Properties

Label 115.2.j.a.4.5
Level $115$
Weight $2$
Character 115.4
Analytic conductor $0.918$
Analytic rank $0$
Dimension $100$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 115.j (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.918279623245\)
Analytic rank: \(0\)
Dimension: \(100\)
Relative dimension: \(10\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 4.5
Character \(\chi\) \(=\) 115.4
Dual form 115.2.j.a.29.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.175347 + 0.0800783i) q^{2} +(0.167074 + 0.569000i) q^{3} +(-1.28539 + 1.48342i) q^{4} +(0.481985 + 2.18350i) q^{5} +(-0.0748604 - 0.0863935i) q^{6} +(-3.28793 + 0.472733i) q^{7} +(0.215217 - 0.732961i) q^{8} +(2.22791 - 1.43179i) q^{9} +O(q^{10})\) \(q+(-0.175347 + 0.0800783i) q^{2} +(0.167074 + 0.569000i) q^{3} +(-1.28539 + 1.48342i) q^{4} +(0.481985 + 2.18350i) q^{5} +(-0.0748604 - 0.0863935i) q^{6} +(-3.28793 + 0.472733i) q^{7} +(0.215217 - 0.732961i) q^{8} +(2.22791 - 1.43179i) q^{9} +(-0.259366 - 0.344274i) q^{10} +(-0.928361 + 2.03283i) q^{11} +(-1.05882 - 0.483546i) q^{12} +(6.70483 + 0.964009i) q^{13} +(0.538673 - 0.346184i) q^{14} +(-1.16189 + 0.639056i) q^{15} +(-0.537726 - 3.73997i) q^{16} +(1.46759 - 1.27168i) q^{17} +(-0.276002 + 0.429468i) q^{18} +(-1.11465 + 1.28637i) q^{19} +(-3.85858 - 2.09166i) q^{20} +(-0.818312 - 1.79185i) q^{21} -0.430792i q^{22} +(1.75636 - 4.46264i) q^{23} +0.453012 q^{24} +(-4.53538 + 2.10483i) q^{25} +(-1.25287 + 0.367875i) q^{26} +(2.53144 + 2.19351i) q^{27} +(3.52501 - 5.48502i) q^{28} +(-4.03098 - 4.65200i) q^{29} +(0.152559 - 0.205098i) q^{30} +(5.15374 + 1.51327i) q^{31} +(1.21977 + 1.89801i) q^{32} +(-1.31178 - 0.188606i) q^{33} +(-0.155504 + 0.340507i) q^{34} +(-2.61695 - 6.95136i) q^{35} +(-0.739787 + 5.14533i) q^{36} +(1.72562 + 2.68512i) q^{37} +(0.0924398 - 0.314821i) q^{38} +(0.571678 + 3.97611i) q^{39} +(1.70416 + 0.116650i) q^{40} +(-5.62116 - 3.61250i) q^{41} +(0.286977 + 0.248667i) q^{42} +(2.05844 + 7.01041i) q^{43} +(-1.82223 - 3.99012i) q^{44} +(4.20015 + 4.17455i) q^{45} +(0.0493883 + 0.923158i) q^{46} -9.63634i q^{47} +(2.03820 - 0.930816i) q^{48} +(3.87057 - 1.13650i) q^{49} +(0.626714 - 0.732262i) q^{50} +(0.968780 + 0.622597i) q^{51} +(-10.0483 + 8.70693i) q^{52} +(1.44130 - 0.207228i) q^{53} +(-0.619533 - 0.181911i) q^{54} +(-4.88614 - 1.04729i) q^{55} +(-0.361123 + 2.51167i) q^{56} +(-0.918175 - 0.419317i) q^{57} +(1.07935 + 0.492921i) q^{58} +(-1.33162 + 9.26159i) q^{59} +(0.545490 - 2.54500i) q^{60} +(10.2194 + 3.00068i) q^{61} +(-1.02487 + 0.147355i) q^{62} +(-6.64837 + 5.76085i) q^{63} +(5.99136 + 3.85041i) q^{64} +(1.12671 + 15.1047i) q^{65} +(0.245121 - 0.0719739i) q^{66} +(-4.44321 + 2.02915i) q^{67} +3.81165i q^{68} +(2.83269 + 0.253780i) q^{69} +(1.01553 + 1.00934i) q^{70} +(-0.0212260 - 0.0464785i) q^{71} +(-0.569964 - 1.94112i) q^{72} +(-4.98167 - 4.31664i) q^{73} +(-0.517603 - 0.332643i) q^{74} +(-1.95539 - 2.22897i) q^{75} +(-0.475472 - 3.30698i) q^{76} +(2.09140 - 7.12267i) q^{77} +(-0.418642 - 0.651420i) q^{78} +(1.74906 - 12.1650i) q^{79} +(7.90706 - 2.97674i) q^{80} +(2.47529 - 5.42013i) q^{81} +(1.27494 + 0.183308i) q^{82} +(-3.94928 - 6.14520i) q^{83} +(3.70991 + 1.08933i) q^{84} +(3.48407 + 2.59157i) q^{85} +(-0.922323 - 1.06442i) q^{86} +(1.97352 - 3.07086i) q^{87} +(1.29018 + 1.11795i) q^{88} +(-4.61729 + 1.35576i) q^{89} +(-1.07077 - 0.395655i) q^{90} -22.5007 q^{91} +(4.36235 + 8.34164i) q^{92} +3.18531i q^{93} +(0.771662 + 1.68970i) q^{94} +(-3.34605 - 1.81383i) q^{95} +(-0.876174 + 1.01116i) q^{96} +(1.58420 - 2.46507i) q^{97} +(-0.587684 + 0.509231i) q^{98} +(0.842280 + 5.85818i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q - 14q^{4} - 9q^{5} - 18q^{6} - 12q^{9} + O(q^{10}) \) \( 100q - 14q^{4} - 