Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,4,Mod(6,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 18]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.6");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.g (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.78521965066\) |
Analytic rank: | \(0\) |
Dimension: | \(110\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.1 | −2.30963 | + | 5.05739i | −3.54080 | − | 1.03967i | −15.0039 | − | 17.3154i | 4.20627 | − | 2.70320i | 13.4360 | − | 15.5060i | −0.413013 | + | 2.87257i | 79.5474 | − | 23.3572i | −11.2575 | − | 7.23474i | 3.95622 | + | 27.5161i |
6.2 | −1.61506 | + | 3.53648i | 0.822656 | + | 0.241553i | −4.65942 | − | 5.37726i | 4.20627 | − | 2.70320i | −2.18289 | + | 2.51919i | 3.70179 | − | 25.7465i | −3.30086 | + | 0.969220i | −22.0954 | − | 14.1999i | 2.76647 | + | 19.2412i |
6.3 | −1.54534 | + | 3.38383i | 4.29324 | + | 1.26061i | −3.82332 | − | 4.41235i | 4.20627 | − | 2.70320i | −10.9002 | + | 12.5795i | −1.59229 | + | 11.0746i | −7.71551 | + | 2.26548i | −5.87108 | − | 3.77311i | 2.64705 | + | 18.4107i |
6.4 | −1.13426 | + | 2.48368i | −4.84173 | − | 1.42166i | 0.356777 | + | 0.411743i | 4.20627 | − | 2.70320i | 9.02270 | − | 10.4128i | −3.26809 | + | 22.7301i | −22.3859 | + | 6.57308i | −1.29264 | − | 0.830727i | 1.94290 | + | 13.5131i |
6.5 | −0.743310 | + | 1.62762i | 9.31398 | + | 2.73483i | 3.14224 | + | 3.62634i | 4.20627 | − | 2.70320i | −11.3745 | + | 13.1268i | −1.18121 | + | 8.21547i | −21.9727 | + | 6.45176i | 56.5571 | + | 36.3470i | 1.27323 | + | 8.85554i |
6.6 | −0.502951 | + | 1.10131i | −7.38951 | − | 2.16976i | 4.27896 | + | 4.93819i | 4.20627 | − | 2.70320i | 6.10614 | − | 7.04686i | 2.63135 | − | 18.3014i | −16.8840 | + | 4.95759i | 27.1832 | + | 17.4696i | 0.861517 | + | 5.99198i |
6.7 | 0.274193 | − | 0.600398i | 0.833837 | + | 0.244837i | 4.95359 | + | 5.71675i | 4.20627 | − | 2.70320i | 0.375631 | − | 0.433502i | −4.72226 | + | 32.8441i | 9.85703 | − | 2.89429i | −22.0785 | − | 14.1890i | −0.469671 | − | 3.26663i |
6.8 | 0.356908 | − | 0.781519i | 5.20863 | + | 1.52939i | 4.75550 | + | 5.48814i | 4.20627 | − | 2.70320i | 3.05425 | − | 3.52479i | 3.53166 | − | 24.5632i | 12.5812 | − | 3.69418i | 2.07692 | + | 1.33475i | −0.611355 | − | 4.25207i |
6.9 | 0.857442 | − | 1.87754i | −4.53505 | − | 1.33161i | 2.44895 | + | 2.82624i | 4.20627 | − | 2.70320i | −6.38869 | + | 7.37294i | 1.83914 | − | 12.7915i | 23.2498 | − | 6.82676i | −3.92038 | − | 2.51948i | −1.46873 | − | 10.2153i |
6.10 | 1.58073 | − | 3.46132i | 6.46368 | + | 1.89791i | −4.24314 | − | 4.89684i | 4.20627 | − | 2.70320i | 16.7866 | − | 19.3728i | −1.14374 | + | 7.95486i | 5.55162 | − | 1.63010i | 15.4632 | + | 9.93762i | −2.70767 | − | 18.8323i |
