[N,k,chi] = [115,4,Mod(1,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(5\)
\(1\)
\(23\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{5} - 6T_{2}^{4} - 13T_{2}^{3} + 72T_{2}^{2} + 82T_{2} - 44 \)
T2^5 - 6*T2^4 - 13*T2^3 + 72*T2^2 + 82*T2 - 44
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(115))\).
$p$
$F_p(T)$
$2$
\( T^{5} - 6 T^{4} - 13 T^{3} + 72 T^{2} + \cdots - 44 \)
T^5 - 6*T^4 - 13*T^3 + 72*T^2 + 82*T - 44
$3$
\( T^{5} - 4 T^{4} - 98 T^{3} + \cdots + 3680 \)
T^5 - 4*T^4 - 98*T^3 + 149*T^2 + 2536*T + 3680
$5$
\( (T + 5)^{5} \)
(T + 5)^5
$7$
\( T^{5} + 3 T^{4} - 484 T^{3} + \cdots - 144774 \)
T^5 + 3*T^4 - 484*T^3 + 1757*T^2 + 34281*T - 144774
$11$
\( T^{5} - 23 T^{4} - 4015 T^{3} + \cdots - 74136848 \)
T^5 - 23*T^4 - 4015*T^3 + 110364*T^2 + 2725172*T - 74136848
$13$
\( T^{5} - 132 T^{4} + 4786 T^{3} + \cdots + 1550116 \)
T^5 - 132*T^4 + 4786*T^3 - 23267*T^2 - 478108*T + 1550116
$17$
\( T^{5} - 23 T^{4} + \cdots - 1039045340 \)
T^5 - 23*T^4 - 14632*T^3 + 373053*T^2 + 41117297*T - 1039045340
$19$
\( T^{5} + 161 T^{4} + 3999 T^{3} + \cdots - 801280 \)
T^5 + 161*T^4 + 3999*T^3 - 29000*T^2 - 461748*T - 801280
$23$
\( (T + 23)^{5} \)
(T + 23)^5
$29$
\( T^{5} - 401 T^{4} + \cdots - 6149898500 \)
T^5 - 401*T^4 + 21037*T^3 + 7455469*T^2 - 694056278*T - 6149898500
$31$
\( T^{5} - 32 T^{4} + \cdots - 438072447 \)
T^5 - 32*T^4 - 19809*T^3 + 1461539*T^2 - 16359324*T - 438072447
$37$
\( T^{5} + 38 T^{4} + \cdots + 1590700778176 \)
T^5 + 38*T^4 - 203847*T^3 - 21374140*T^2 + 10447474864*T + 1590700778176
$41$
\( T^{5} + 12 T^{4} + \cdots + 114116030755 \)
T^5 + 12*T^4 - 179855*T^3 - 5417063*T^2 + 2764022726*T + 114116030755
$43$
\( T^{5} + 566 T^{4} + \cdots + 504784881664 \)
T^5 + 566*T^4 - 15080*T^3 - 38532704*T^2 - 1144677888*T + 504784881664
$47$
\( T^{5} - 919 T^{4} + \cdots + 117787714816 \)
T^5 - 919*T^4 + 236082*T^3 - 13884412*T^2 - 1323345536*T + 117787714816
$53$
\( T^{5} - 1156 T^{4} + \cdots + 5720332226904 \)
T^5 - 1156*T^4 + 207937*T^3 + 173281818*T^2 - 68273328852*T + 5720332226904
$59$
\( T^{5} - 1324 T^{4} + \cdots + 24279649927232 \)
T^5 - 1324*T^4 - 179991*T^3 + 869263410*T^2 - 340984500996*T + 24279649927232
$61$
\( T^{5} + 1673 T^{4} + \cdots - 34095834816896 \)
T^5 + 1673*T^4 + 538609*T^3 - 357036812*T^2 - 231909558144*T - 34095834816896
$67$
\( T^{5} - 558 T^{4} + \cdots + 5644442112 \)
T^5 - 558*T^4 + 87929*T^3 - 3348748*T^2 - 150859824*T + 5644442112
$71$
\( T^{5} + 108 T^{4} + \cdots + 15638892903635 \)
T^5 + 108*T^4 - 1071379*T^3 - 384080415*T^2 + 68461430962*T + 15638892903635
$73$
\( T^{5} + \cdots - 100895881632176 \)
T^5 - 1173*T^4 - 754002*T^3 + 798610296*T^2 + 136465351528*T - 100895881632176
$79$
\( T^{5} - 656 T^{4} + \cdots - 90481602379776 \)
T^5 - 656*T^4 - 1386736*T^3 + 824275072*T^2 + 187317697536*T - 90481602379776
$83$
\( T^{5} + 82 T^{4} + \cdots + 18307318870176 \)
T^5 + 82*T^4 - 1275819*T^3 - 633085852*T^2 - 18715519308*T + 18307318870176
$89$
\( T^{5} + \cdots - 115104799418880 \)
T^5 - 570*T^4 - 2129176*T^3 + 1591194176*T^2 + 155412194688*T - 115104799418880
$97$
\( T^{5} + \cdots - 480989167569272 \)
T^5 - 633*T^4 - 1805341*T^3 + 1101737538*T^2 + 811222464868*T - 480989167569272
show more
show less