9q^{5} - 18q^{6} - 12q^{9} - 13q^{10} - 26q^{11} - 26q^{14} - 10q^{15} - 18q^{16} - 14q^{19} + 49q^{20} - 22q^{21} - 68q^{24} + 21q^{25} - 42q^{26} - 24q^{29} + 19q^{30} - 12q^{31} + 8q^{34} - 37q^{35} - 10q^{36} + 14q^{39} - q^{40} + 8q^{41} + 166q^{44} - 42q^{45} - 18q^{46} + 32q^{49} - 23q^{50} - 22q^{51} + 116q^{54} + 27q^{55} - 116q^{56} + 50q^{59} + 123q^{60} - 38q^{61} + 10q^{64} + 76q^{65} - 28q^{66} + 80q^{69} + 102q^{70} - 110q^{71} + 22q^{74} + 6q^{75} + 4q^{76} + 42q^{79} + 18q^{80} + 204q^{81} + 56q^{84} - 121q^{85} + 132q^{86} - 66q^{89} - 198q^{90} + 76q^{91} - 70q^{94} - 74q^{95} + 236q^{96} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.175347 + 0.0800783i −0.123989 + 0.0566239i −0.476444 0.879205i \(-0.658074\pi\)
0.352455 + 0.935829i \(0.385347\pi\)
\(3\) 0.167074 + 0.569000i 0.0964600 + 0.328512i 0.993559 0.113317i \(-0.0361477\pi\)
−0.897099 + 0.441830i \(0.854330\pi\)
\(4\) −1.28539 + 1.48342i −0.642694 + 0.741708i
\(5\) 0.481985 + 2.18350i 0.215550 + 0.976493i
\(6\) −0.0748604 0.0863935i −0.0305616 0.0352700i
\(7\) −3.28793 + 0.472733i −1.24272 + 0.178676i −0.732141 0.681153i \(-0.761479\pi\)
−0.510581 + 0.859830i \(0.670570\pi\)
\(8\) 0.215217 0.732961i 0.0760906 0.259141i
\(9\) 2.22791 1.43179i 0.742638 0.477264i
\(10\) −0.259366 0.344274i −0.0820187 0.108869i
\(11\) −0.928361 + 2.03283i −0.279911 + 0.612921i −0.996409 0.0846689i \(-0.973017\pi\)
0.716498 + 0.697589i \(0.245744\pi\)
\(12\) −1.05882 0.483546i −0.305655 0.139588i
\(13\) 6.70483 + 0.964009i 1.85959 + 0.267368i 0.978599 0.205775i \(-0.0659715\pi\)
0.880986 + 0.473143i \(0.156881\pi\)
\(14\) 0.538673 0.346184i 0.143966 0.0925216i
\(15\) −1.16189 + 0.639056i −0.299998 + 0.165003i
\(16\) −0.537726 3.73997i −0.134432 0.934992i
\(17\) 1.46759 1.27168i 0.355944 0.308427i −0.458472 0.888709i \(-0.651603\pi\)
0.814416 + 0.580282i \(0.197058\pi\)
\(18\) −0.276002 + 0.429468i −0.0650544 + 0.101227i
\(19\) −1.11465 + 1.28637i −0.255718 + 0.295114i −0.869064 0.494700i \(-0.835278\pi\)
0.613346 + 0.789815i \(0.289823\pi\)
\(20\) −3.85858 2.09166i −0.862805 0.467710i
\(21\) −0.818312 1.79185i −0.178570 0.391014i
\(22\) 0.430792i 0.0918451i
\(23\) 1.75636 4.46264i 0.366227 0.930526i
\(24\) 0.453012 0.0924707
\(25\) −4.53538 + 2.10483i −0.907076 + 0.420967i
\(26\) −1.25287 + 0.367875i −0.245708 + 0.0721463i
\(27\) 2.53144 + 2.19351i 0.487177 + 0.422141i
\(28\) 3.52501 5.48502i 0.666164 1.03657i
\(29\) −4.03098 4.65200i −0.748535 0.863856i 0.245890 0.969298i \(-0.420920\pi\)
−0.994425 + 0.105442i \(0.966374\pi\)
\(30\) 0.152559 0.205098i 0.0278533 0.0374457i
\(31\) 5.15374 + 1.51327i 0.925639 + 0.271792i 0.709610 0.704595i \(-0.248871\pi\)
0.216029 + 0.976387i \(0.430689\pi\)
\(32\) 1.21977 + 1.89801i 0.215628 + 0.335523i
\(33\) −1.31178 0.188606i −0.228352 0.0328321i
\(34\) −0.155504 + 0.340507i −0.0266688 + 0.0583965i
\(35\) −2.61695 6.95136i −0.442345 1.17499i
\(36\) −0.739787 + 5.14533i −0.123298 + 0.857555i
\(37\) 1.72562 + 2.68512i 0.283691 + 0.441432i 0.953629 0.300986i \(-0.0973156\pi\)
−0.669938 + 0.742417i \(0.733679\pi\)
\(38\) 0.0924398 0.314821i 0.0149957 0.0510707i
\(39\) 0.571678 + 3.97611i 0.0915418 + 0.636687i
\(40\) 1.70416 + 0.116650i 0.269451 + 0.0184440i
\(41\) −5.62116 3.61250i −0.877878 0.564178i 0.0222748 0.999752i \(-0.492909\pi\)
−0.900153 + 0.435574i \(0.856545\pi\)
\(42\) 0.286977 + 0.248667i 0.0442815 + 0.0383701i
\(43\) 2.05844 + 7.01041i 0.313909 + 1.06908i 0.953758 + 0.300576i \(0.0971789\pi\)
−0.639848 + 0.768501i \(0.721003\pi\)
\(44\) −1.82223 3.99012i −0.274711 0.601533i
\(45\) 4.20015 + 4.17455i 0.626121 + 0.622306i
\(46\) 0.0493883 + 0.923158i 0.00728190 + 0.136112i
\(47\) 9.63634i 1.40560i −0.711385 0.702802i \(-0.751932\pi\)
0.711385 0.702802i \(-0.248068\pi\)
