 8.84935i 1.62731 0.477820i 0.664337 0.747433i \(-0.268714\pi\)
0.962969 + 0.269613i \(0.0868957\pi\)
\(8\) 27.8349 + 17.8884i 1.23014 + 0.790562i
\(9\) 21.0541 46.1020i 0.779780 1.70748i
\(10\) −22.9640 6.74283i −0.726184 0.213227i
\(11\) −10.6474 12.2878i −0.291846 0.336809i 0.590825 0.806800i \(-0.298803\pi\)
−0.882671 + 0.469991i \(0.844257\pi\)
\(12\) 86.0708 + 99.3310i 2.07054 + 2.38953i
\(13\) 9.76032 + 2.86589i 0.208233 + 0.0611427i 0.384185 0.923256i \(-0.374482\pi\)
−0.175953 + 0.984399i \(0.556301\pi\)
\(14\) −62.4585 + 136.765i −1.19234 + 2.61086i
\(15\) −37.0729 23.8253i −0.638146 0.410112i
\(16\) −37.4969 + 11.0101i −0.585889 + 0.172032i
\(17\) 6.29904 43.8108i 0.0898671 0.625040i −0.894256 0.447555i \(-0.852295\pi\)
0.984124 0.177485i \(-0.0567960\pi\)
\(18\) 100.779 + 220.676i 1.31966 + 2.88965i
\(19\) −20.4034 141.909i −0.246361 1.71348i −0.618905 0.785466i \(-0.712424\pi\)
0.372544 0.928015i \(-0.378486\pi\)
\(20\) 62.7254 40.3112i 0.701292 0.450693i
\(21\) −181.294 + 209.225i −1.88389 + 2.17412i
\(22\) 77.8269 0.754216
\(23\) 21.8728 + 108.114i 0.198295 + 0.980142i
\(24\) −291.623 −2.48031
\(25\) −16.3715 + 18.8937i −0.130972 + 0.151150i
\(26\) −40.9623 + 26.3249i −0.308976 + 0.198567i
\(27\) 29.7049 + 206.602i 0.211730 + 1.47262i
\(28\) −194.582 426.076i −1.31331 2.87574i
\(29\) 15.4948 107.769i 0.0992178 0.690075i −0.878128 0.478426i \(-0.841208\pi\)
0.977346 0.211649i \(-0.0678833\pi\)
\(30\) 202.398 59.4295i 1.23176 0.361677i
\(31\) 221.688 + 142.471i 1.28440 + 0.825434i 0.991424 0.130685i \(-0.0417177\pi\)
0.292977 + 0.956119i \(0.405354\pi\)
\(32\) −32.2511 + 70.6200i −0.178164 + 0.390124i
\(33\) 137.498 + 40.3731i 0.725313 + 0.212971i
\(34\) 138.742 + 160.117i 0.699825 + 0.807642i
\(35\) 102.847 + 118.692i 0.496697 + 0.573219i
\(36\) −725.174 212.930i −3.35729 0.985788i
\(37\) 168.893 369.824i 0.750429 1.64321i −0.0151653 0.999885i \(-0.504827\pi\)
0.765594 0.643324i \(-0.222445\pi\)
\(38\) 577.317 + 371.019i 2.46456 + 1.58388i
\(39\) −86.0249 + 25.2592i −0.353206 + 0.103710i
\(40\) −23.5441 + 163.753i −0.0930663 + 0.647290i
\(41\) 4.07059 + 8.91336i 0.0155054 + 0.0339520i 0.917226 0.398367i \(-0.130423\pi\)
−0.901721 + 0.432319i \(0.857696\pi\)
\(42\) −188.591 1311.68i −0.692861 4.81895i
\(43\) −101.393 + 65.1614i −0.359589 + 0.231094i −0.707943 0.706269i \(-0.750377\pi\)
0.348355 + 0.937363i \(0.386740\pi\)
\(44\) −158.778 + 183.240i −0.544015 + 0.627827i
\(45\) 253.410 0.839469
\(46\) −459.668 259.769i −1.47336 0.832628i
\(47\) −253.723 −0.787433 −0.393717 0.919232i \(-0.628811\pi\)
−0.393717 + 0.919232i \(0.628811\pi\)
\(48\) 225.560 260.310i 0.678267 0.782762i
\(49\) 541.446 347.966i 1.57856 1.01448i
\(50\) −17.0304 118.449i −0.0481693 0.335025i
\(51\) 162.057 + 354.854i 0.444950 + 0.974305i
\(52\) 21.5883 150.150i 0.0575724 0.400425i
\(53\) 187.836 55.1537i 0.486817 0.142942i −0.0291077 0.999576i \(-0.509267\pi\)
0.515925 + 0.856634i \(0.327448\pi\)
\(54\) −840.505 540.160i −2.11812 1.36123i
\(55\) 33.7712 73.9487i 0.0827947 0.181295i
\(56\) 997.191 + 292.802i 2.37956 + 0.698702i
\(57\) 827.488 + 954.972i 1.92287 + 2.21911i
\(58\) 341.287 + 393.867i 0.772642 + 0.891676i
\(59\) 540.807 + 158.795i 1.19334 + 0.350396i 0.817303 0.576209i \(-0.195468\pi\)
0.376037 + 0.926605i \(0.377287\pi\)
\(60\) −272.998 + 597.782i −0.587398 + 1.28622i
\(61\) −600.889 386.168i −1.26124 0.810553i −0.272790 0.962073i \(-0.587947\pi\)
−0.988454 + 0.151521i \(0.951583\pi\)
\(62\) −1210.30 + 355.376i −2.47917 + 0.727949i
\(63\) 226.557 1575.74i 0.453072 3.15119i
\(64\) −284.251 622.422i −0.555177 1.21567i
\(65\) 7.23840 + 50.3442i 0.0138125 + 0.0960681i
\(66\) −577.054 + 370.850i −1.07622 + 0.691644i
\(67\) −443.032 + 511.286i −0.807836 + 0.932292i −0.998784 0.0493079i \(-0.984298\pi\)
0.190948 + 0.981600i \(0.438844\pi\)
\(68\) −660.041 −1.17708
\(69\) −677.347 697.394i −1.18178 1.21676i
\(70\) −751.761 −1.28361
\(71\) 152.696 176.221i 0.255235 0.294557i −0.613642 0.789584i \(-0.710296\pi\)
0.868878 + 0.495027i \(0.164842\pi\)
\(72\) 1410.73 906.619i 2.30911 1.48397i
\(73\) 11.2815 + 78.4646i 0.0180877 + 0.125803i 0.996865 0.0791259i \(-0.0252129\pi\)
−0.978777 + 0.204928i \(0.934304\pi\)
\(74\) 808.438 + 1770.23i 1.26999 + 2.78088i
\(75\) 31.3581 218.101i 0.0482790 0.335788i
\(76\) −2051.36 + 602.333i −3.09614 + 0.909109i
\(77\) −429.631 276.107i −0.635858 0.408641i
\(78\) 178.279 390.376i 0.258796 0.566685i
\(79\) 766.632 + 225.103i 1.09181 + 0.320584i 0.777593 0.628768i \(-0.216441\pi\)
0.314215 + 0.949352i \(0.398259\pi\)
\(80\) −127.959 147.673i −0.178829 0.206379i
\(81\) −308.603 356.147i −0.423324 0.488542i
\(82\) −45.0041 13.2144i −0.0606082 0.0177962i
\(83\) −159.114 + 348.412i −0.210423 + 0.460761i −0.985186 0.171490i \(-0.945142\pi\)
0.774763 + 0.632252i \(0.217869\pi\)
\(84\) 3473.03 + 2231.98i 4.51117 + 2.89915i
\(85\) 212.342 62.3492i 0.270961 0.0795615i
\(86\) 82.1045 571.049i 0.102948 0.716021i
\(87\) 398.638 + 872.895i 0.491247 + 1.07568i
\(88\) −76.5609 532.493i −0.0927434 0.645044i
\(89\) 912.509 586.434i 1.08681 0.698448i 0.130687 0.991424i \(-0.458282\pi\)
0.956120 + 0.292975i \(0.0946454\pi\)
\(90\) −794.342 + 916.720i −0.930345 + 1.07368i
\(91\) 319.519 0.368074
\(92\) 1549.40 552.299i 1.75583 0.625883i
\(93\) −2322.61 −2.58972
\(94\) 795.325 917.854i 0.872675 1.00712i
\(95\) 603.045 387.553i 0.651275 0.418549i
\(96\) −97.3805 677.296i −0.103530 0.720065i
\(97\) 117.830 + 258.011i 0.123338 + 0.270072i 0.961222 0.275776i \(-0.0889348\pi\)
