Properties

Label 115.4
Level 115
Weight 4
Dimension 1384
Nonzero newspaces 6
Newform subspaces 12
Sturm bound 4224
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 115 = 5 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 12 \)
Sturm bound: \(4224\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(115))\).

Total New Old
Modular forms 1672 1512 160
Cusp forms 1496 1384 112
Eisenstein series 176 128 48

Trace form

\( 1384 q - 14 q^{2} - 26 q^{3} - 38 q^{4} - 23 q^{5} - 50 q^{6} - 34 q^{7} - 22 q^{8} + 24 q^{9} - 73 q^{10} - 130 q^{11} - 54 q^{12} + 54 q^{13} + 26 q^{14} + 361 q^{15} + 942 q^{16} + 102 q^{17} - 382 q^{18}+ \cdots - 21650 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(115))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
115.4.a \(\chi_{115}(1, \cdot)\) 115.4.a.a 1 1
115.4.a.b 1
115.4.a.c 2
115.4.a.d 5
115.4.a.e 5
115.4.a.f 8
115.4.b \(\chi_{115}(24, \cdot)\) 115.4.b.a 34 1
115.4.e \(\chi_{115}(22, \cdot)\) 115.4.e.a 68 2
115.4.g \(\chi_{115}(6, \cdot)\) 115.4.g.a 110 10
115.4.g.b 130
115.4.j \(\chi_{115}(4, \cdot)\) 115.4.j.a 340 10
115.4.l \(\chi_{115}(7, \cdot)\) 115.4.l.a 680 20

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(115))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(115)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)