[N,k,chi] = [115,4,Mod(6,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 18]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.6");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{110} + 2 T_{2}^{109} + 66 T_{2}^{108} - 117 T_{2}^{107} + 1942 T_{2}^{106} - 12222 T_{2}^{105} + 74496 T_{2}^{104} - 439372 T_{2}^{103} + 3457423 T_{2}^{102} - 13210094 T_{2}^{101} + 120932488 T_{2}^{100} + \cdots + 13\!\cdots\!56 \)
acting on \(S_{4}^{\mathrm{new}}(115, [\chi])\).