\(48\) 2.03820 0.930816i 0.294189 0.134352i
\(49\) 3.87057 1.13650i 0.552939 0.162357i
\(50\) 0.626714 0.732262i 0.0886307 0.103557i
\(51\) 0.968780 + 0.622597i 0.135656 + 0.0871811i
\(52\) −10.0483 + 8.70693i −1.39345 + 1.20743i
\(53\) 1.44130 0.207228i 0.197978 0.0284649i −0.0426124 0.999092i \(-0.513568\pi\)
0.240590 + 0.970627i \(0.422659\pi\)
\(54\) −0.619533 0.181911i −0.0843078 0.0247550i
\(55\) −4.88614 1.04729i −0.658847 0.141216i
\(56\) −0.361123 + 2.51167i −0.0482571 + 0.335636i
\(57\) −0.918175 0.419317i −0.121615 0.0555399i
\(58\) 1.07935 + 0.492921i 0.141725 + 0.0647236i
\(59\) −1.33162 + 9.26159i −0.173362 + 1.20576i 0.698357 + 0.715749i \(0.253915\pi\)
−0.871719 + 0.490007i \(0.836994\pi\)
\(60\) 0.545490 2.54500i 0.0704225 0.328558i
\(61\) 10.2194 + 3.00068i 1.30846 + 0.384198i 0.860315 0.509764i \(-0.170267\pi\)
0.448144 + 0.893962i \(0.352085\pi\)
\(62\) −1.02487 + 0.147355i −0.130159 + 0.0187140i
\(63\) −6.64837 + 5.76085i −0.837616 + 0.725798i
\(64\) 5.99136 + 3.85041i 0.748919 + 0.481301i
\(65\) 1.12671 + 15.1047i 0.139751 + 1.87350i
\(66\) 0.245121 0.0719739i 0.0301723 0.00885937i
\(67\) −4.44321 + 2.02915i −0.542824 + 0.247900i −0.667904 0.744247i \(-0.732808\pi\)
0.125080 + 0.992147i \(0.460081\pi\)
\(68\) 3.81165i 0.462230i
\(69\) 2.83269 + 0.253780i 0.341015 + 0.0305515i
\(70\) 1.01553 + 1.00934i 0.121379 + 0.120639i
\(71\) −0.0212260 0.0464785i −0.00251907 0.00551599i 0.908368 0.418171i \(-0.137329\pi\)
−0.910887 + 0.412655i \(0.864601\pi\)
\(72\) −0.569964 1.94112i −0.0671709 0.228763i
\(73\) −4.98167 4.31664i −0.583061 0.505225i 0.312646 0.949870i \(-0.398784\pi\)
−0.895707 + 0.444645i \(0.853330\pi\)
\(74\) −0.517603 0.332643i −0.0601701 0.0386690i
\(75\) −1.95539 2.22897i −0.225789 0.257379i
\(76\) −0.475472 3.30698i −0.0545403 0.379336i
\(77\) 2.09140 7.12267i 0.238338 0.811703i
\(78\) −0.418642 0.651420i −0.0474019 0.0737588i
\(79\) 1.74906 12.1650i 0.196784 1.36867i −0.616754 0.787156i \(-0.711553\pi\)
0.813539 0.581510i \(-0.197538\pi\)
\(80\) 7.90706 2.97674i 0.884036 0.332809i
\(81\) 2.47529 5.42013i 0.275033 0.602237i
\(82\) 1.27494 + 0.183308i 0.140793 + 0.0202430i
\(83\) −3.94928 6.14520i −0.433490 0.674523i 0.553944 0.832554i \(-0.313122\pi\)
−0.987434 + 0.158030i \(0.949486\pi\)
\(84\) 3.70991 + 1.08933i 0.404785 + 0.118855i
\(85\) 3.48407 + 2.59157i 0.377900 + 0.281095i
\(86\) −0.922323 1.06442i −0.0994566 0.114779i
\(87\) 1.97352 3.07086i 0.211584 0.329231i
\(88\) 1.29018 + 1.11795i 0.137534 + 0.119174i
\(89\) −4.61729 + 1.35576i −0.489432 + 0.143710i −0.517131 0.855906i \(-0.673000\pi\)
0.0276993 + 0.999616i \(0.491182\pi\)
\(90\) −1.07077 0.395655i −0.112869 0.0417057i
\(91\) −22.5007 −2.35872
\(92\) 4.36235 + 8.34164i 0.454807 + 0.869676i
\(93\) 3.18531i 0.330301i
\(94\) 0.771662 + 1.68970i 0.0795908 + 0.174280i
\(95\) −3.34605 1.81383i −0.343297 0.186095i
\(96\) −0.876174 + 1.01116i −0.0894242 + 0.103201i
\(97\) 1.58420 2.46507i 0.160851 0.250290i −0.751467 0.659770i \(-0.770654\pi\)
0.912319 + 0.409480i \(0.134290\pi\)
\(98\) −0.587684 + 0.509231i −0.0593650 + 0.0514401i
\(99\) 0.842280 + 5.85818i 0.0846523 + 0.588770i
\(100\) 2.70738 9.43338i 0.270738 0.943338i
\(101\) 3.89335 2.50211i 0.387403 0.248969i −0.332413 0.943134i \(-0.607863\pi\)
0.719816 + 0.694165i \(0.244226\pi\)
\(102\) −0.219729 0.0315923i −0.0217564 0.00312810i
\(103\) 0.478979 + 0.218742i 0.0471952 + 0.0215533i 0.438873 0.898549i \(-0.355378\pi\)
−0.391678 + 0.920103i \(0.628105\pi\)
\(104\) 2.14957 4.70691i 0.210783 0.461550i
\(105\) 3.51810 2.65043i 0.343332 0.258656i
\(106\) −0.236133 + 0.151754i −0.0229353 + 0.0147396i
\(107\) 4.27457 14.5578i 0.413238 1.40736i −0.445655 0.895205i \(-0.647029\pi\)
0.858893 0.512155i \(-0.171153\pi\)
\(108\) −6.50777 + 0.935676i −0.626211 + 0.0900355i
