[N,k,chi] = [115,4,Mod(1,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(5\)
\(-1\)
\(23\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 6T_{2}^{7} - 35T_{2}^{6} + 249T_{2}^{5} + 170T_{2}^{4} - 2565T_{2}^{3} + 1916T_{2}^{2} + 2802T_{2} - 132 \)
T2^8 - 6*T2^7 - 35*T2^6 + 249*T2^5 + 170*T2^4 - 2565*T2^3 + 1916*T2^2 + 2802*T2 - 132
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(115))\).
$p$
$F_p(T)$
$2$
\( T^{8} - 6 T^{7} - 35 T^{6} + 249 T^{5} + \cdots - 132 \)
T^8 - 6*T^7 - 35*T^6 + 249*T^5 + 170*T^4 - 2565*T^3 + 1916*T^2 + 2802*T - 132
$3$
\( T^{8} - 187 T^{6} + 165 T^{5} + \cdots + 3520 \)
T^8 - 187*T^6 + 165*T^5 + 10290*T^4 - 15441*T^3 - 137140*T^2 + 191280*T + 3520
$5$
\( (T - 5)^{8} \)
(T - 5)^8
$7$
\( T^{8} - 11 T^{7} + \cdots - 9289584128 \)
T^8 - 11*T^7 - 1752*T^6 + 22539*T^5 + 783793*T^4 - 12717810*T^3 - 76746972*T^2 + 2135252960*T - 9289584128
$11$
\( T^{8} - 41 T^{7} + \cdots - 11345758080 \)
T^8 - 41*T^7 - 4775*T^6 + 224992*T^5 + 2597924*T^4 - 152142824*T^3 - 522343552*T^2 + 21630255072*T - 11345758080
$13$
\( T^{8} - 28 T^{7} + \cdots - 5251923133176 \)
T^8 - 28*T^7 - 7393*T^6 + 243983*T^5 + 15885606*T^4 - 641134395*T^3 - 7429216362*T^2 + 525246117116*T - 5251923133176
$17$
\( T^{8} - 71 T^{7} + \cdots + 52834929586560 \)
T^8 - 71*T^7 - 20754*T^6 + 1597643*T^5 + 98742063*T^4 - 8137526818*T^3 - 72581871216*T^2 + 7372793376192*T + 52834929586560
$19$
\( T^{8} - 177 T^{7} + \cdots - 54772847726720 \)
T^8 - 177*T^7 - 15685*T^6 + 4433088*T^5 - 217230564*T^4 - 2622621480*T^3 + 311441102528*T^2 - 1145505867552*T - 54772847726720
$23$
\( (T - 23)^{8} \)
(T - 23)^8
$29$
\( T^{8} - 225 T^{7} + \cdots + 12\!\cdots\!00 \)
T^8 - 225*T^7 - 86906*T^6 + 18621450*T^5 + 1687903049*T^4 - 416070007889*T^3 + 5631078471288*T^2 + 931017490977960*T + 12588170090700600
$31$
\( T^{8} + 36 T^{7} + \cdots + 74\!\cdots\!00 \)
T^8 + 36*T^7 - 110126*T^6 - 5740361*T^5 + 3681239417*T^4 + 243685336590*T^3 - 38189339737500*T^2 - 2938377817426585*T + 7498490774218400
$37$
\( T^{8} + 348 T^{7} + \cdots - 15\!\cdots\!64 \)
T^8 + 348*T^7 - 76179*T^6 - 20512082*T^5 + 2449129296*T^4 + 287714602968*T^3 - 32002883708400*T^2 + 425142652182912*T - 1516898306110464
$41$
\( T^{8} - 620 T^{7} + \cdots - 18\!\cdots\!22 \)
T^8 - 620*T^7 - 51274*T^6 + 74300507*T^5 - 5345492381*T^4 - 2263383839138*T^3 + 280880111275332*T^2 + 10665931266417075*T - 1827603316822454622
$43$
\( T^{8} + 390 T^{7} + \cdots + 10\!\cdots\!00 \)