−0.837884 + 0.545848i \(0.816207\pi\)
\(98\) −438.443 + 3049.44i −0.451933 + 3.14327i
\(99\) −790.660 + 232.159i −0.802670 + 0.235685i
\(100\) 313.627 + 201.556i 0.313627 + 0.201556i
\(101\) 385.906 845.017i 0.380189 0.832498i −0.618711 0.785618i \(-0.712345\pi\)
0.998901 0.0468798i \(-0.0149278\pi\)
\(102\) −1791.68 526.086i −1.73925 0.510689i
\(103\) 640.238 + 738.874i 0.612471 + 0.706830i 0.974259 0.225431i \(-0.0723790\pi\)
−0.361788 + 0.932260i \(0.617834\pi\)
\(104\) 220.411 + 254.368i 0.207818 + 0.239835i
\(105\) −1328.15 389.979i −1.23442 0.362458i
\(106\) −389.274 + 852.390i −0.356694 + 0.781052i
\(107\) −387.940 249.314i −0.350500 0.225253i 0.353529 0.935423i \(-0.384981\pi\)
−0.704030 + 0.710170i \(0.748618\pi\)
\(108\) 2986.53 876.924i 2.66092 0.781316i
\(109\) −105.889 + 736.478i −0.0930493 + 0.647172i 0.888910 + 0.458081i \(0.151463\pi\)
−0.981960 + 0.189091i \(0.939446\pi\)
\(110\) 161.652 + 353.969i 0.140118 + 0.306815i
\(111\) 509.965 + 3546.88i 0.436069 + 3.03293i
\(112\) −1032.65 + 663.646i −0.871220 + 0.559899i
\(113\) 277.397 320.133i 0.230932 0.266509i −0.628443 0.777855i \(-0.716308\pi\)
0.859375 + 0.511346i \(0.170853\pi\)
\(114\) −6048.50 −4.96925
\(115\) −446.287 + 324.041i −0.361883 + 0.262756i
\(116\) −1623.61 −1.29956
\(117\) 337.618 389.631i 0.266776 0.307876i
\(118\) −2269.67 + 1458.63i −1.77068 + 1.13794i
\(119\) −197.856 1376.12i −0.152415 1.06007i
\(120\) −605.724 1326.35i −0.460790 1.00899i
\(121\) 151.799 1055.79i 0.114049 0.793229i
\(122\) 3280.53 963.250i 2.43447 0.714825i
\(123\) −72.6545 46.6922i −0.0532605 0.0342284i
\(124\) 1632.47 3574.61i 1.18226 2.58879i
\(125\) −119.937 35.2166i −0.0858197 0.0251989i
\(126\) 4990.13 + 5758.92i 3.52823 + 4.07179i
\(127\) 685.818 + 791.476i 0.479185 + 0.553009i 0.942943 0.332953i \(-0.108045\pi\)
−0.463759 + 0.885962i \(0.653500\pi\)
\(128\) 2546.72 + 747.785i 1.75860 + 0.516371i
\(129\) 441.290 966.290i 0.301189 0.659512i
\(130\) −204.812 131.624i −0.138178 0.0888017i
\(131\) 96.5026 28.3357i 0.0643623 0.0188985i −0.249393 0.968402i \(-0.580231\pi\)
0.313755 + 0.949504i \(0.398413\pi\)
\(132\) 304.125 2115.23i 0.200535 1.39475i
\(133\) −1870.72 4096.31i −1.21964 2.67064i
\(134\) −460.863 3205.37i −0.297108 2.06643i
\(135\) −877.961 + 564.231i −0.559725 + 0.359713i
\(136\) 959.037 1106.79i 0.604682 0.697840i
\(137\) 248.105 0.154723 0.0773615 0.997003i \(-0.475350\pi\)
0.0773615 + 0.997003i \(0.475350\pi\)
\(138\) 4646.07 264.267i 2.86594 0.163014i
\(139\) −1099.46 −0.670899 −0.335449 0.942058i \(-0.608888\pi\)
−0.335449 + 0.942058i \(0.608888\pi\)
\(140\) 1533.70 1769.98i 0.925866 1.06851i
\(141\) 1881.25 1209.01i 1.12362 0.722106i
\(142\) 158.842 + 1104.77i 0.0938712 + 0.652888i
\(143\) −68.7067 150.447i −0.0401786 0.0879789i
\(144\) −281.875 + 1960.49i −0.163122 + 1.13454i
\(145\) 522.334 153.371i 0.299155 0.0878398i
\(146\) −319.212 205.145i −0.180946 0.116287i
\(147\) −2356.52 + 5160.05i −1.32219 + 2.89520i
\(148\) −5817.26 1708.10i −3.23092 0.948683i
\(149\) 441.774 + 509.835i 0.242896 + 0.280317i 0.864087 0.503342i \(-0.167896\pi\)
−0.621191 + 0.783659i \(0.713351\pi\)
\(150\) 690.692 + 797.101i 0.375965 + 0.433887i
\(151\) 911.999 + 267.787i 0.491506 + 0.144319i 0.518088 0.855327i \(-0.326644\pi\)
−0.0265816 + 0.999647i \(0.508462\pi\)
\(152\) 1970.59 4315.00i 1.05155 2.30258i
\(153\) −1887.14 1212.79i −0.997166 0.640840i
\(154\) 2345.56 688.718i 1.22734 0.360379i
\(155\) −187.515 + 1304.20i −0.0971715 + 0.675843i
\(156\) 555.407 + 1216.17i 0.285052 + 0.624178i
\(157\) −341.567 2375.65i −0.173631 1.20763i −0.871134 0.491046i \(-0.836615\pi\)
0.697503 0.716582i \(-0.254294\pi\)
\(158\) −3217.41 + 2067.71i −1.62002 + 1.04113i
\(159\) −1129.92 + 1303.99i −0.563574 + 0.650399i
\(160\) −388.179 −0.191801
\(161\) 1615.94 + 3064.79i 0.791019 + 1.50024i
\(162\) 2255.73 1.09399
\(163\) 1980.69 2285.83i 0.951775 1.09841i −0.0432784 0.999063i \(-0.513780\pi\)
0.995053 0.0993436i \(-0.0316743\pi\)
\(164\) 122.928 79.0007i 0.0585307 0.0376154i
\(165\) 101.971 + 709.221i 0.0481115 + 0.334623i
\(166\) −761.631 1667.74i −0.356109 0.779769i
\(167\) 591.866 4116.52i 0.274251 1.90746i −0.127724 0.991810i \(-0.540767\pi\)
0.401975 0.915650i \(-0.368324\pi\)
\(168\) −8788.98 + 2580.68i −4.03622 + 1.18514i
\(169\) −1761.18 1131.84i −0.801631 0.515177i
\(170\) −440.059 + 963.596i −0.198535 + 0.434732i
\(171\) −6971.85 2047.12i −3.11784 0.915481i
\(172\) 1177.00 + 1358.33i 0.521777 + 0.602162i
\(173\) −1716.13 1980.52i −0.754191 0.870382i 0.240777 0.970581i \(-0.422598\pi\)
−0.994968 + 0.100198i \(0.968052\pi\)
\(174\) −4407.31 1294.10i −1.92021 0.563825i
\(175\) −326.210 + 714.299i −0.140909 + 0.308548i
\(176\) 534.533 + 343.524i 0.228932 + 0.147125i
\(177\) −4766.53 + 1399.58i −2.02415 + 0.594343i
\(178\) −738.917 + 5139.28i −0.311147 + 2.16407i
\(179\) 1104.47 + 2418.45i 0.461184 + 1.00985i 0.987216 + 0.159387i \(0.0509518\pi\)
−0.526032 + 0.850465i \(0.676321\pi\)
\(180\) −537.800 3740.48i −0.222696 1.54888i
\(181\) −870.717 + 559.576i −0.357569 + 0.229795i −0.707075 0.707139i \(-0.749986\pi\)
0.349506 + 0.936934i \(0.386349\pi\)
\(182\) −1001.57 + 1155.87i −0.407919 + 0.470764i
\(183\) 6295.46 2.54303
\(184\) −1325.15 + 3400.60i −0.530933 + 1.36248i
\(185\) 2032.82 0.807871
\(186\) 7280.49 8402.13i 2.87006 3.31223i
\(187\) −605.404 + 389.070i −0.236746 + 0.152148i
\(188\) 538.465 + 3745.11i 0.208891 + 1.45287i
\(189\) 2723.55 + 5963.74i 1.04820 + 2.29523i
