Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,3,Mod(11,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 9]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.11");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.h (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.13352304014\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −3.20529 | + | 2.05992i | −0.0243799 | + | 0.169566i | 4.36899 | − | 9.56674i | 0.629973 | + | 2.14549i | −0.271147 | − | 0.593730i | −1.96278 | + | 1.70076i | 3.53386 | + | 24.5785i | 8.60728 | + | 2.52732i | −6.43878 | − | 5.57924i |
11.2 | −2.96935 | + | 1.90828i | 0.852548 | − | 5.92960i | 3.51382 | − | 7.69420i | −0.629973 | − | 2.14549i | 8.78386 | + | 19.2340i | 4.46805 | − | 3.87159i | 2.23966 | + | 15.5772i | −25.7979 | − | 7.57495i | 5.96482 | + | 5.16855i |
11.3 | −2.76404 | + | 1.77634i | −0.745160 | + | 5.18270i | 2.82287 | − | 6.18121i | −0.629973 | − | 2.14549i | −7.14658 | − | 15.6488i | −7.41885 | + | 6.42847i | 1.30706 | + | 9.09078i | −17.6697 | − | 5.18828i | 5.55239 | + | 4.81117i |
11.4 | −2.44761 | + | 1.57298i | −0.0493905 | + | 0.343518i | 1.85486 | − | 4.06157i | −0.629973 | − | 2.14549i | −0.419460 | − | 0.918490i | 2.57506 | − | 2.23130i | 0.192568 | + | 1.33934i | 8.51987 | + | 2.50166i | 4.91675 | + | 4.26039i |
11.5 | −2.09072 | + | 1.34362i | 0.431029 | − | 2.99787i | 0.904125 | − | 1.97976i | 0.629973 | + | 2.14549i | 3.12685 | + | 6.84685i | −1.58303 | + | 1.37170i | −0.644971 | − | 4.48587i | −0.166015 | − | 0.0487463i | −4.19983 | − | 3.63918i |
11.6 | −1.36722 | + | 0.878660i | 0.341987 | − | 2.37857i | −0.564407 | + | 1.23588i | −0.629973 | − | 2.14549i | 1.62239 | + | 3.55253i | −8.63354 | + | 7.48100i | −1.23942 | − | 8.62036i | 3.09477 | + | 0.908708i | 2.74647 | + | 2.37983i |
11.7 | −1.00847 | + | 0.648107i | −0.522349 | + | 3.63302i | −1.06468 | + | 2.33133i | 0.629973 | + | 2.14549i | −1.82781 | − | 4.00234i | −2.64490 | + | 2.29182i | −1.11966 | − | 7.78741i | −4.29053 | − | 1.25981i | −2.02582 | − | 1.75538i |
11.8 | −0.337085 | + | 0.216631i | 0.283787 | − | 1.97378i | −1.59496 | + | 3.49248i | −0.629973 | − | 2.14549i | 0.331922 | + | 0.726809i | 8.28605 | − | 7.17990i | −0.447041 | − | 3.10924i | 4.82015 | + | 1.41532i | 0.677134 | + | 0.586740i |
11.9 | 0.235723 | − | 0.151490i | 0.0812454 | − | 0.565074i | −1.62904 | + | 3.56711i | 0.629973 | + | 2.14549i | −0.0664516 | − | 0.145509i | −3.04533 | + | 2.63880i | 0.315887 | + | 2.19704i | 8.32273 | + | 2.44377i | 0.473519 | + | 0.410307i |
11.10 | 0.291588 | − | 0.187393i | −0.754507 | + | 5.24771i | −1.61175 | + | 3.52924i | −0.629973 | − | 2.14549i | 0.763376 | + | 1.67156i | 4.68392 | − | 4.05864i | 0.388698 | + | 2.70345i | −18.3338 | − | 5.38328i | −0.585742 | − | 0.507548i |