\(109\) −9.38558 10.8315i −0.898975 1.03747i −0.999097 0.0424977i \(-0.986468\pi\)
0.100121 0.994975i \(-0.468077\pi\)
\(110\) 0.940635 0.207635i 0.0896861 0.0197972i
\(111\) −1.23953 + 1.43049i −0.117651 + 0.135776i
\(112\) 3.53601 + 12.0426i 0.334122 + 1.13791i
\(113\) −11.0905 + 5.06485i −1.04330 + 0.476461i −0.861970 0.506960i \(-0.830769\pi\)
−0.181335 + 0.983421i \(0.558042\pi\)
\(114\) 0.194577 0.0182238
\(115\) 10.5907 + 1.68409i 0.987592 + 0.157042i
\(116\) 12.0822 1.12181
\(117\) 16.3180 7.45220i 1.50860 0.688956i
\(118\) −0.508157 1.73062i −0.0467797 0.159317i
\(119\) −4.22418 + 4.87497i −0.387230 + 0.446887i
\(120\) 0.218345 + 0.989154i 0.0199321 + 0.0902970i
\(121\) 3.93294 + 4.53885i 0.357540 + 0.412623i
\(122\) −2.03223 + 0.292190i −0.183989 + 0.0264537i
\(123\) 1.11637 3.80200i 0.100659 0.342815i
\(124\) −8.86937 + 5.70000i −0.796493 + 0.511875i
\(125\) −6.78190 8.88852i −0.606592 0.795014i
\(126\) 0.704453 1.54254i 0.0627577 0.137420i
\(127\) −3.54439 1.61867i −0.314513 0.143633i 0.251903 0.967752i \(-0.418943\pi\)
−0.566417 + 0.824119i \(0.691671\pi\)
\(128\) −5.82530 0.837552i −0.514889 0.0740298i
\(129\) −3.64501 + 2.34251i −0.320926 + 0.206246i
\(130\) −1.40712 2.55833i −0.123413 0.224380i
\(131\) −1.76246 12.2582i −0.153987 1.07100i −0.909450 0.415813i \(-0.863497\pi\)
0.755463 0.655192i \(-0.227412\pi\)
\(132\) 1.96593 1.70349i 0.171112 0.148270i
\(133\) 3.05678 4.75644i 0.265056 0.412436i
\(134\) 0.616613 0.711609i 0.0532672 0.0614737i
\(135\) −3.56942 + 6.58466i −0.307206 + 0.566717i
\(136\) −0.616239 1.34937i −0.0528420 0.115708i
\(137\) 13.7044i 1.17084i 0.810729 + 0.585421i \(0.199071\pi\)
−0.810729 + 0.585421i \(0.800929\pi\)
\(138\) −0.517025 + 0.182337i −0.0440121 + 0.0155216i
\(139\) −1.30658 −0.110823 −0.0554113 0.998464i \(-0.517647\pi\)
−0.0554113 + 0.998464i \(0.517647\pi\)
\(140\) 13.6756 + 5.05317i 1.15580 + 0.427071i
\(141\) 5.48308 1.60998i 0.461759 0.135585i
\(142\) 0.00744384 + 0.00645013i 0.000624674 + 0.000541283i
\(143\) −8.18417 + 12.7348i −0.684394 + 1.06494i
\(144\) −6.55286 7.56241i −0.546072 0.630201i
\(145\) 8.21480 11.0439i 0.682202 0.917144i
\(146\) 1.21919 + 0.357987i 0.100901 + 0.0296272i
\(147\) 1.29334 + 2.01248i 0.106673 + 0.165986i
\(148\) −6.20125 0.891605i −0.509740 0.0732895i
\(149\) −0.0899971 + 0.197066i −0.00737285 + 0.0161443i −0.913283 0.407327i \(-0.866461\pi\)
0.905910 + 0.423471i \(0.139188\pi\)
\(150\) 0.521364 + 0.234259i 0.0425692 + 0.0191271i
\(151\) −0.838874 + 5.83450i −0.0682666 + 0.474805i 0.926797 + 0.375563i \(0.122551\pi\)
−0.995063 + 0.0992415i \(0.968358\pi\)
\(152\) 0.702971 + 1.09384i 0.0570185 + 0.0887225i
\(153\) 1.44889 4.93447i 0.117136 0.398929i
\(154\) 0.203650 + 1.41641i 0.0164106 + 0.114138i
\(155\) −0.820214 + 11.9826i −0.0658812 + 0.962465i
\(156\) −6.63305 4.26280i −0.531069 0.341298i
\(157\) 3.28885 + 2.84980i 0.262479 + 0.227439i 0.776151 0.630548i \(-0.217170\pi\)
−0.513672 + 0.857987i \(0.671715\pi\)
\(158\) 0.667458 + 2.27315i 0.0531001 + 0.180842i
\(159\) 0.358716 + 0.785479i 0.0284480 + 0.0622925i
\(160\) −3.55639 + 3.57820i −0.281157 + 0.282881i
\(161\) −3.66516 + 15.5032i −0.288855 + 1.22182i
\(162\) 1.14862i 0.0902442i
\(163\) −11.8778 + 5.42443i −0.930344 + 0.424874i −0.822160 0.569257i \(-0.807231\pi\)
−0.108184 + 0.994131i \(0.534504\pi\)
\(164\) 12.5842 3.69506i 0.982662 0.288536i
\(165\) −0.220439 2.95519i −0.0171611 0.230061i
\(166\) 1.18459 + 0.761291i 0.0919421 + 0.0590876i
\(167\) 1.17039 1.01415i 0.0905676 0.0784773i −0.608400 0.793630i \(-0.708188\pi\)
0.698968 + 0.715153i \(0.253643\pi\)
\(168\) −1.48947 + 0.214154i −0.114915 + 0.0165223i
\(169\) 31.5520 + 9.26451i 2.42708 + 0.712654i
\(170\) −0.818449 0.175425i −0.0627722 0.0134545i