\(190\) −488.324 + 3396.37i −0.186456 + 1.29683i
\(191\) −187.434 + 55.0354i −0.0710064 + 0.0208493i −0.317043 0.948411i \(-0.602690\pi\)
0.246036 + 0.969261i \(0.420872\pi\)
\(192\) 5073.49 + 3260.53i 1.90702 + 1.22557i
\(193\) −914.472 + 2002.41i −0.341063 + 0.746823i −0.999985 0.00538728i \(-0.998285\pi\)
0.658923 + 0.752211i \(0.271012\pi\)
\(194\) −1302.71 382.511i −0.482110 0.141560i
\(195\) −293.563 338.790i −0.107808 0.124417i
\(196\) −6285.27 7253.59i −2.29055 2.64344i
\(197\) 3373.12 + 990.439i 1.21992 + 0.358202i 0.827439 0.561556i \(-0.189797\pi\)
0.392486 + 0.919758i \(0.371615\pi\)
\(198\) 1638.57 3587.97i 0.588122 1.28781i
\(199\) 711.863 + 457.486i 0.253581 + 0.162967i 0.661256 0.750161i \(-0.270024\pi\)
−0.407675 + 0.913127i \(0.633660\pi\)
\(200\) −793.677 + 233.045i −0.280607 + 0.0823937i
\(201\) 848.588 5902.06i 0.297785 2.07114i
\(202\) 1847.21 + 4044.83i 0.643413 + 1.40888i
\(203\) −486.700 3385.07i −0.168274 1.17037i
\(204\) 4893.93 3145.14i 1.67963 1.07943i
\(205\) −32.0844 + 37.0274i −0.0109311 + 0.0126152i
\(206\) −4679.80 −1.58280
\(207\) 5444.77 + 1267.86i 1.82820 + 0.425711i
\(208\) −397.535 −0.132520
\(209\) −1526.50 + 1761.67i −0.505216 + 0.583050i
\(210\) 5574.00 3582.19i 1.83163 1.17712i
\(211\) 673.131 + 4681.73i 0.219622 + 1.52750i 0.739437 + 0.673225i \(0.235092\pi\)
−0.519815 + 0.854279i \(0.673999\pi\)
\(212\) −1212.74 2655.52i −0.392883 0.860293i
\(213\) −292.476 + 2034.21i −0.0940850 + 0.654376i
\(214\) 2117.94 621.884i 0.676540 0.198650i
\(215\) −506.966 325.807i −0.160813 0.103348i
\(216\) −2868.95 + 6282.12i −0.903737 + 1.97891i
\(217\) 7942.05 + 2332.00i 2.48452 + 0.729522i
\(218\) −2332.31 2691.63i −0.724606 0.836240i
\(219\) −457.537 528.026i −0.141176 0.162925i
\(220\) −1163.20 341.545i −0.356467 0.104668i
\(221\) 187.038 409.555i 0.0569299 0.124659i
\(222\) −14429.5 9273.29i −4.36237 2.80352i
\(223\) 5041.27 1480.25i 1.51385 0.444506i 0.583786 0.811907i \(-0.301571\pi\)
0.930062 + 0.367401i \(0.119752\pi\)
\(224\) −347.046 + 2413.76i −0.103518 + 0.719981i
\(225\) 526.351 + 1152.55i 0.155956 + 0.341496i
\(226\) 288.561 + 2006.98i 0.0849327 + 0.590720i
\(227\) −4795.38 + 3081.80i −1.40212 + 0.901085i −0.999895 0.0144581i \(-0.995398\pi\)
−0.402220 + 0.915543i \(0.631761\pi\)
\(228\) 12339.8 14240.9i 3.58432 4.13652i
\(229\) 3746.82 1.08121 0.540605 0.841277i \(-0.318196\pi\)
0.540605 + 0.841277i \(0.318196\pi\)
\(230\) 226.707 2630.20i 0.0649940 0.754046i
\(231\) 4501.21 1.28207
\(232\) 2359.11 2722.55i 0.667599 0.770450i
\(233\) −3435.45 + 2207.83i −0.965939 + 0.620772i −0.925636 0.378416i \(-0.876469\pi\)
−0.0403037 + 0.999187i \(0.512833\pi\)
\(234\) 351.205 + 2442.69i 0.0981155 + 0.682408i
\(235\) −527.003 1153.97i −0.146289 0.320328i
\(236\) 1196.18 8319.63i 0.329936 2.29475i
\(237\) −6756.89 + 1984.00i −1.85193 + 0.543776i
\(238\) 5598.36 + 3597.85i 1.52474 + 0.979889i
\(239\) −1281.72 + 2806.57i −0.346893 + 0.759589i 0.653105 + 0.757268i \(0.273466\pi\)
−0.999997 + 0.00232110i \(0.999261\pi\)
\(240\) 1652.44 + 485.200i 0.444435 + 0.130498i
\(241\) −200.830 231.770i −0.0536789 0.0619487i 0.728275 0.685285i \(-0.240322\pi\)
−0.781954 + 0.623336i \(0.785777\pi\)
\(242\) 3343.52 + 3858.62i 0.888138 + 1.02497i
\(243\) −1422.11 417.569i −0.375426 0.110235i
\(244\) −4424.82 + 9689.01i −1.16094 + 2.54211i
\(245\) 2707.23 + 1739.83i 0.705953 + 0.453689i
\(246\) 396.655 116.468i 0.102804 0.0301860i
\(247\) 207.551 1443.55i 0.0534663 0.371866i
\(248\) 3622.10 + 7931.30i 0.927434 + 2.03080i
\(249\) −480.439 3341.52i −0.122275 0.850444i
\(250\) 503.352 323.485i 0.127339 0.0818359i
\(251\) −1871.46 + 2159.78i −0.470619 + 0.543124i −0.940584 0.339562i \(-0.889721\pi\)
0.469964 + 0.882685i \(0.344267\pi\)
\(252\) −23739.7 −5.93436
\(253\) 1095.59 1419.90i 0.272249 0.352839i
\(254\) −5012.96 −1.23835
\(255\) −1277.33 + 1474.12i −0.313684 + 0.362011i
\(256\) −6083.06 + 3909.35i −1.48512 + 0.954431i
\(257\) −523.753 3642.78i −0.127124 0.884166i −0.949174 0.314751i \(-0.898079\pi\)
0.822050 0.569415i \(-0.192830\pi\)
\(258\) 2112.32 + 4625.33i 0.509717 + 1.11613i
\(259\) 1817.42 12640.4i 0.436018 3.03257i
\(260\) 727.748 213.686i 0.173589 0.0509702i
\(261\) −4642.12 2983.31i −1.10092 0.707519i
\(262\) −199.993 + 437.923i −0.0471587 + 0.103263i
\(263\) −3220.21 945.538i −0.755005 0.221690i −0.118492 0.992955i \(-0.537806\pi\)
−0.636514 + 0.771265i \(0.719624\pi\)
\(264\) 3105.03 + 3583.40i 0.723869 + 0.835389i
\(265\) 640.998 + 739.751i 0.148589 + 0.171481i
\(266\) 20682.5 + 6072.94i 4.76740 + 1.39983i
\(267\) −3971.48 + 8696.34i −0.910303 + 1.99329i
\(268\) 8487.11 + 5454.34i 1.93445 + 1.24320i
\(269\) −3482.74 + 1022.63i −0.789392 + 0.231787i −0.651488 0.758659i \(-0.725855\pi\)
−0.137904 + 0.990446i \(0.544037\pi\)
\(270\) 710.941 4944.70i 0.160246 1.11454i
\(271\) −1224.48 2681.23i −0.274471 0.601008i 0.721326 0.692596i \(-0.243533\pi\)
−0.995797 + 0.0915880i \(0.970806\pi\)
\(272\) 246.166 + 1712.12i 0.0548750 + 0.381664i
\(273\) −2369.10 + 1522.53i −0.525219 + 0.337537i
\(274\) −777.713 + 897.529i −0.171472 + 0.197889i
\(275\) 406.476 0.0891324
\(276\) −8856.44 + 11478.1i −1.93150 + 2.50326i
\(277\) 247.016 0.0535803 0.0267902 0.999641i \(-0.491471\pi\)
0.0267902 + 0.999641i \(0.491471\pi\)
\(278\) 3446.38 3977.34i 0.743526 0.858075i
\(279\) 11235.6 7220.69i 2.41096 1.54943i
\(280\) 739.532 + 5143.56i 0.157841 + 1.09781i
\(281\) 151.875 + 332.559i 0.0322423 + 0.0706008i 0.925068 0.379802i \(-0.124008\pi\)
−0.892826 + 0.450402i \(0.851281\pi\)