11.11 | 1.35039 | − | 0.867843i | −0.0102654 | + | 0.0713975i | −0.591258 | + | 1.29468i | 0.629973 | + | 2.14549i | 0.0480995 | + | 0.105323i | 9.09465 | − | 7.88056i | 1.23893 | + | 8.61693i | 8.63044 | + | 2.53413i | 2.71266 | + | 2.35053i |
11.12 | 2.25069 | − | 1.44643i | 0.464668 | − | 3.23184i | 1.31179 | − | 2.87243i | −0.629973 | − | 2.14549i | −3.62881 | − | 7.94599i | −1.48905 | + | 1.29027i | 0.320672 | + | 2.23032i | −1.59344 | − | 0.467876i | −4.52119 | − | 3.91763i |
11.13 | 2.25259 | − | 1.44765i | −0.677841 | + | 4.71449i | 1.31681 | − | 2.88342i | 0.629973 | + | 2.14549i | 5.29805 | + | 11.6011i | −1.25341 | + | 1.08608i | 0.316337 | + | 2.20017i | −13.1315 | − | 3.85576i | 4.52500 | + | 3.92094i |
11.14 | 2.28753 | − | 1.47011i | 0.630718 | − | 4.38674i | 1.40992 | − | 3.08729i | 0.629973 | + | 2.14549i | −5.00618 | − | 10.9620i | 2.08243 | − | 1.80444i | 0.234513 | + | 1.63107i | −10.2102 | − | 2.99799i | 4.59518 | + | 3.98175i |
11.15 | 2.92018 | − | 1.87668i | −0.393934 | + | 2.73987i | 3.34383 | − | 7.32197i | −0.629973 | − | 2.14549i | 3.99152 | + | 8.74020i | 4.90483 | − | 4.25006i | −2.00042 | − | 13.9132i | 1.28373 | + | 0.376936i | −5.86604 | − | 5.08296i |
11.16 | 3.20322 | − | 2.05859i | 0.0918438 | − | 0.638788i | 4.36119 | − | 9.54968i | 0.629973 | + | 2.14549i | −1.02080 | − | 2.23525i | −8.06410 | + | 6.98759i | −3.52141 | − | 24.4920i | 8.23582 | + | 2.41826i | 6.43462 | + | 5.57563i |
21.1 | −3.20529 | − | 2.05992i | −0.0243799 | − | 0.169566i | 4.36899 | + | 9.56674i | 0.629973 | − | 2.14549i | −0.271147 | + | 0.593730i | −1.96278 | − | 1.70076i | 3.53386 | − | 24.5785i | 8.60728 | − | 2.52732i | −6.43878 | + | 5.57924i |
21.2 | −2.96935 | − | 1.90828i | 0.852548 | + | 5.92960i | 3.51382 | + | 7.69420i | −0.629973 | + | 2.14549i | 8.78386 | − | 19.2340i | 4.46805 | + | 3.87159i | 2.23966 | − | 15.5772i | −25.7979 | + | 7.57495i | 5.96482 | − | 5.16855i |
21.3 | −2.76404 | − | 1.77634i | −0.745160 | − | 5.18270i | 2.82287 | + | 6.18121i | −0.629973 | + | 2.14549i | −7.14658 | + | 15.6488i | −7.41885 | − | 6.42847i | 1.30706 | − | 9.09078i | −17.6697 | + | 5.18828i | 5.55239 | − | 4.81117i |
21.4 | −2.44761 | − | 1.57298i | −0.0493905 | − | 0.343518i | 1.85486 | + | 4.06157i | −0.629973 | + | 2.14549i | −0.419460 | + | 0.918490i | 2.57506 | + | 2.23130i | 0.192568 | − | 1.33934i | 8.51987 | − | 2.50166i | 4.91675 | − | 4.26039i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.d | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.3.h.a | ✓ | 160 |
23.d | odd | 22 | 1 | inner | 115.3.h.a | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.3.h.a | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
115.3.h.a | ✓ | 160 | 23.d | odd | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(115, [\chi])\).