\(171\) −0.641521 + 4.46188i −0.0490583 + 0.341208i
\(172\) −13.0452 5.95757i −0.994691 0.454260i
\(173\) −17.4774 7.98166i −1.32878 0.606834i −0.380652 0.924718i \(-0.624301\pi\)
−0.948130 + 0.317884i \(0.897028\pi\)
\(174\) −0.100142 + 0.696502i −0.00759173 + 0.0528017i
\(175\) 13.9170 9.06458i 1.05203 0.685218i
\(176\) 8.10191 + 2.37894i 0.610705 + 0.179319i
\(177\) −5.49232 + 0.789677i −0.412828 + 0.0593558i
\(178\) 0.701061 0.607473i 0.0525468 0.0455320i
\(179\) 13.7518 + 8.83775i 1.02786 + 0.660565i 0.941955 0.335739i \(-0.108986\pi\)
0.0859035 + 0.996303i \(0.472622\pi\)
\(180\) −11.5914 + 0.864646i −0.863973 + 0.0644469i
\(181\) −7.47229 + 2.19406i −0.555411 + 0.163083i −0.547380 0.836884i \(-0.684375\pi\)
−0.00803105 + 0.999968i \(0.502556\pi\)
\(182\) 3.94544 1.80182i 0.292455 0.133560i
\(183\) 6.31617i 0.466905i
\(184\) −2.89295 2.24778i −0.213271 0.165709i
\(185\) −5.03125 + 5.06210i −0.369905 + 0.372173i
\(186\) −0.255074 0.558534i −0.0187029 0.0409537i
\(187\) 1.22264 + 4.16394i 0.0894085 + 0.304497i
\(188\) 14.2947 + 12.3864i 1.04255 + 0.903373i
\(189\) −9.36016 6.01541i −0.680851 0.437557i
\(190\) 0.731967 + 0.0501035i 0.0531025 + 0.00363489i
\(191\) 0.984236 + 6.84551i 0.0712168 + 0.495324i 0.993946 + 0.109874i \(0.0350447\pi\)
−0.922729 + 0.385450i \(0.874046\pi\)
\(192\) −1.18989 + 4.05238i −0.0858727 + 0.292456i
\(193\) 3.14087 + 4.88729i 0.226085 + 0.351795i 0.935701 0.352793i \(-0.114768\pi\)
−0.709617 + 0.704588i \(0.751132\pi\)
\(194\) −0.0803868 + 0.559102i −0.00577143 + 0.0401412i
\(195\) −8.40631 + 3.16469i −0.601988 + 0.226628i
\(196\) −3.28928 + 7.20251i −0.234948 + 0.514465i
\(197\) 9.58401 + 1.37797i 0.682833 + 0.0981765i 0.474997 0.879987i \(-0.342449\pi\)
0.207835 + 0.978164i \(0.433358\pi\)
\(198\) −0.616804 0.959766i −0.0438344 0.0682076i
\(199\) −15.4886 4.54788i −1.09796 0.322390i −0.317919 0.948118i \(-0.602984\pi\)
−0.780042 + 0.625727i \(0.784802\pi\)
\(200\) 0.566672 + 3.77725i 0.0400697 + 0.267092i
\(201\) −1.89693 2.18917i −0.133799 0.154412i
\(202\) −0.482323 + 0.750510i −0.0339361 + 0.0528057i
\(203\) 15.4528 + 13.3899i 1.08457 + 0.939786i
\(204\) −2.16883 + 0.636826i −0.151848 + 0.0445867i
\(205\) 5.17860 14.0150i 0.361689 0.978851i
\(206\) −0.101504 −0.00707211
\(207\) −2.47656 12.4571i −0.172133 0.865830i
\(208\) 25.5942i 1.77464i
\(209\) −1.58018 3.46011i −0.109303 0.239341i
\(210\) −0.404647 + 0.746469i −0.0279233 + 0.0515113i
\(211\) 8.81677 10.1751i 0.606972 0.700483i −0.366207 0.930533i \(-0.619344\pi\)
0.973179 + 0.230051i \(0.0738893\pi\)
\(212\) −1.54523 + 2.40442i −0.106127 + 0.165136i
\(213\) 0.0229000 0.0198430i 0.00156908 0.00135962i
\(214\) 0.416234 + 2.89497i 0.0284532 + 0.197896i
\(215\) −14.3151 + 7.87353i −0.976283 + 0.536970i
\(216\) 2.15257 1.38337i 0.146464 0.0941264i
\(217\) −17.6605 2.53920i −1.19887 0.172372i
\(218\) 2.51310 + 1.14770i 0.170209 + 0.0777318i
\(219\) 1.62387 3.55577i 0.109731 0.240277i
\(220\) 7.83415 5.90201i 0.528178 0.397914i
\(221\) 11.0659 7.11160i 0.744371 0.478378i
\(222\) 0.102796 0.350092i 0.00689924 0.0234966i
\(223\) 11.8262 1.70035i 0.791941 0.113864i 0.265539 0.964100i \(-0.414450\pi\)
0.526402 + 0.850236i \(0.323541\pi\)
\(224\) −4.90779 5.66389i −0.327915 0.378435i
\(225\) −7.09075 + 11.1831i −0.472716 + 0.745541i
\(226\) 1.53910 1.77621i 0.102379 0.118152i
\(227\) −2.52632 8.60387i −0.167678 0.571059i −0.999863 0.0165605i \(-0.994728\pi\)
0.832185 0.554498i \(-0.187090\pi\)
\(228\) 1.80223 0.823052i 0.119356 0.0545079i
\(229\) −3.05115 −0.201626 −0.100813 0.994905i \(-0.532144\pi\)
−0.100813 + 0.994905i \(0.532144\pi\)
\(230\) −1.99191 + 0.552788i −0.131343 + 0.0364498i
\(231\) 4.40222 0.289645
\(232\) −4.27727 + 1.95337i −0.280817 + 0.128245i
\(233\) −3.93207 13.3914i −0.257598 0.877300i −0.982153 0.188083i \(-0.939773\pi\)