\(282\) −1523.37 + 10595.3i −0.321686 + 2.23738i
\(283\) 994.755 292.087i 0.208947 0.0613525i −0.175584 0.984464i \(-0.556181\pi\)
0.384531 + 0.923112i \(0.374363\pi\)
\(284\) −2925.18 1879.90i −0.611189 0.392787i
\(285\) −2624.61 + 5747.10i −0.545504 + 1.19449i
\(286\) 759.615 + 223.043i 0.157052 + 0.0461148i
\(287\) 201.558 + 232.610i 0.0414549 + 0.0478415i
\(288\) 2576.70 + 2973.67i 0.527200 + 0.608422i
\(289\) 2834.28 + 832.220i 0.576895 + 0.169392i
\(290\) −1082.49 + 2370.32i −0.219193 + 0.479965i
\(291\) −2103.10 1351.58i −0.423662 0.272271i
\(292\) 1134.24 333.043i 0.227317 0.0667462i
\(293\) −736.636 + 5123.42i −0.146876 + 1.02155i 0.774416 + 0.632676i \(0.218044\pi\)
−0.921293 + 0.388870i \(0.872865\pi\)
\(294\) −11279.9 24699.6i −2.23761 4.89969i
\(295\) 401.070 + 2789.50i 0.0791566 + 0.550546i
\(296\) 11316.7 7272.79i 2.22219 1.42812i
\(297\) 2222.40 2564.78i 0.434197 0.501090i
\(298\) −3229.14 −0.627715
\(299\) −96.3568 + 1117.91i −0.0186370 + 0.216222i
\(300\) −3285.84 −0.632361
\(301\) −2479.16 + 2861.11i −0.474739 + 0.547879i
\(302\) −3827.50 + 2459.78i −0.729297 + 0.468691i
\(303\) 1165.23 + 8104.32i 0.220926 + 1.53657i
\(304\) 2327.49 + 5096.50i 0.439114 + 0.961526i
\(305\) 508.262 3535.04i 0.0954196 0.663658i
\(306\) 10302.8 3025.17i 1.92474 0.565155i
\(307\) −2208.48 1419.30i −0.410568 0.263856i 0.319013 0.947750i \(-0.396649\pi\)
−0.729581 + 0.683894i \(0.760285\pi\)
\(308\) −3163.72 + 6927.58i −0.585291 + 1.28161i
\(309\) −8267.89 2427.67i −1.52215 0.446943i
\(310\) −4130.19 4766.50i −0.756707 0.873286i
\(311\) −4882.09 5634.23i −0.890154 1.02729i −0.999446 0.0332823i \(-0.989404\pi\)
0.109292 0.994010i \(-0.465141\pi\)
\(312\) −2846.34 835.760i −0.516481 0.151653i
\(313\) −3355.55 + 7347.63i −0.605964 + 1.32688i 0.319336 + 0.947642i \(0.396540\pi\)
−0.925300 + 0.379235i \(0.876187\pi\)
\(314\) 9664.68 + 6211.12i 1.73697 + 1.11629i
\(315\) 7637.30 2242.51i 1.36607 0.401115i
\(316\) 1695.67 11793.7i 0.301864 2.09951i
\(317\) −3204.68 7017.28i −0.567801 1.24331i −0.947960 0.318389i \(-0.896858\pi\)
0.380159 0.924921i \(-0.375869\pi\)
\(318\) −1175.39 8175.04i −0.207273 1.44161i
\(319\) −1489.22 + 957.061i −0.261380 + 0.167978i
\(320\) 2240.47 2585.64i 0.391393 0.451692i
\(321\) 4064.41 0.706708
\(322\) −16152.3 3761.20i −2.79545 0.650942i
\(323\) −6345.66 −1.09313
\(324\) −4602.01 + 5311.00i −0.789096 + 0.910665i
\(325\) −213.939 + 137.490i −0.0365144 + 0.0234664i
\(326\) 2060.40 + 14330.4i 0.350046 + 2.43463i
\(327\) −2724.24 5965.25i −0.460705 1.00880i
\(328\) −46.1411 + 320.918i −0.00776743 + 0.0540236i
\(329\) −7646.75 + 2245.29i −1.28140 + 0.376252i
\(330\) −2885.27 1854.25i −0.481300 0.309313i
\(331\) 2127.42 4658.40i 0.353274 0.773561i −0.646668 0.762771i \(-0.723838\pi\)
0.999942 0.0107897i \(-0.00343455\pi\)
\(332\) 5480.45 + 1609.20i 0.905960 + 0.266014i
\(333\) −13493.7 15572.6i −2.22058 2.56268i
\(334\) 13036.4 + 15044.8i 2.13569 + 2.46471i
\(335\) −3245.62 953.001i −0.529335 0.155427i
\(336\) 4494.38 9841.33i 0.729728 1.59788i
\(337\) 1743.70 + 1120.61i 0.281855 + 0.181137i 0.673928 0.738797i \(-0.264606\pi\)
−0.392073 + 0.919934i \(0.628242\pi\)
\(338\) 9615.12 2823.25i 1.54732 0.454333i
\(339\) −531.328 + 3695.47i −0.0851261 + 0.592065i
\(340\) −1370.95 3001.97i −0.218678 0.478838i
\(341\) −609.763 4240.99i −0.0968343 0.673498i
\(342\) 29259.6 18804.0i 4.62625 2.97311i
\(343\) 6183.56 7136.21i 0.973414 1.12338i
\(344\) −3987.90 −0.625038
\(345\) 1764.96 4529.22i 0.275427 0.706797i
\(346\) 12544.0 1.94905
\(347\) 3816.01 4403.91i 0.590358 0.681309i −0.379441 0.925216i \(-0.623884\pi\)
0.969799 + 0.243907i \(0.0784291\pi\)
\(348\) 12038.4 7736.63i 1.85439 1.19174i
\(349\) 130.906 + 910.469i 0.0200780 + 0.139645i 0.997395 0.0721376i \(-0.0229821\pi\)
−0.977317 + 0.211783i \(0.932073\pi\)
\(350\) −1561.46 3419.13i −0.238468 0.522172i
\(351\) −302.170 + 2101.64i −0.0459505 + 0.319593i
\(352\) 1211.15 355.626i 0.183394 0.0538492i
\(353\) −48.5808 31.2210i −0.00732492 0.00470744i 0.536973 0.843599i \(-0.319568\pi\)
−0.544298 + 0.838892i \(0.683204\pi\)
\(354\) 9878.19 21630.2i 1.48311 3.24755i
\(355\) 1118.64 + 328.463i 0.167243 + 0.0491071i
\(356\) −10592.7 12224.6i −1.57700 1.81995i
\(357\) 8024.31 + 9260.55i 1.18961 + 1.37289i
\(358\) −12210.9 3585.45i −1.80270 0.529321i
\(359\) 1876.07 4108.02i 0.275808 0.603936i −0.720144 0.693825i \(-0.755924\pi\)
0.995952 + 0.0898894i \(0.0286514\pi\)
\(360\) 7053.63 + 4533.09i 1.03266 + 0.663653i
\(361\) −13140.7 + 3858.45i −1.91583 + 0.562538i
\(362\) 705.075 4903.91i 0.102370 0.711999i
\(363\) 3905.37 + 8551.56i 0.564679 + 1.23648i
\(364\) −678.100 4716.29i −0.0976432 0.679123i
\(365\) −333.437 + 214.287i −0.0478161 + 0.0307296i
\(366\) −19733.8 + 22774.0i −2.81832 + 3.25251i
\(367\) −4426.13 −0.629542 −0.314771 0.949168i \(-0.601928\pi\)
−0.314771 + 0.949168i \(0.601928\pi\)
\(368\) −2010.50 3813.11i −0.284795 0.540141i
\(369\) 496.626 0.0700631
\(370\) −6372.12 + 7353.81i −0.895326 + 1.03326i
\(371\) 5172.96 3324.46i 0.723900 0.465222i
\(372\) 4929.17 + 34283.1i 0.687004 + 4.77821i
\(373\) 3833.97 + 8395.22i 0.532213 + 1.16538i 0.964605 + 0.263698i \(0.0849423\pi\)
−0.432392 + 0.901686i \(0.642330\pi\)
\(374\) 490.234 3409.66i 0.0677792 0.471415i
\(375\) 1057.09 310.390i 0.145568 0.0427425i
\(376\) −7062.36 4538.70i −0.968652 0.622515i
\(377\) 460.088 1007.45i 0.0628534 0.137630i
\(378\) −30111.3 8841.48i −4.09725 1.20306i
\(379\) 4060.23 + 4685.76i 0.550290 + 0.635069i 0.960951 0.276719i \(-0.0892472\pi\)
