Newspace parameters
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.13352304014\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - 2x^{5} - 34x^{4} + 50x^{3} + 690x^{2} - 600x + 4725 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - 2x^{5} - 34x^{4} + 50x^{3} + 690x^{2} - 600x + 4725 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 62\nu^{5} - 5599\nu^{4} + 5812\nu^{3} + 221635\nu^{2} - 193350\nu - 3002445 ) / 249285 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 7\nu^{5} + 172\nu^{4} - 416\nu^{3} + 1167\nu^{2} + 4975\nu - 2585 ) / 16619 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 272\nu^{5} - 439\nu^{4} - 6668\nu^{3} + 7360\nu^{2} + 205185\nu - 88575 ) / 249285 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -272\nu^{5} + 439\nu^{4} + 6668\nu^{3} - 7360\nu^{2} + 44100\nu + 88575 ) / 249285 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -551\nu^{5} + 706\nu^{4} + 30371\nu^{3} - 32506\nu^{2} - 581535\nu + 262830 ) / 249285 \)
|
\(\nu\) | \(=\) |
\( \beta_{4} + \beta_{3} \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{4} + 2\beta_{2} + \beta _1 + 12 \)
|
\(\nu^{3}\) | \(=\) |
\( 15\beta_{5} + 11\beta_{4} + 40\beta_{3} + 3\beta_{2} + \beta _1 + 7 \)
|
\(\nu^{4}\) | \(=\) |
\( 20\beta_{5} + 11\beta_{4} + 20\beta_{3} + 84\beta_{2} - 4\beta _1 - 53 \)
|
\(\nu^{5}\) | \(=\) |
\( 400\beta_{5} - 494\beta_{4} + 1175\beta_{3} + 155\beta_{2} - 9\beta _1 + 87 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).
\(n\) | \(47\) | \(51\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
91.1 |
|
−1.00000 | −4.73103 | −3.00000 | − | 2.23607i | 4.73103 | 7.39757i | 7.00000 | 13.3827 | 2.23607i | |||||||||||||||||||||||||||||||||||
91.2 | −1.00000 | −4.73103 | −3.00000 | 2.23607i | 4.73103 | − | 7.39757i | 7.00000 | 13.3827 | − | 2.23607i | |||||||||||||||||||||||||||||||||||
91.3 | −1.00000 | 0.396209 | −3.00000 | − | 2.23607i | −0.396209 | 8.16531i | 7.00000 | −8.84302 | 2.23607i | ||||||||||||||||||||||||||||||||||||
91.4 | −1.00000 | 0.396209 | −3.00000 | 2.23607i | −0.396209 | − | 8.16531i | 7.00000 | −8.84302 | − | 2.23607i | |||||||||||||||||||||||||||||||||||
91.5 | −1.00000 | 5.33482 | −3.00000 | − | 2.23607i | −5.33482 | − | 13.3268i | 7.00000 | 19.4603 | 2.23607i | |||||||||||||||||||||||||||||||||||
91.6 | −1.00000 | 5.33482 | −3.00000 | 2.23607i | −5.33482 | 13.3268i | 7.00000 | 19.4603 | − | 2.23607i | ||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.3.d.a | ✓ | 6 |
3.b | odd | 2 | 1 | 1035.3.g.a | 6 | ||
4.b | odd | 2 | 1 | 1840.3.k.a | 6 | ||
5.b | even | 2 | 1 | 575.3.d.e | 6 | ||
5.c | odd | 4 | 2 | 575.3.c.c | 12 | ||
23.b | odd | 2 | 1 | inner | 115.3.d.a | ✓ | 6 |
69.c | even | 2 | 1 | 1035.3.g.a | 6 | ||
92.b | even | 2 | 1 | 1840.3.k.a | 6 | ||
115.c | odd | 2 | 1 | 575.3.d.e | 6 | ||
115.e | even | 4 | 2 | 575.3.c.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.3.d.a | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
115.3.d.a | ✓ | 6 | 23.b | odd | 2 | 1 | inner |
575.3.c.c | 12 | 5.c | odd | 4 | 2 | ||
575.3.c.c | 12 | 115.e | even | 4 | 2 | ||
575.3.d.e | 6 | 5.b | even | 2 | 1 | ||
575.3.d.e | 6 | 115.c | odd | 2 | 1 | ||
1035.3.g.a | 6 | 3.b | odd | 2 | 1 | ||
1035.3.g.a | 6 | 69.c | even | 2 | 1 | ||
1840.3.k.a | 6 | 4.b | odd | 2 | 1 | ||
1840.3.k.a | 6 | 92.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} + 1 \)
acting on \(S_{3}^{\mathrm{new}}(115, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 1)^{6} \)
$3$
\( (T^{3} - T^{2} - 25 T + 10)^{2} \)
$5$
\( (T^{2} + 5)^{3} \)
$7$
\( T^{6} + 299 T^{4} + 25209 T^{2} + \cdots + 648000 \)
$11$
\( T^{6} + 731 T^{4} + 157509 T^{2} + \cdots + 8632980 \)
$13$
\( (T^{3} + 5 T^{2} - 257 T - 54)^{2} \)
$17$
\( T^{6} + 971 T^{4} + 46089 T^{2} + \cdots + 524880 \)
$19$
\( T^{6} + 779 T^{4} + 46629 T^{2} + \cdots + 714420 \)
$23$
\( T^{6} + 10 T^{5} + \cdots + 148035889 \)
$29$
\( (T^{3} - 36 T^{2} - 480 T + 8872)^{2} \)
$31$
\( (T^{3} + 3 T^{2} - 1995 T - 30050)^{2} \)
$37$
\( T^{6} + 1856 T^{4} + \cdots + 123405120 \)
$41$
\( (T^{3} - 71 T^{2} - 43 T + 8462)^{2} \)
$43$
\( T^{6} + 5936 T^{4} + \cdots + 2411208000 \)
$47$
\( (T^{3} - 56 T^{2} - 16 T + 16376)^{2} \)
$53$
\( (T^{2} + 1620)^{3} \)
$59$
\( (T^{3} - 118 T^{2} + 220 T + 118680)^{2} \)
$61$
\( T^{6} + 18819 T^{4} + \cdots + 649116180 \)
$67$
\( T^{6} + 5876 T^{4} + \cdots + 5202247680 \)
$71$
\( (T^{3} + 109 T^{2} + 2237 T - 33718)^{2} \)
$73$
\( (T^{3} - 912 T - 344)^{2} \)
$79$
\( T^{6} + 20844 T^{4} + \cdots + 70054917120 \)
$83$
\( T^{6} + 23924 T^{4} + \cdots + 29786849280 \)
$89$
\( T^{6} + 23436 T^{4} + \cdots + 39983258880 \)
$97$
\( T^{6} + 35411 T^{4} + \cdots + 25687244880 \)
show more
show less