Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,4,Mod(24,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.24");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.78521965066\) |
Analytic rank: | \(0\) |
Dimension: | \(34\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24.1 | − | 5.19037i | 7.60701i | −18.9399 | −0.939979 | − | 11.1408i | 39.4832 | 25.9715i | 56.7822i | −30.8666 | −57.8246 | + | 4.87884i | |||||||||||||
24.2 | − | 5.07225i | − | 3.81839i | −17.7277 | −11.0224 | − | 1.87263i | −19.3678 | − | 14.6908i | 49.3412i | 12.4199 | −9.49845 | + | 55.9083i | |||||||||||
24.3 | − | 5.04242i | − | 0.0620551i | −17.4260 | 1.76431 | + | 11.0403i | −0.312908 | 30.6525i | 47.5296i | 26.9961 | 55.6696 | − | 8.89637i | ||||||||||||
24.4 | − | 4.94561i | 5.42743i | −16.4591 | 9.51102 | + | 5.87712i | 26.8419 | − | 28.7748i | 41.8353i | −2.45696 | 29.0660 | − | 47.0378i | ||||||||||||
24.5 | − | 4.93784i | − | 9.92307i | −16.3822 | 10.8531 | − | 2.68512i | −48.9985 | 14.6304i | 41.3902i | −71.4673 | −13.2587 | − | 53.5909i | ||||||||||||
24.6 | − | 4.24824i | − | 2.36809i | −10.0475 | 4.85714 | − | 10.0702i | −10.0602 | − | 12.8082i | 8.69841i | 21.3922 | −42.7805 | − | 20.6343i | |||||||||||
24.7 | − | 3.60232i | 8.84330i | −4.97671 | −8.81390 | + | 6.87860i | 31.8564 | − | 13.0981i | − | 10.8909i | −51.2040 | 24.7789 | + | 31.7505i | |||||||||||
24.8 | − | 3.17951i | 4.30546i | −2.10929 | −7.05197 | − | 8.67581i | 13.6892 | 0.115569i | − | 18.7296i | 8.46305 | −27.5848 | + | 22.4218i | ||||||||||||
24.9 | − | 3.13266i | − | 8.19196i | −1.81356 | −9.71296 | + | 5.53701i | −25.6626 | 13.4923i | − | 19.3800i | −40.1082 | 17.3456 | + | 30.4274i | |||||||||||
24.10 | − | 3.00148i | 1.85196i | −1.00888 | −6.22111 | + | 9.28966i | 5.55862 | 4.63746i | − | 20.9837i | 23.5702 | 27.8827 | + | 18.6725i | ||||||||||||
24.11 | − | 2.81381i | − | 0.460867i | 0.0824876 | 11.0215 | − | 1.87796i | −1.29679 | 16.1192i | − | 22.7426i | 26.7876 | −5.28422 | − | 31.0124i | |||||||||||
24.12 | − | 2.51792i | − | 6.03797i | 1.66008 | 6.02099 | + | 9.42060i | −15.2031 | − | 24.0921i | − | 24.3233i | −9.45712 | 23.7203 | − | 15.1604i | ||||||||||
24.13 | − | 1.98882i | 9.68598i | 4.04459 | 10.8383 | + | 2.74438i | 19.2637 | 25.5696i | − | 23.9545i | −66.8182 | 5.45807 | − | 21.5554i | ||||||||||||
24.14 | − | 1.45307i | − | 7.24162i | 5.88858 | −4.02716 | − | 10.4299i | −10.5226 | − | 0.356556i | − | 20.1811i | −25.4411 | −15.1553 | + | 5.85176i | ||||||||||
24.15 | − | 0.752118i | 6.31519i | 7.43432 | 2.89657 | − | 10.7986i | 4.74977 | − | 25.4579i | − | 11.6084i | −12.8816 | −8.12183 | − | 2.17857i | |||||||||||
24.16 | − | 0.407036i | 3.62432i | 7.83432 | 7.84032 | + | 7.97054i | 1.47523 | − | 11.1245i | − | 6.44514i | 13.8643 | 3.24429 | − | 3.19129i | |||||||||||
24.17 | − | 0.231361i | 2.18914i | 7.94647 | −10.8138 | − | 2.83950i | 0.506482 | 29.8467i | − | 3.68940i | 22.2077 | −0.656949 | + | 2.50188i | ||||||||||||
24.18 | 0.231361i | − | 2.18914i | 7.94647 | −10.8138 | + | 2.83950i | 0.506482 | − | 29.8467i | 3.68940i | 22.2077 | −0.656949 | − | 2.50188i | ||||||||||||
24.19 | 0.407036i | − | 3.62432i | 7.83432 | 7.84032 | − | 7.97054i | 1.47523 | 11.1245i | 6.44514i | 13.8643 | 3.24429 | + | 3.19129i | |||||||||||||
24.20 | 0.752118i | − | 6.31519i | 7.43432 | 2.89657 | + | 10.7986i | 4.74977 | 25.4579i | 11.6084i | −12.8816 | −8.12183 | + | 2.17857i | |||||||||||||
See all 34 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.4.b.a | ✓ | 34 |
5.b | even | 2 | 1 | inner | 115.4.b.a | ✓ | 34 |
5.c | odd | 4 | 1 | 575.4.a.q | 17 | ||
5.c | odd | 4 | 1 | 575.4.a.r | 17 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.4.b.a | ✓ | 34 | 1.a | even | 1 | 1 | trivial |
115.4.b.a | ✓ | 34 | 5.b | even | 2 | 1 | inner |
575.4.a.q | 17 | 5.c | odd | 4 | 1 | ||
575.4.a.r | 17 | 5.c | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(115, [\chi])\).