0.724555 0.689217i \(-0.242045\pi\)
\(234\) −2.26456 + 2.61344i −0.148039 + 0.170846i
\(235\) 21.0410 4.64458i 1.37256 0.302979i
\(236\) −12.0271 13.8801i −0.782901 0.903516i
\(237\) 7.21409 1.03723i 0.468606 0.0673753i
\(238\) 0.350319 1.19308i 0.0227078 0.0773356i
\(239\) 0.753569 0.484289i 0.0487443 0.0313261i −0.516042 0.856563i \(-0.672595\pi\)
0.564786 + 0.825237i \(0.308959\pi\)
\(240\) 3.01482 + 4.00178i 0.194606 + 0.258314i
\(241\) 0.270835 0.593047i 0.0174460 0.0382015i −0.900708 0.434424i \(-0.856952\pi\)
0.918154 + 0.396223i \(0.129679\pi\)
\(242\) −1.05309 0.480931i −0.0676953 0.0309154i
\(243\) 13.4441 + 1.93297i 0.862438 + 0.124000i
\(244\) −17.5871 + 11.3026i −1.12590 + 0.723572i
\(245\) 4.34711 + 7.90363i 0.277727 + 0.504944i
\(246\) 0.108706 + 0.756065i 0.00693083 + 0.0482050i
\(247\) −8.71361 + 7.55039i −0.554434 + 0.480419i
\(248\) 2.21834 3.45181i 0.140865 0.219190i
\(249\) 2.83680 3.27384i 0.179775 0.207471i
\(250\) 1.90096 + 1.01549i 0.120227 + 0.0642254i
\(251\) 2.77052 + 6.06660i 0.174874 + 0.382920i 0.976691 0.214649i \(-0.0688607\pi\)
−0.801818 + 0.597569i \(0.796133\pi\)
\(252\) 17.2672i 1.08773i
\(253\) 7.44125 + 7.71333i 0.467827 + 0.484933i
\(254\) 0.751117 0.0471293
\(255\) −0.892506 + 2.41542i −0.0558909 + 0.151259i
\(256\) −12.5784 + 3.69335i −0.786149 + 0.230834i
\(257\) −3.18618 2.76084i −0.198748 0.172217i 0.549801 0.835296i \(-0.314704\pi\)
−0.748549 + 0.663079i \(0.769249\pi\)
\(258\) 0.451558 0.702638i 0.0281128 0.0437443i
\(259\) −6.94308 8.01274i −0.431422 0.497888i
\(260\) −23.8548 17.7440i −1.47941 1.10043i
\(261\) −15.6414 4.59273i −0.968178 0.284283i
\(262\) 1.29066 + 2.00830i 0.0797372 + 0.124073i
\(263\) 21.3499 + 3.06965i 1.31649 + 0.189283i 0.764530 0.644588i \(-0.222971\pi\)
0.551960 + 0.833870i \(0.313880\pi\)
\(264\) −0.420559 + 0.920896i −0.0258836 + 0.0566772i
\(265\) 1.14717 + 3.04721i 0.0704700 + 0.187188i
\(266\) −0.155109 + 1.07881i −0.00951036 + 0.0661460i
\(267\) −1.54285 2.40073i −0.0944212 0.146922i
\(268\) 2.70118 9.19937i 0.165001 0.561941i
\(269\) 0.990380 + 6.88824i 0.0603845 + 0.419983i 0.997482 + 0.0709164i \(0.0225924\pi\)
−0.937098 + 0.349067i \(0.886499\pi\)
\(270\) 0.0985983 1.44043i 0.00600050 0.0876619i
\(271\) −3.65615 2.34966i −0.222095 0.142732i 0.424862 0.905258i \(-0.360323\pi\)
−0.646957 + 0.762526i \(0.723959\pi\)
\(272\) −5.54519 4.80494i −0.336227 0.291342i
\(273\) −3.75928 12.8029i −0.227522 0.774868i
\(274\) −1.09742 2.40302i −0.0662977 0.145172i
\(275\) −0.0682934 11.1737i −0.00411825 0.673799i
\(276\) −4.01756 + 3.87585i −0.241829 + 0.233299i
\(277\) 19.1889i 1.15295i 0.817116 + 0.576473i \(0.195572\pi\)
−0.817116 + 0.576473i \(0.804428\pi\)
\(278\) 0.229105 0.104629i 0.0137408 0.00627521i
\(279\) 13.6488 4.00764i 0.817131 0.239931i
\(280\) −5.65829 + 0.422073i −0.338148 + 0.0252237i
\(281\) 5.60582 + 3.60264i 0.334415 + 0.214916i 0.697062 0.717011i \(-0.254490\pi\)
−0.362646 + 0.931927i \(0.618127\pi\)
\(282\) −0.832517 + 0.721380i −0.0495757 + 0.0429576i
\(283\) −5.94385 + 0.854596i −0.353325 + 0.0508005i −0.316692 0.948528i \(-0.602572\pi\)
−0.0366328 + 0.999329i \(0.511663\pi\)
\(284\) 0.0962307 + 0.0282559i 0.00571024 + 0.00167668i
\(285\) 0.473033 2.20694i 0.0280200 0.130728i
\(286\) 0.415287 2.88838i 0.0245564 0.170794i
\(287\) 20.1898 + 9.22035i 1.19176 + 0.544260i
\(288\) 5.43510 + 2.48213i 0.320267 + 0.146261i
\(289\) −1.88268 + 13.0944i −0.110746 + 0.770256i
\(290\) −0.556065 + 2.59434i −0.0326533 + 0.152345i
\(291\) 1.66730 + 0.489564i 0.0977390 + 0.0286988i
\(292\) 12.8068 1.84133i 0.749459 0.107756i
\(293\) 12.0927 10.4784i 0.706464 0.612155i −0.225697 0.974197i \(-0.572466\pi\)
0.932161 + 0.362043i \(0.117921\pi\)
\(294\) −0.387939 0.249313i −0.0226250 0.0145402i
