Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,4,Mod(22,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.22");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.e (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.78521965066\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Relative dimension: | \(34\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 | −3.71645 | − | 3.71645i | 3.49413 | − | 3.49413i | 19.6239i | −10.7999 | + | 2.89187i | −25.9715 | 2.69551 | − | 2.69551i | 43.1997 | − | 43.1997i | 2.58205i | 50.8846 | + | 29.3896i | ||||||
22.2 | −3.71645 | − | 3.71645i | 3.49413 | − | 3.49413i | 19.6239i | 10.7999 | − | 2.89187i | −25.9715 | −2.69551 | + | 2.69551i | 43.1997 | − | 43.1997i | 2.58205i | −50.8846 | − | 29.3896i | ||||||
22.3 | −3.67169 | − | 3.67169i | −4.81114 | + | 4.81114i | 18.9626i | −0.398194 | − | 11.1732i | 35.3300 | 20.1910 | − | 20.1910i | 40.2512 | − | 40.2512i | − | 19.2941i | −39.5626 | + | 42.4867i | |||||
22.4 | −3.67169 | − | 3.67169i | −4.81114 | + | 4.81114i | 18.9626i | 0.398194 | + | 11.1732i | 35.3300 | −20.1910 | + | 20.1910i | 40.2512 | − | 40.2512i | − | 19.2941i | 39.5626 | − | 42.4867i | |||||
22.5 | −2.78118 | − | 2.78118i | 1.69288 | − | 1.69288i | 7.46996i | −9.46680 | − | 5.94809i | −9.41642 | 1.06728 | − | 1.06728i | −1.47414 | + | 1.47414i | 21.2683i | 9.78619 | + | 42.8716i | ||||||
22.6 | −2.78118 | − | 2.78118i | 1.69288 | − | 1.69288i | 7.46996i | 9.46680 | + | 5.94809i | −9.41642 | −1.06728 | + | 1.06728i | −1.47414 | + | 1.47414i | 21.2683i | −9.78619 | − | 42.8716i | ||||||
22.7 | −2.66509 | − | 2.66509i | −2.23283 | + | 2.23283i | 6.20541i | −7.41137 | + | 8.37088i | 11.9014 | 10.9048 | − | 10.9048i | −4.78275 | + | 4.78275i | 17.0290i | 42.0611 | − | 2.55718i | ||||||
22.8 | −2.66509 | − | 2.66509i | −2.23283 | + | 2.23283i | 6.20541i | 7.41137 | − | 8.37088i | 11.9014 | −10.9048 | + | 10.9048i | −4.78275 | + | 4.78275i | 17.0290i | −42.0611 | + | 2.55718i | ||||||
22.9 | −2.37561 | − | 2.37561i | 6.86048 | − | 6.86048i | 3.28704i | −2.55138 | − | 10.8853i | −32.5957 | −19.7347 | + | 19.7347i | −11.1962 | + | 11.1962i | − | 67.1325i | −19.7982 | + | 31.9204i | |||||
22.10 | −2.37561 | − | 2.37561i | 6.86048 | − | 6.86048i | 3.28704i | 2.55138 | + | 10.8853i | −32.5957 | 19.7347 | − | 19.7347i | −11.1962 | + | 11.1962i | − | 67.1325i | 19.7982 | − | 31.9204i | |||||
22.11 | −1.84990 | − | 1.84990i | −5.85544 | + | 5.85544i | − | 1.15573i | −10.6129 | − | 3.51653i | 21.6640 | −7.25929 | + | 7.25929i | −16.9372 | + | 16.9372i | − | 41.5723i | 13.1276 | + | 26.1381i | ||||
22.12 | −1.84990 | − | 1.84990i | −5.85544 | + | 5.85544i | − | 1.15573i | 10.6129 | + | 3.51653i | 21.6640 | 7.25929 | − | 7.25929i | −16.9372 | + | 16.9372i | − | 41.5723i | −13.1276 | − | 26.1381i | ||||
22.13 | −1.32617 | − | 1.32617i | 2.49169 | − | 2.49169i | − | 4.48253i | −3.09011 | + | 10.7448i | −6.60883 | −19.9254 | + | 19.9254i | −16.5540 | + | 16.5540i | 14.5829i | 18.3475 | − | 10.1515i | |||||
22.14 | −1.32617 | − | 1.32617i | 2.49169 | − | 2.49169i | − | 4.48253i | 3.09011 | − | 10.7448i | −6.60883 | 19.9254 | − | 19.9254i | −16.5540 | + | 16.5540i | 14.5829i | −18.3475 | + | 10.1515i | |||||
22.15 | −0.386420 | − | 0.386420i | −0.970983 | + | 0.970983i | − | 7.70136i | −8.97655 | − | 6.66495i | 0.750415 | −6.23903 | + | 6.23903i | −6.06732 | + | 6.06732i | 25.1144i | 0.893251 | + | 6.04419i | |||||
22.16 | −0.386420 | − | 0.386420i | −0.970983 | + | 0.970983i | − | 7.70136i | 8.97655 | + | 6.66495i | 0.750415 | 6.23903 | − | 6.23903i | −6.06732 | + | 6.06732i | 25.1144i | −0.893251 | − | 6.04419i | |||||
22.17 | −0.152517 | − | 0.152517i | −2.82764 | + | 2.82764i | − | 7.95348i | −5.56672 | + | 9.69596i | 0.862527 | 20.1728 | − | 20.1728i | −2.43318 | + | 2.43318i | 11.0089i | 2.32782 | − | 0.629778i | |||||
22.18 | −0.152517 | − | 0.152517i | −2.82764 | + | 2.82764i | − | 7.95348i | 5.56672 | − | 9.69596i | 0.862527 | −20.1728 | + | 20.1728i | −2.43318 | + | 2.43318i | 11.0089i | −2.32782 | + | 0.629778i | |||||
22.19 | 0.304528 | + | 0.304528i | 5.13977 | − | 5.13977i | − | 7.81453i | −11.1201 | + | 1.15901i | 3.13040 | 2.31330 | − | 2.31330i | 4.81596 | − | 4.81596i | − | 25.8345i | −3.73933 | − | 3.03343i | ||||
22.20 | 0.304528 | + | 0.304528i | 5.13977 | − | 5.13977i | − | 7.81453i | 11.1201 | − | 1.15901i | 3.13040 | −2.31330 | + | 2.31330i | 4.81596 | − | 4.81596i | − | 25.8345i | 3.73933 | + | 3.03343i | ||||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
23.b | odd | 2 | 1 | inner |
115.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.4.e.a | ✓ | 68 |
5.c | odd | 4 | 1 | inner | 115.4.e.a | ✓ | 68 |
23.b | odd | 2 | 1 | inner | 115.4.e.a | ✓ | 68 |
115.e | even | 4 | 1 | inner | 115.4.e.a | ✓ | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.4.e.a | ✓ | 68 | 1.a | even | 1 | 1 | trivial |
115.4.e.a | ✓ | 68 | 5.c | odd | 4 | 1 | inner |
115.4.e.a | ✓ | 68 | 23.b | odd | 2 | 1 | inner |
115.4.e.a | ✓ | 68 | 115.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(115, [\chi])\).