Properties

Label 115.2.l
Level $115$
Weight $2$
Character orbit 115.l
Rep. character $\chi_{115}(7,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $200$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 115.l (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{44})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(115, [\chi])\).

Total New Old
Modular forms 280 280 0
Cusp forms 200 200 0
Eisenstein series 80 80 0

Trace form

\( 200 q - 18 q^{2} - 14 q^{3} - 22 q^{5} - 36 q^{6} - 22 q^{7} - 26 q^{8} - 22 q^{10} - 44 q^{11} - 6 q^{12} - 26 q^{13} - 22 q^{15} - 52 q^{16} - 22 q^{17} + 58 q^{18} - 22 q^{20} - 44 q^{21} + 22 q^{23}+ \cdots - 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(115, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
115.2.l.a 115.l 115.l $200$ $0.918$ None 115.2.l.a \(-18\) \(-14\) \(-22\) \(-22\) $\mathrm{SU}(2)[C_{44}]$