−0.410660 + 0.911788i \(0.634702\pi\)
\(380\) −7000.33 8078.81i −0.945024 1.09062i
\(381\) −8856.49 2600.50i −1.19090 0.349679i
\(382\) 388.439 850.562i 0.0520269 0.113923i
\(383\) −6416.35 4123.54i −0.856032 0.550138i 0.0374186 0.999300i \(-0.488087\pi\)
−0.893451 + 0.449161i \(0.851723\pi\)
\(384\) −22446.2 + 6590.79i −2.98294 + 0.875871i
\(385\) 363.404 2527.53i 0.0481059 0.334584i
\(386\) −4377.29 9584.93i −0.577197 1.26389i
\(387\) 869.332 + 6046.33i 0.114188 + 0.794192i
\(388\) 3558.33 2286.80i 0.465584 0.299213i
\(389\) 7136.62 8236.10i 0.930183 1.07349i −0.0669451 0.997757i \(-0.521325\pi\)
0.997128 0.0757319i \(-0.0241293\pi\)
\(390\) 2145.79 0.278606
\(391\) 4874.32 277.250i 0.630448 0.0358597i
\(392\) 21295.6 2.74386
\(393\) −580.505 + 669.939i −0.0745105 + 0.0859897i
\(394\) −14156.4 + 9097.76i −1.81012 + 1.16330i
\(395\) 568.545 + 3954.32i 0.0724218 + 0.503705i
\(396\) 5104.78 + 11177.9i 0.647790 + 1.41846i
\(397\) 641.713 4463.21i 0.0811250 0.564237i −0.908203 0.418530i \(-0.862545\pi\)
0.989328 0.145707i \(-0.0465456\pi\)
\(398\) −3886.39 + 1141.15i −0.489465 + 0.143720i
\(399\) 33389.8 + 21458.3i 4.18943 + 2.69238i
\(400\) 405.859 888.708i 0.0507324 0.111088i
\(401\) 10010.3 + 2939.29i 1.24661 + 0.366038i 0.837495 0.546445i \(-0.184019\pi\)
0.409115 + 0.912483i \(0.365837\pi\)
\(402\) 18690.9 + 21570.5i 2.31895 + 2.67621i
\(403\) 1755.45 + 2025.89i 0.216985 + 0.250414i
\(404\) −13291.9 3902.86i −1.63688 0.480631i
\(405\) 978.822 2143.32i 0.120094 0.262969i
\(406\) 13771.2 + 8850.23i 1.68339 + 1.08185i
\(407\) −6342.58 + 1862.35i −0.772457 + 0.226814i
\(408\) −1836.95 + 12776.2i −0.222898 + 1.55029i
\(409\) −3858.52 8448.99i −0.466483 1.02146i −0.985962 0.166972i \(-0.946601\pi\)
0.519478 0.854484i \(-0.326126\pi\)
\(410\) −33.3757 232.133i −0.00402027 0.0279616i
\(411\) −1839.60 + 1182.24i −0.220780 + 0.141887i
\(412\) 9547.47 11018.4i 1.14167 1.31756i
\(413\) 17704.1 2.10935
\(414\) −21653.8 + 15722.4i −2.57059 + 1.86646i
\(415\) −1915.13 −0.226530
\(416\) −517.170 + 596.846i −0.0609527 + 0.0703432i
\(417\) 8152.04 5239.00i 0.957331 0.615240i
\(418\) −1587.93 11044.3i −0.185810 1.29233i
\(419\) 3106.11 + 6801.43i 0.362156 + 0.793011i 0.999744 + 0.0226334i \(0.00720505\pi\)
−0.637588 + 0.770378i \(0.720068\pi\)
\(420\) −2937.66 + 20431.9i −0.341293 + 2.37375i
\(421\) 12118.1 3558.20i 1.40285 0.411914i 0.509189 0.860655i \(-0.329945\pi\)
0.893662 + 0.448740i \(0.148127\pi\)
\(422\) −19046.3 12240.3i −2.19706 1.41197i
\(423\) −5341.91 + 11697.1i −0.614025 + 1.34453i
\(424\) 6215.01 + 1824.89i 0.711857 + 0.209020i
\(425\) 724.625 + 836.261i 0.0827046 + 0.0954462i
\(426\) −6442.04 7434.51i −0.732671 0.845548i
\(427\) −21527.0 6320.90i −2.43973 0.716369i
\(428\) −2856.71 + 6255.32i −0.322627 + 0.706455i
\(429\) 1226.32 + 788.108i 0.138012 + 0.0886952i
\(430\) 2767.76 812.688i 0.310403 0.0911425i
\(431\) −1553.13 + 10802.2i −0.173576 + 1.20725i 0.697675 + 0.716414i \(0.254218\pi\)
−0.871252 + 0.490837i \(0.836691\pi\)
\(432\) −3388.55 7419.89i −0.377388 0.826365i
\(433\) −269.874 1877.01i −0.0299522 0.208322i 0.969350 0.245686i \(-0.0790131\pi\)
−0.999302 + 0.0373635i \(0.988104\pi\)
\(434\) −33331.3 + 21420.8i −3.68653 + 2.36919i
\(435\) −3142.07 + 3626.14i −0.346323 + 0.399678i
\(436\) 11095.6 1.21876
\(437\) 14896.0 5309.83i 1.63060 0.581244i
\(438\) 3344.35 0.364839
\(439\) −4627.31 + 5340.20i −0.503074 + 0.580578i −0.949312 0.314336i \(-0.898218\pi\)
0.446238 + 0.894914i \(0.352764\pi\)
\(440\) 2262.84 1454.24i 0.245174 0.157564i
\(441\) −4642.29 32287.8i −0.501273 3.48643i
\(442\) 895.290 + 1960.41i 0.0963453 + 0.210967i
\(443\) −348.639 + 2424.84i −0.0373913 + 0.260062i −0.999939 0.0110505i \(-0.996482\pi\)
0.962548 + 0.271112i \(0.0873915\pi\)
\(444\) 51271.8 15054.8i 5.48030 1.60916i
\(445\) 4562.55 + 2932.17i 0.486035 + 0.312356i
\(446\) −10447.6 + 22877.0i −1.10921 + 2.42883i
\(447\) −5704.97 1675.13i −0.603660 0.177251i
\(448\) −14074.8 16243.2i −1.48431 1.71299i
\(449\) −8058.71 9300.24i −0.847024 0.977518i 0.152918 0.988239i \(-0.451133\pi\)
−0.999943 + 0.0107207i \(0.996587\pi\)
\(450\) −5819.30 1708.70i −0.609610 0.178998i
\(451\) 66.1839 144.922i 0.00691015 0.0151311i
\(452\) −5314.05 3415.13i −0.552991 0.355386i
\(453\) −8038.12 + 2360.21i −0.833695 + 0.244795i
\(454\) 3883.12 27007.7i 0.401418 2.79193i
\(455\) 663.665 + 1453.22i 0.0683805 + 0.149732i
\(456\) 5950.11 + 41383.9i 0.611052 + 4.24996i
\(457\) 6206.78 3988.86i 0.635320 0.408295i −0.182956 0.983121i \(-0.558567\pi\)
0.818276 + 0.574826i \(0.194930\pi\)
\(458\) −11744.8 + 13554.3i −1.19825 + 1.38286i
\(459\) 9238.52 0.939471
\(460\) 5730.17 + 5899.76i 0.580806 + 0.597996i
\(461\) 1619.39 0.163607 0.0818034 0.996648i \(-0.473932\pi\)
0.0818034 + 0.996648i \(0.473932\pi\)
\(462\) −14109.6 + 16283.3i −1.42086 + 1.63976i
\(463\) 6307.90 4053.84i 0.633159 0.406907i −0.184319 0.982867i \(-0.559008\pi\)
0.817478 + 0.575960i \(0.195371\pi\)
\(464\) 605.536 + 4211.59i 0.0605847 + 0.421376i
\(465\) −4824.24 10563.6i −0.481115 1.05350i
\(466\) 2781.90 19348.6i 0.276543 1.92340i
\(467\) 7262.86 2132.57i 0.719668 0.211314i 0.0986641 0.995121i \(-0.468543\pi\)
0.621004 + 0.783807i \(0.286725\pi\)
\(468\) −6467.70 4156.54i −0.638824 0.410547i
\(469\) −8827.61 + 19329.8i −0.869128 + 1.90313i
\(470\) 5826.49 + 1710.81i 0.571822 + 0.167902i
\(471\) 13852.7 + 15986.9i 1.35520 + 1.56398i
\(472\) 12212.7 + 14094.2i 1.19096 + 1.37444i