T^8 + 390*T^7 - 330596*T^6 - 113657328*T^5 + 34526487808*T^4 + 9513584892672*T^3 - 1178438790558720*T^2 - 222117012205977600*T + 10592289471873024000
$47$
\( T^{8} - 123 T^{7} + \cdots - 30\!\cdots\!80 \)
T^8 - 123*T^7 - 293327*T^6 + 41958987*T^5 + 15753291746*T^4 - 1864015278844*T^3 - 177035729061120*T^2 + 16385830294175040*T - 301352512831994880
$53$
\( T^{8} - 1406 T^{7} + \cdots - 62\!\cdots\!56 \)
T^8 - 1406*T^7 + 259533*T^6 + 333998868*T^5 - 101476260612*T^4 - 24615796186944*T^3 + 6843173335095600*T^2 + 761992213277236032*T - 62472409867205413056
$59$
\( T^{8} + 676 T^{7} + \cdots + 10\!\cdots\!00 \)
T^8 + 676*T^7 - 697303*T^6 - 427327678*T^5 + 173010223180*T^4 + 81073532995504*T^3 - 20994852067876416*T^2 - 4798907870289760512*T + 1094448054234670848000
$61$
\( T^{8} - 1447 T^{7} + \cdots - 94\!\cdots\!32 \)
T^8 - 1447*T^7 + 555419*T^6 + 76495994*T^5 - 78021023304*T^4 + 7538915954600*T^3 + 1049960944947568*T^2 + 4683076142308480*T - 946396503343564032
$67$
\( T^{8} + 1582 T^{7} + \cdots - 27\!\cdots\!80 \)
T^8 + 1582*T^7 + 265809*T^6 - 445449476*T^5 - 102212494880*T^4 + 44123590303944*T^3 + 6502942685148960*T^2 - 1553182591706225280*T - 27656327566363322880
$71$
\( T^{8} - 1396 T^{7} + \cdots + 30\!\cdots\!20 \)
T^8 - 1396*T^7 - 527628*T^6 + 1804435441*T^5 - 1008686250039*T^4 + 133230612041902*T^3 + 38232243942182970*T^2 - 9214569862746781995*T + 301286186651318989320
$73$
\( T^{8} - 17 T^{7} + \cdots - 59\!\cdots\!16 \)
T^8 - 17*T^7 - 1801897*T^6 + 157635329*T^5 + 1004711863164*T^4 - 228071197765932*T^3 - 176613101054932824*T^2 + 70567188738388438752*T - 5951460860995251414816
$79$
\( T^{8} - 708 T^{7} + \cdots + 11\!\cdots\!40 \)
T^8 - 708*T^7 - 569240*T^6 + 320039320*T^5 + 110058968384*T^4 - 30874809015936*T^3 - 4178126571472896*T^2 + 335250758248398848*T + 1186538971230371840
$83$
\( T^{8} - 1486 T^{7} + \cdots + 84\!\cdots\!48 \)
T^8 - 1486*T^7 - 1398547*T^6 + 3183448408*T^5 - 529276196756*T^4 - 1560229685439744*T^3 + 944806966400669568*T^2 - 153205060594385942784*T + 849986091714070222848
$89$
\( T^{8} - 1360 T^{7} + \cdots + 13\!\cdots\!20 \)
T^8 - 1360*T^7 - 332760*T^6 + 822179656*T^5 - 77172287616*T^4 - 94893432137984*T^3 + 5881578082621440*T^2 + 3437730193618157568*T + 135888812923903672320
$97$
\( T^{8} + 855 T^{7} + \cdots + 12\!\cdots\!44 \)
T^8 + 855*T^7 - 5054723*T^6 - 3825514196*T^5 + 8077056451892*T^4 + 4627494094555032*T^3 - 5230554854322277632*T^2 - 1550921406680332097248*T + 1254804416381310640214144
show more
show less