Properties

Label 115.4.a
Level $115$
Weight $4$
Character orbit 115.a
Rep. character $\chi_{115}(1,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $6$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(115))\).

Total New Old
Modular forms 38 22 16
Cusp forms 34 22 12
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(8\)
Plus space\(+\)\(13\)
Minus space\(-\)\(9\)

Trace form

\( 22 q + 4 q^{2} - 4 q^{3} + 88 q^{4} - 10 q^{6} - 40 q^{7} + 42 q^{8} + 290 q^{9} - 92 q^{11} + 46 q^{12} + 60 q^{13} + 284 q^{14} - 40 q^{15} + 408 q^{16} - 220 q^{17} - 402 q^{18} - 196 q^{19} - 40 q^{20}+ \cdots + 2212 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(115))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 23
115.4.a.a 115.a 1.a $1$ $6.785$ \(\Q\) None 115.4.a.a \(1\) \(4\) \(-5\) \(-32\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+4q^{3}-7q^{4}-5q^{5}+4q^{6}+\cdots\)
115.4.a.b 115.a 1.a $1$ $6.785$ \(\Q\) None 115.4.a.b \(2\) \(-3\) \(5\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}-4q^{4}+5q^{5}-6q^{6}+\cdots\)
115.4.a.c 115.a 1.a $2$ $6.785$ \(\Q(\sqrt{109}) \) None 115.4.a.c \(-6\) \(-3\) \(10\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{2}+(-1-\beta )q^{3}+q^{4}+5q^{5}+\cdots\)
115.4.a.d 115.a 1.a $5$ $6.785$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 115.4.a.d \(-5\) \(-6\) \(-25\) \(-15\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{2}-\beta _{3}-\beta _{4})q^{3}+\cdots\)
115.4.a.e 115.a 1.a $5$ $6.785$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 115.4.a.e \(6\) \(4\) \(-25\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2}+\beta _{3})q^{3}+\cdots\)
115.4.a.f 115.a 1.a $8$ $6.785$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 115.4.a.f \(6\) \(0\) \(40\) \(11\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+\beta _{6}q^{3}+(5+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(115))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(115)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)