\(473\) 1880.26 + 552.094i 0.182779 + 0.0536687i
\(474\) 14003.0 30662.4i 1.35692 2.97124i
\(475\) 3015.22 + 1937.77i 0.291259 + 0.187181i
\(476\) −19892.4 + 5840.94i −1.91548 + 0.562435i
\(477\) 1412.02 9820.83i 0.135539 0.942694i
\(478\) −6135.17 13434.2i −0.587063 1.28549i
\(479\) 300.525 + 2090.20i 0.0286667 + 0.199381i 0.999122 0.0419006i \(-0.0133413\pi\)
−0.970455 + 0.241282i \(0.922432\pi\)
\(480\) 2878.19 1849.70i 0.273689 0.175889i
\(481\) 2708.33 3125.58i 0.256734 0.296287i
\(482\) 1467.96 0.138722
\(483\) −26585.5 15024.1i −2.50451 1.41536i
\(484\) −15906.2 −1.49382
\(485\) −928.734 + 1071.82i −0.0869518 + 0.100348i
\(486\) 5968.34 3835.62i 0.557056 0.357998i
\(487\) −869.215 6045.53i −0.0808787 0.562523i −0.989459 0.144813i \(-0.953742\pi\)
0.908580 0.417710i \(-0.137167\pi\)
\(488\) −9817.74 21497.9i −0.910713 1.99418i
\(489\) −3793.82 + 26386.6i −0.350844 + 2.44017i
\(490\) −14780.0 + 4339.81i −1.36264 + 0.400107i
\(491\) −7503.45 4822.18i −0.689666 0.443222i 0.148301 0.988942i \(-0.452620\pi\)
−0.837967 + 0.545721i \(0.816256\pi\)
\(492\) −535.013 + 1171.52i −0.0490249 + 0.107350i
\(493\) −4623.83 1357.68i −0.422408 0.124030i
\(494\) 4571.50 + 5275.80i 0.416360 + 0.480505i
\(495\) −2698.16 3113.84i −0.244996 0.282741i
\(496\) −9881.24 2901.39i −0.894517 0.262654i
\(497\) 3042.54 6662.23i 0.274601 0.601292i
\(498\) 13594.1 + 8736.38i 1.22322 + 0.786118i
\(499\) 2893.77 849.687i 0.259605 0.0762269i −0.149340 0.988786i \(-0.547715\pi\)
0.408945 + 0.912559i \(0.365897\pi\)
\(500\) −265.281 + 1845.07i −0.0237275 + 0.165028i
\(501\) 15227.0 + 33342.6i 1.35787 + 2.97333i
\(502\) −1946.78 13540.1i −0.173086 1.20384i
\(503\) −9878.43 + 6348.48i −0.875661 + 0.562753i −0.899479 0.436963i \(-0.856054\pi\)
0.0238187 + 0.999716i \(0.492418\pi\)
\(504\) 34493.7 39807.8i 3.04855 3.51822i
\(505\) 4644.83 0.409291
\(506\) 1702.29 + 8414.15i 0.149557 + 0.739239i
\(507\) 18451.8 1.61631
\(508\) 10227.2 11802.8i 0.893223 1.03083i
\(509\) 3304.11 2123.42i 0.287725 0.184910i −0.388814 0.921316i \(-0.627115\pi\)
0.676539 + 0.736406i \(0.263479\pi\)
\(510\) −1328.74 9241.58i −0.115368 0.802400i
\(511\) 1034.36 + 2264.94i 0.0895452 + 0.196077i
\(512\) 1903.94 13242.2i 0.164342 1.14303i
\(513\) 28712.6 8430.79i 2.47114 0.725591i
\(514\) 14819.7 + 9524.02i 1.27173 + 0.817289i
\(515\) −2030.70 + 4446.60i −0.173754 + 0.380467i
\(516\) −15199.5 4462.99i −1.29675 0.380760i
\(517\) 2701.49 + 3117.69i 0.229810 + 0.265214i
\(518\) 40030.2 + 46197.4i 3.39542 + 3.91852i
\(519\) 22161.7 + 6507.27i 1.87436 + 0.550361i
\(520\) −699.096 + 1530.81i −0.0589565 + 0.129097i
\(521\) −7009.41 4504.67i −0.589420 0.378797i 0.211670 0.977341i \(-0.432110\pi\)
−0.801090 + 0.598544i \(0.795746\pi\)
\(522\) 25343.5 7441.52i 2.12501 0.623959i
\(523\) −527.561 + 3669.27i −0.0441083 + 0.306780i 0.955810 + 0.293985i \(0.0949817\pi\)
−0.999918 + 0.0127942i \(0.995927\pi\)
\(524\) −623.054 1364.30i −0.0519432 0.113740i
\(525\) −984.974 6850.65i −0.0818815 0.569499i
\(526\) 13514.6 8685.32i 1.12028 0.719958i
\(527\) 7638.17 8814.92i 0.631355 0.728622i
\(528\) −5600.26 −0.461591
\(529\) −11210.2 + 4729.49i −0.921358 + 0.388715i
\(530\) −4685.36 −0.383998
\(531\) 18706.9 21589.0i 1.52884 1.76437i
\(532\) −56493.8 + 36306.4i −4.60398 + 2.95880i
\(533\) 14.1856 + 98.6631i 0.00115281 + 0.00801796i
\(534\) −19010.2 41626.6i −1.54055 3.37333i
\(535\) 328.139 2282.26i 0.0265172 0.184431i
\(536\) −21477.8 + 6306.46i −1.73079 + 0.508204i
\(537\) −19713.3 12668.9i −1.58415 1.01807i
\(538\) 7217.67 15804.5i 0.578393 1.26651i
\(539\) −10040.7 2948.22i −0.802382 0.235601i
\(540\) 10191.6 + 11761.8i 0.812182 + 0.937308i
\(541\) 725.683 + 837.483i 0.0576701 + 0.0665549i 0.783852 0.620948i \(-0.213252\pi\)
−0.726182 + 0.687503i \(0.758707\pi\)
\(542\) 13537.7 + 3975.03i 1.07287 + 0.315022i
\(543\) 3789.59 8298.05i 0.299497 0.655808i
\(544\) 2890.77 + 1857.78i 0.227832 + 0.146419i
\(545\) −3569.56 + 1048.12i −0.280556 + 0.0823787i
\(546\) 1918.41 13342.9i 0.150367 1.04583i
\(547\) 3747.09 + 8204.99i 0.292896 + 0.641353i 0.997681 0.0680685i \(-0.0216836\pi\)
−0.704785 + 0.709421i \(0.748956\pi\)
\(548\) −526.541 3662.18i −0.0410451 0.285475i
\(549\) −30454.2 + 19571.7i −2.36750 + 1.52150i
\(550\) −1274.14 + 1470.44i −0.0987812 + 0.114000i
\(551\) −15609.5 −1.20687
\(552\) −6378.61 31528.5i −0.491833 2.43105i
\(553\) 25096.9 1.92989
\(554\) −774.299 + 893.589i −0.0593805 + 0.0685288i
\(555\) −15072.6 + 9686.54i −1.15278 + 0.740848i
\(556\) 2333.33 + 16228.7i 0.177977 + 1.23786i
\(557\) −2840.61 6220.07i −0.216087 0.473165i 0.770284 0.637701i \(-0.220115\pi\)
−0.986371 + 0.164536i \(0.947387\pi\)
\(558\) −9098.19 + 63279.3i −0.690246 + 4.80077i
\(559\) −1176.38 + 345.415i −0.0890078 + 0.0261351i
\(560\) −5163.27 3318.23i −0.389621 0.250394i
\(561\) 2634.88 5769.58i 0.198297 0.434210i
\(562\) −1679.11 493.032i −0.126030 0.0370059i
\(563\) −4452.46 5138.41i −0.333302 0.384651i 0.564217 0.825626i \(-0.309178\pi\)
−0.897519 + 0.440976i \(0.854633\pi\)
\(564\) −21838.2 25202.6i −1.63041 1.88160i
\(565\) 2032.19 + 596.704i 0.151318 + 0.0444310i
\(566\) −2061.54 + 4514.14i −0.153097 + 0.335236i
\(567\) −12452.4 8002.67i −0.922314 0.592735i
\(568\) 7402.59 2173.60i 0.546841 0.160567i
\(569\) −3172.97 + 22068.5i −0.233774 + 1.62594i 0.447762 + 0.894153i \(0.352221\pi\)
−0.681536 + 0.731784i \(0.738688\pi\)
\(570\) −12563.2 27509.6i −0.923183 2.02149i
\(571\) −650.988 4527.72i −0.0477111 0.331838i −0.999672 0.0256177i \(-0.991845\pi\)