6.11 | 2.10300 | − | 4.60492i | −0.871970 | − | 0.256034i | −11.5438 | − | 13.3223i | 4.20627 | − | 2.70320i | −3.01277 | + | 3.47692i | 1.35658 | − | 9.43524i | −46.7662 | + | 13.7318i | −22.0191 | − | 14.1508i | −3.60228 | − | 25.0544i |
16.1 | −3.13461 | + | 3.61754i | −7.41459 | + | 4.76507i | −2.12225 | − | 14.7606i | 2.07708 | + | 4.54816i | 6.00407 | − | 41.7592i | 30.1381 | − | 8.84935i | 27.8349 | + | 17.8884i | 21.0541 | − | 46.1020i | −22.9640 | − | 6.74283i |
16.2 | −2.78120 | + | 3.20967i | 0.620793 | − | 0.398960i | −1.42842 | − | 9.93487i | 2.07708 | + | 4.54816i | −0.446019 | + | 3.10213i | −1.32223 | + | 0.388243i | 7.27793 | + | 4.67724i | −10.9900 | + | 24.0647i | −20.3748 | − | 5.98259i |
16.3 | −2.62935 | + | 3.03443i | 5.69405 | − | 3.65935i | −1.15577 | − | 8.03858i | 2.07708 | + | 4.54816i | −3.86762 | + | 26.8999i | −1.94859 | + | 0.572159i | 0.409529 | + | 0.263188i | 7.81524 | − | 17.1130i | −19.2624 | − | 5.65596i |
16.4 | −1.69252 | + | 1.95327i | −4.05620 | + | 2.60676i | 0.187875 | + | 1.30670i | 2.07708 | + | 4.54816i | 1.77348 | − | 12.3348i | −18.0212 | + | 5.29151i | −20.2644 | − | 13.0231i | −1.55865 | + | 3.41296i | −12.3993 | − | 3.64075i |
16.5 | −0.861960 | + | 0.994755i | −0.892278 | + | 0.573432i | 0.891957 | + | 6.20369i | 2.07708 | + | 4.54816i | 0.198683 | − | 1.38187i | 31.2385 | − | 9.17246i | −15.7984 | − | 10.1530i | −10.7489 | + | 23.5367i | −6.31466 | − | 1.85415i |
16.6 | 0.0310213 | − | 0.0358005i | 1.55482 | − | 0.999222i | 1.13820 | + | 7.91635i | 2.07708 | + | 4.54816i | 0.0124599 | − | 0.0866606i | −22.1880 | + | 6.51498i | 0.637525 | + | 0.409713i | −9.79718 | + | 21.4528i | 0.227260 | + | 0.0667296i |
16.7 | 0.694897 | − | 0.801954i | −7.82619 | + | 5.02959i | 0.978270 | + | 6.80402i | 2.07708 | + | 4.54816i | −1.40490 | + | 9.77129i | −10.2408 | + | 3.00696i | 13.2778 | + | 8.53312i | 24.7363 | − | 54.1649i | 5.09077 | + | 1.49479i |
16.8 | 0.784981 | − | 0.905916i | 6.23621 | − | 4.00777i | 0.934030 | + | 6.49632i | 2.07708 | + | 4.54816i | 1.26460 | − | 8.79550i | 8.12768 | − | 2.38650i | 14.6856 | + | 9.43786i | 11.6119 | − | 25.4265i | 5.75072 | + | 1.68856i |
16.9 | 2.11818 | − | 2.44451i | −0.807164 | + | 0.518733i | −0.350419 | − | 2.43722i | 2.07708 | + | 4.54816i | −0.441670 | + | 3.07188i | 31.6351 | − | 9.28890i | 15.0685 | + | 9.68396i | −10.8338 | + | 23.7227i | 15.5176 | + | 4.55638i |
See next 80 embeddings (of 110 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.4.g.a | ✓ | 110 |
23.c | even | 11 | 1 | inner | 115.4.g.a | ✓ | 110 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.4.g.a | ✓ | 110 | 1.a | even | 1 | 1 | trivial |
115.4.g.a | ✓ | 110 | 23.c | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{110} + 2 T_{2}^{109} + 66 T_{2}^{108} - 117 T_{2}^{107} + 1942 T_{2}^{106} + \cdots + 13\!\cdots\!56 \) acting on \(S_{4}^{\mathrm{new}}(115, [\chi])\).