\(295\) −20.8645 + 1.55636i −1.21478 + 0.0906149i
\(296\) 2.33948 0.686932i 0.135979 0.0399271i
\(297\) −6.80912 + 3.10962i −0.395105 + 0.180438i
\(298\) 0.0417618i 0.00241919i
\(299\) 16.0781 28.2281i 0.929822 1.63247i
\(300\) 5.81993 0.0355713i 0.336014 0.00205371i
\(301\) −10.0821 22.0767i −0.581121 1.27248i
\(302\) −0.320123 1.09024i −0.0184210 0.0627361i
\(303\) 2.07417 + 1.79728i 0.119158 + 0.103251i
\(304\) 5.41037 + 3.47704i 0.310306 + 0.199422i
\(305\) −1.62641 + 23.7604i −0.0931279 + 1.36051i
\(306\) 0.141085 + 0.981270i 0.00806531 + 0.0560955i
\(307\) 1.05789 3.60285i 0.0603770 0.205625i −0.923780 0.382923i \(-0.874917\pi\)
0.984157 + 0.177298i \(0.0567356\pi\)
\(308\) 7.87761 + 12.2578i 0.448869 + 0.698453i
\(309\) −0.0444397 + 0.309085i −0.00252809 + 0.0175832i
\(310\) −0.815723 2.16679i −0.0463300 0.123066i
\(311\) 4.31409 9.44654i 0.244630 0.535664i −0.746993 0.664832i \(-0.768503\pi\)
0.991623 + 0.129168i \(0.0412305\pi\)
\(312\) 3.03737 + 0.436708i 0.171957 + 0.0247237i
\(313\) −6.16831 9.59809i −0.348654 0.542516i 0.621994 0.783022i \(-0.286323\pi\)
−0.970648 + 0.240506i \(0.922687\pi\)
\(314\) −0.804897 0.236339i −0.0454230 0.0133374i
\(315\) −15.7832 11.7401i −0.889285 0.661480i
\(316\) 15.7975 + 18.2313i 0.888679 + 1.02559i
\(317\) −8.68395 + 13.5125i −0.487739 + 0.758937i −0.994677 0.103046i \(-0.967141\pi\)
0.506937 + 0.861983i \(0.330778\pi\)
\(318\) −0.125800 0.109006i −0.00705449 0.00611275i
\(319\) 13.1989 3.87556i 0.738998 0.216989i
\(320\) −5.51964 + 14.9380i −0.308557 + 0.835059i
\(321\) 8.99758 0.502196
\(322\) −0.598793 3.01193i −0.0333694 0.167848i
\(323\) 3.30535i 0.183914i
\(324\) 4.85861 + 10.6389i 0.269923 + 0.591048i
\(325\) −32.4380 + 9.74041i −1.79934 + 0.540300i
\(326\) 1.64836 1.90231i 0.0912944 0.105359i
\(327\) 4.59506 7.15006i 0.254108 0.395399i
\(328\) −3.85759 + 3.34262i −0.213000 + 0.184565i
\(329\) 4.55542 + 31.6836i 0.251148 + 1.74678i
\(330\) 0.275300 + 0.500531i 0.0151548 + 0.0275533i
\(331\) 4.84987 3.11682i 0.266573 0.171316i −0.400525 0.916286i \(-0.631172\pi\)
0.667099 + 0.744969i \(0.267536\pi\)
\(332\) 14.1922 + 2.04054i 0.778901 + 0.111989i
\(333\) 7.68908 + 3.51149i 0.421359 + 0.192428i
\(334\) −0.124013 + 0.271551i −0.00678570 + 0.0148586i
\(335\) −6.57221 8.72375i −0.359078 0.476629i
\(336\) −6.26144 + 4.02399i −0.341590 + 0.219526i
\(337\) −9.08835 + 30.9521i −0.495074 + 1.68607i 0.210634 + 0.977565i \(0.432447\pi\)
−0.705708 + 0.708503i \(0.749371\pi\)
\(338\) −6.27444 + 0.902128i −0.341284 + 0.0490693i
\(339\) −4.73483 5.46428i −0.257161 0.296779i
\(340\) −8.32275 + 1.83716i −0.451364 + 0.0996339i
\(341\) −7.86076 + 9.07180i −0.425684 + 0.491266i
\(342\) −0.244811 0.833748i −0.0132378 0.0450839i
\(343\) 8.96204 4.09282i 0.483904 0.220992i
\(344\) 5.58137 0.300927
\(345\) 0.811184 + 6.30750i 0.0436727 + 0.339585i
\(346\) 3.70377 0.199116
\(347\) −23.0792 + 10.5399i −1.23895 + 0.565812i −0.923671 0.383186i \(-0.874827\pi\)
−0.315284 + 0.948998i \(0.602100\pi\)
\(348\) 2.01862 + 6.87480i 0.108210 + 0.368528i
\(349\) −9.34118 + 10.7803i −0.500022 + 0.577056i −0.948516 0.316730i \(-0.897415\pi\)
0.448494 + 0.893786i \(0.351961\pi\)
\(350\) −1.71443 + 2.70390i −0.0916400 + 0.144529i
\(351\) 14.8583 + 17.1474i 0.793079 + 0.915262i
\(352\) −4.99071 + 0.717556i −0.266006 + 0.0382459i
\(353\) 2.37791 8.09840i 0.126563 0.431035i −0.871694 0.490051i \(-0.836978\pi\)
0.998257 + 0.0590163i \(0.0187964\pi\)
\(354\) 0.899826 0.578283i 0.0478252 0.0307354i
\(355\) 0.0912555 0.0687491i 0.00484334 0.00364882i
\(356\) 3.92385 8.59204i 0.207964 0.455377i
\(357\) −3.47961 1.58908i −0.184160 0.0841032i
\(358\) −3.11905 0.448452i −0.164847 0.0237014i
\(359\) −17.5251 + 11.2627i −0.924937 + 0.594421i −0.914086 0.405520i \(-0.867090\pi\)