0.951961 0.306220i \(-0.0990643\pi\)
\(572\) −2074.87 + 1333.44i −0.151669 + 0.0974717i
\(573\) 1127.49 1301.20i 0.0822021 0.0948662i
\(574\) −1473.28 −0.107132
\(575\) −2400.76 1356.73i −0.174120 0.0983991i
\(576\) −34679.5 −2.50865
\(577\) −13306.2 + 15356.2i −0.960045 + 1.10795i 0.0340485 + 0.999420i \(0.489160\pi\)
−0.994093 + 0.108530i \(0.965386\pi\)
\(578\) −11895.0 + 7644.43i −0.855996 + 0.550115i
\(579\) −2761.20 19204.6i −0.198190 1.37844i
\(580\) −3372.37 7384.46i −0.241431 0.528660i
\(581\) −1712.19 + 11908.6i −0.122261 + 0.850344i
\(582\) 11481.8 3371.35i 0.817758 0.240115i
\(583\) −2677.68 1720.84i −0.190220 0.122247i
\(584\) −1089.59 + 2385.86i −0.0772044 + 0.169054i
\(585\) 2473.36 + 726.245i 0.174805 + 0.0513274i
\(586\) −16225.1 18724.7i −1.14377 1.31999i
\(587\) 2176.86 + 2512.23i 0.153064 + 0.176646i 0.827103 0.562050i \(-0.189987\pi\)
−0.674039 + 0.738696i \(0.735442\pi\)
\(588\) 81166.5 + 23832.6i 5.69260 + 1.67150i
\(589\) 15694.6 34366.4i 1.09794 2.40415i
\(590\) −11348.3 7293.13i −0.791870 0.508904i
\(591\) −29729.8 + 8729.47i −2.06924 + 0.607584i
\(592\) −2261.17 + 15726.8i −0.156982 + 1.09184i
\(593\) 6866.79 + 15036.2i 0.475523 + 1.04125i 0.983670 + 0.179980i \(0.0576033\pi\)
−0.508147 + 0.861270i \(0.669669\pi\)
\(594\) 2311.84 + 16079.2i 0.159690 + 1.11067i
\(595\) 5847.84 3758.18i 0.402921 0.258942i
\(596\) 6587.90 7602.85i 0.452770 0.522525i
\(597\) −7458.12 −0.511291
\(598\) −3742.04 3852.79i −0.255892 0.263465i
\(599\) 6161.07 0.420258 0.210129 0.977674i \(-0.432612\pi\)
0.210129 + 0.977674i \(0.432612\pi\)
\(600\) 4774.32 5509.86i 0.324851 0.374898i
\(601\) −8920.83 + 5733.07i −0.605472 + 0.389113i −0.807156 0.590338i \(-0.798995\pi\)
0.201685 + 0.979450i \(0.435358\pi\)
\(602\) −2578.94 17936.9i −0.174601 1.21438i
\(603\) 14243.7 + 31189.3i 0.961936 + 2.10635i
\(604\) 2017.20 14030.0i 0.135892 0.945150i
\(605\) 5117.19 1502.54i 0.343873 0.100970i
\(606\) −32970.2 21188.7i −2.21010 1.42035i
\(607\) −4471.05 + 9790.23i −0.298969 + 0.654651i −0.998183 0.0602621i \(-0.980806\pi\)
0.699214 + 0.714913i \(0.253534\pi\)
\(608\) 10679.6 + 3135.82i 0.712362 + 0.209168i
\(609\) 19738.8 + 22779.7i 1.31339 + 1.51573i
\(610\) 11194.9 + 12919.6i 0.743064 + 0.857542i
\(611\) −2476.42 727.143i −0.163969 0.0481458i
\(612\) −13896.5 + 30429.2i −0.917867 + 2.00985i
\(613\) −14821.7 9525.30i −0.976576 0.627607i −0.0480381 0.998846i \(-0.515297\pi\)
−0.928538 + 0.371238i \(0.878933\pi\)
\(614\) 12057.1 3540.28i 0.792483 0.232694i
\(615\) 61.4548 427.428i 0.00402943 0.0280253i
\(616\) −7019.62 15370.8i −0.459137 1.00537i
\(617\) 1552.49 + 10797.8i 0.101298 + 0.704543i 0.975663 + 0.219274i \(0.0703690\pi\)
−0.874365 + 0.485268i \(0.838722\pi\)
\(618\) 34698.8 22299.6i 2.25856 1.45149i
\(619\) −15282.7 + 17637.2i −0.992350 + 1.14523i −0.00295367 + 0.999996i \(0.500940\pi\)
−0.989397 + 0.145238i \(0.953605\pi\)
\(620\) 19648.7 1.27276
\(621\) −21686.8 + 7730.47i −1.40139 + 0.499538i
\(622\) 35685.5 2.30041
\(623\) 22311.8 25749.1i 1.43483 1.65589i
\(624\) 2947.56 1894.28i 0.189098 0.121526i
\(625\) −88.9468 618.638i −0.00569259 0.0395929i
\(626\) −16062.0 35170.8i −1.02550 2.24554i
\(627\) 2923.87 20335.9i 0.186233 1.29528i
\(628\) −34341.1 + 10083.5i −2.18210 + 0.640723i
\(629\) −15138.4 9728.88i −0.959632 0.616718i
\(630\) −15827.6 + 34657.6i −1.00093 + 2.19174i
\(631\) 24965.7 + 7330.59i 1.57507 + 0.462482i 0.948472 0.316862i \(-0.102629\pi\)
0.626597 + 0.779344i \(0.284447\pi\)
\(632\) 17312.4 + 19979.5i 1.08963 + 1.25750i
\(633\) −27299.7 31505.6i −1.71417 1.97825i
\(634\) 35430.7 + 10403.4i 2.21945 + 0.651690i
\(635\) −2175.26 + 4763.16i −0.135941 + 0.297670i
\(636\) 21645.7 + 13910.8i 1.34954 + 0.867297i
\(637\) 6281.92 1844.54i 0.390736 0.114730i
\(638\) 1205.91 8387.31i 0.0748316 0.520465i
\(639\) −4909.25 10749.8i −0.303923 0.665499i
\(640\) 1888.69 + 13136.1i 0.116651 + 0.811329i
\(641\) −62.5490 + 40.1978i −0.00385419 + 0.00247694i −0.542566 0.840013i \(-0.682547\pi\)
0.538712 + 0.842490i \(0.318911\pi\)
\(642\) −12740.4 + 14703.2i −0.783211 + 0.903874i
\(643\) 24.0567 0.00147543 0.000737716 1.00000i \(-0.499765\pi\)
0.000737716 1.00000i \(0.499765\pi\)
\(644\) 41808.6 30356.5i 2.55821 1.85747i
\(645\) 5311.43 0.324244
\(646\) 19891.2 22955.7i 1.21147 1.39811i
\(647\) −4040.50 + 2596.67i −0.245515 + 0.157783i −0.657611 0.753357i \(-0.728433\pi\)
0.412096 + 0.911140i \(0.364797\pi\)
\(648\) −2219.03 15433.7i −0.134525 0.935639i
\(649\) −3806.95 8336.05i −0.230255 0.504189i
\(650\) 173.240 1204.91i 0.0104539 0.0727083i
\(651\) −69999.2 + 20553.6i −4.21426 + 1.23742i
\(652\) −37943.8 24385.0i −2.27913 1.46471i
\(653\) 8003.65 17525.6i 0.479643 1.05027i −0.502918 0.864334i \(-0.667740\pi\)
0.982561 0.185939i \(-0.0595325\pi\)
\(654\) 30118.9 + 8843.72i 1.80083 + 0.528772i
\(655\) 329.318 + 380.054i 0.0196451 + 0.0226716i
\(656\) −250.771 289.405i −0.0149253 0.0172247i
\(657\) 3854.89 + 1131.90i 0.228910 + 0.0672140i
\(658\) 15847.2 34700.5i 0.938887 2.05588i
\(659\) −10560.0 6786.52i −0.624219 0.401161i 0.189946 0.981795i \(-0.439169\pi\)
−0.814165 + 0.580633i \(0.802805\pi\)
\(660\) 10252.1 3010.29i 0.604641 0.177539i
\(661\) −4726.62 + 32874.3i −0.278130 + 1.93444i 0.0712538 + 0.997458i \(0.477300\pi\)
−0.349384 + 0.936980i \(0.613609\pi\)
\(662\) 10183.3 + 22298.3i 0.597862 + 1.30914i
\(663\) 564.751 + 3927.93i 0.0330816 + 0.230088i
\(664\) −10661.5 + 6851.70i −0.623110 + 0.400448i
\(665\) 14745.0 17016.7i 0.859832 0.992299i
\(666\) 98632.1 5.73861
\(667\) 11990.2 681.999i 0.696046 0.0395908i
\(668\) −62018.3 −3.59216
\(669\) −30325.4 + 34997.4i −1.75254 + 2.02254i
\(670\) 13621.3 8753.87i 0.785428 0.504764i
\(671\) 1652.77 + 11495.3i 0.0950885 + 0.661355i
\(672\) −8928.50 19550.7i −0.512536 1.12230i
\(673\) 2297.91 15982.3i 0.131617 0.915414i −0.811831 0.583893i \(-0.801529\pi\)
0.943448 0.331522i \(-0.107562\pi\)
\(674\) −9519.65 + 2795.22i −0.544040 + 0.159745i
\(675\) −4389.81 2821.16i −0.250317 0.160869i
\(676\) −12969.0 + 28398.2i −0.737881 + 1.61573i
\(677\) −14521.6 4263.91i −0.824385 0.242061i −0.157782 0.987474i \(-0.550434\pi\)
−0.666603 + 0.745413i \(0.732252\pi\)
\(678\) −11703.0 13506.0i −0.662906 0.765034i
\(679\) 5834.39 + 6733.25i 0.329755 + 0.380557i
\(680\) 7025.84 + 2062.97i 0.396218 + 0.116340i
\(681\) 20870.7 45700.6i 1.17440 2.57159i
\(682\) 17253.3 + 11088.0i 0.968715 + 0.622556i
\(683\) 9029.93 2651.43i 0.505887 0.148542i −0.0188232 0.999823i \(-0.505992\pi\)
0.524710 + 0.851281i \(0.324174\pi\)
\(684\) −15420.7 + 107253.i −0.862023 + 5.99550i
\(685\) 515.333 + 1128.42i 0.0287443 + 0.0629413i
\(686\) 6432.43 + 44738.5i 0.358005 + 2.48998i
\(687\) −27781.1 + 17853.9i −1.54282 + 0.991509i
\(688\) 3084.49 3559.69i 0.170923 0.197256i
\(689\) 1991.41 0.110111
\(690\) 10852.2 + 20582.2i 0.598746 + 1.13558i
\(691\) 4463.56 0.245734 0.122867 0.992423i \(-0.460791\pi\)
0.122867 + 0.992423i \(0.460791\pi\)
\(692\) −25591.6 + 29534.3i −1.40585 + 1.62243i
\(693\) −21774.6 + 13993.7i −1.19358 + 0.767064i
\(694\) 3969.59 + 27609.1i 0.217123 + 1.51013i
\(695\) −2283.66 5000.52i −0.124639 0.272922i
\(696\) −4518.65 + 31427.9i −0.246091 + 1.71160i
\(697\) 416.142 122.190i 0.0226148 0.00664030i
\(698\) −3703.99 2380.41i −0.200857 0.129083i
\(699\) 14952.0 32740.3i 0.809065 1.77161i
\(700\) 11235.8 + 3299.12i 0.606675 + 0.178136i
\(701\) −3829.69 4419.69i −0.206341 0.238131i 0.643141 0.765748i \(-0.277631\pi\)
−0.849482 + 0.527617i \(0.823086\pi\)
\(702\) −6655.56 7680.93i −0.357832 0.412960i
\(703\) −55927.3 16421.7i −3.00048 0.881021i
\(704\) −4621.64 + 10120.0i −0.247421 + 0.541777i
\(705\) 9406.27 + 6045.04i 0.502498 + 0.322936i
\(706\) 265.225 77.8772i 0.0141386 0.00415148i
\(707\) 4152.64 28882.3i 0.220900 1.53639i
\(708\) 30774.4 + 67386.5i 1.63358 + 3.57703i
\(709\) −1093.45 7605.10i −0.0579201 0.402843i −0.998071 0.0620844i \(-0.980225\pi\)
0.940151 0.340759i \(-0.110684\pi\)
\(710\) −4694.74 + 3017.13i −0.248155 + 0.159480i
\(711\) 26518.4 30603.9i 1.39876 1.61425i
\(712\) 35889.9 1.88909
\(713\) −10554.1 + 27083.8i −0.554353 + 1.42258i
\(714\) −58653.5 −3.07430
\(715\) 541.547 624.978i 0.0283255 0.0326893i
\(716\) 33353.8 21435.2i 1.74091 1.11881i
\(717\) −3870.08 26917.0i −0.201577 1.40200i
\(718\) 8980.15 + 19663.8i 0.466764 + 1.02207i
\(719\) 4753.59 33061.9i 0.246563 1.71488i −0.371227 0.928542i \(-0.621063\pi\)
0.617790 0.786343i \(-0.288028\pi\)
\(720\) −9502.08 + 2790.06i −0.491836 + 0.144416i
\(721\) 25834.1 + 16602.6i 1.33442 + 0.857577i
\(722\) 27232.8 59631.6i 1.40374 3.07376i
\(723\) 2593.47 + 761.513i 0.133406 + 0.0391715i
\(724\) 10107.6 + 11664.7i 0.518846 + 0.598780i
\(725\) 1782.48 + 2057.09i 0.0913100 + 0.105377i
\(726\) −43177.4 12678.0i −2.20725 0.648107i
\(727\) −6929.72 + 15174.0i −0.353520 + 0.774101i 0.646418 + 0.762984i \(0.276266\pi\)
−0.999938 + 0.0111179i \(0.996461\pi\)
\(728\) 8893.77 + 5715.68i 0.452782 + 0.290985i
\(729\) 24742.5 7265.04i 1.25705 0.369102i
\(730\) 270.005 1877.93i 0.0136895 0.0952126i
\(731\) 2216.09 + 4852.57i 0.112127 + 0.245525i
\(732\) −13360.5 92924.6i −0.674617 4.69207i
\(733\) −17067.5 + 10968.6i −0.860028 + 0.552707i −0.894688 0.446693i \(-0.852602\pi\)
0.0346592 + 0.999399i \(0.488965\pi\)
\(734\) 13874.2 16011.7i 0.697692 0.805179i
\(735\) −28363.4 −1.42340
\(736\) −8340.41 1942.13i −0.417706 0.0972661i
\(737\) 10999.7 0.549768
\(738\) −1556.73 + 1796.56i −0.0776477 + 0.0896102i
\(739\) −18381.1 + 11812.8i −0.914963 + 0.588011i −0.911192 0.411982i \(-0.864837\pi\)
−0.00377115 + 0.999993i \(0.501200\pi\)
\(740\) −4314.16 30005.7i −0.214313 1.49058i
\(741\) 5339.71 + 11692.3i 0.264722 + 0.579660i
\(742\) −4188.88 + 29134.3i −0.207249 + 1.44145i
\(743\) 7359.06 2160.81i 0.363362 0.106693i −0.0949551 0.995482i \(-0.530271\pi\)
0.458317 + 0.888789i \(0.348453\pi\)
\(744\) −64649.6 41547.7i −3.18571 2.04733i
\(745\) −1401.21 + 3068.23i −0.0689080 + 0.150887i
\(746\) −42388.0 12446.3i −2.08034 0.610844i
\(747\) 12712.5 + 14671.0i 0.622658 + 0.718585i
\(748\) 7027.72 + 8110.42i 0.343528 + 0.396452i
\(749\) −13898.0 4080.83i −0.678002 0.199079i
\(750\) −2190.72 + 4797.01i −0.106659 + 0.233550i
\(751\) 6981.55 + 4486.77i 0.339228 + 0.218009i 0.699152 0.714973i \(-0.253561\pi\)
−0.359924 + 0.932982i \(0.617197\pi\)
\(752\) 9513.83 2793.51i 0.461348 0.135464i
\(753\) 3584.61 24931.5i 0.173480 1.20658i
\(754\) 2202.30 + 4822.36i 0.106370 + 0.232918i
\(755\) 676.352 + 4704.13i 0.0326026 + 0.226756i
\(756\) 82248.2 52857.7i 3.95680 2.54288i
\(757\) −5336.67 + 6158.84i −0.256228 + 0.295703i −0.869260 0.494355i \(-0.835404\pi\)
0.613032 + 0.790058i \(0.289950\pi\)
\(758\) −29678.2 −1.42211
\(759\) −1357.42 + 15748.5i −0.0649161 + 0.753141i
\(760\) 23718.4 1.13205
\(761\) 14592.6 16840.8i 0.695115 0.802205i −0.292969 0.956122i \(-0.594643\pi\)
0.988084 + 0.153917i \(0.0491888\pi\)
\(762\) 37169.1 23887.1i 1.76705 1.13562i
\(763\) 3326.04 + 23133.1i 0.157812 + 1.09761i
\(764\) 1210.14 + 2649.83i 0.0573052 + 0.125481i
\(765\) 1596.24 11102.1i