−0.0108509 + 0.999941i \(0.503454\pi\)
\(360\) 3.96373 2.18011i 0.208907 0.114902i
\(361\) 2.29167 + 15.9389i 0.120614 + 0.838889i
\(362\) 1.13455 0.983090i 0.0596304 0.0516700i
\(363\) −1.92552 + 2.99616i −0.101063 + 0.157258i
\(364\) 28.9222 33.3780i 1.51593 1.74948i
\(365\) 7.02432 12.9581i 0.367669 0.678256i
\(366\) −0.505788 1.10752i −0.0264380 0.0578910i
\(367\) 8.95879i 0.467645i 0.972279 + 0.233823i \(0.0751235\pi\)
−0.972279 + 0.233823i \(0.924877\pi\)
\(368\) −17.6346 4.16905i −0.919266 0.217327i
\(369\) −17.6958 −0.921207
\(370\) 0.476851 1.29052i 0.0247903 0.0670908i
\(371\) −4.64094 + 1.36270i −0.240945 + 0.0707480i
\(372\) −4.72514 4.09436i −0.244987 0.212282i
\(373\) 4.99668 7.77499i 0.258718 0.402574i −0.687459 0.726224i \(-0.741274\pi\)
0.946177 + 0.323650i \(0.104910\pi\)
\(374\) −0.547828 0.632227i −0.0283275 0.0326917i
\(375\) 3.92450 5.34394i 0.202660 0.275960i
\(376\) −7.06306 2.07390i −0.364250 0.106953i
\(377\) −22.5425 35.0768i −1.16100 1.80655i
\(378\) 2.12298 + 0.305238i 0.109194 + 0.0156998i
\(379\) −4.43910 + 9.72027i −0.228021 + 0.499297i −0.988714 0.149815i \(-0.952132\pi\)
0.760693 + 0.649112i \(0.224859\pi\)
\(380\) 6.99163 2.63211i 0.358663 0.135024i
\(381\) 0.328849 2.28719i 0.0168474 0.117176i
\(382\) −0.720760 1.12152i −0.0368773 0.0573822i
\(383\) −8.12875 + 27.6840i −0.415360 + 1.41458i 0.440675 + 0.897667i \(0.354739\pi\)
−0.856035 + 0.516918i \(0.827079\pi\)
\(384\) −0.496687 3.45453i −0.0253464 0.176288i
\(385\) 16.5604 + 1.13357i 0.843996 + 0.0577719i
\(386\) −0.942108 0.605456i −0.0479520 0.0308169i
\(387\) 14.6235 + 12.6713i 0.743353 + 0.644119i
\(388\) 1.62041 + 5.51860i 0.0822637 + 0.280164i
\(389\) −5.78463 12.6666i −0.293292 0.642221i 0.704423 0.709781i \(-0.251206\pi\)
−0.997715 + 0.0675598i \(0.978479\pi\)
\(390\) 1.22060 1.22808i 0.0618074 0.0621863i
\(391\) −3.09742 8.78287i −0.156643 0.444169i
\(392\) 3.08157i 0.155643i
\(393\) 6.68046 3.05087i 0.336985 0.153896i
\(394\) −1.79087 + 0.525848i −0.0902229 + 0.0264918i
\(395\) 27.4053 2.04426i 1.37891 0.102858i
\(396\) −9.77278 6.28058i −0.491101 0.315611i
\(397\) 23.4830 20.3481i 1.17858 1.02124i 0.179280 0.983798i \(-0.442623\pi\)
0.999299 0.0374461i \(-0.0119222\pi\)
\(398\) 3.08007 0.442848i 0.154390 0.0221979i
\(399\) 3.21712 + 0.944633i 0.161058 + 0.0472908i
\(400\) 10.3108 + 15.8303i 0.515540 + 0.791517i
\(401\) −3.07410 + 21.3809i −0.153513 + 1.06771i 0.756757 + 0.653696i \(0.226782\pi\)
−0.910271 + 0.414013i \(0.864127\pi\)
\(402\) 0.507925 + 0.231962i 0.0253330 + 0.0115692i
\(403\) 33.0961 + 15.1145i 1.64864 + 0.752907i
\(404\) −1.29280 + 8.99164i −0.0643193 + 0.447351i
\(405\) 13.0279 + 2.79239i 0.647364 + 0.138755i
\(406\) −3.78183 1.11045i −0.187689 0.0551106i
\(407\) −7.06040 + 1.01513i −0.349971 + 0.0503182i
\(408\) 0.664837 0.576085i 0.0329144 0.0285205i
\(409\) 13.2182 + 8.49479i 0.653596 + 0.420040i 0.824979 0.565164i \(-0.191187\pi\)
−0.171383 + 0.985205i \(0.554824\pi\)
\(410\) 0.214247 + 2.87218i 0.0105809 + 0.141847i
\(411\) −7.79778 + 2.28964i −0.384636 + 0.112939i
\(412\) −0.940159 + 0.429356i −0.0463183 + 0.0211529i
\(413\) 31.0810i 1.52939i
\(414\) 1.43180 + 1.98600i 0.0703693 + 0.0976066i
\(415\) 11.5146 11.5852i 0.565228 0.568693i
\(416\) 6.34869 + 13.9017i 0.311270 + 0.681586i
\(417\) −0.218295 0.743444i −0.0106899 0.0364066i
\(418\) 0.554159 + 0.480182i 0.0271048 + 0.0234865i
\(419\) −29.6705 19.0681i −1.44950 0.931537i −0.999253 0.0386328i \(-0.987700\pi\)
−0.450247 0.892904i \(-0.648664\pi\)
\(420\) −0.590430 + 8.62565i −0.0288100 + 0.420888i
\(421\) −3.71916 25.8673i −0.181261 1.26070i −0.853787 0.520622i \(-0.825700\pi\)
0.672526 0.740073i \(-0.265209\pi\)
\(422\) −0.731190 + 2.49020i −0.0355938 + 0.121221i
\(423\) −13.7972 21.4689i −0.670845 1.04386i
\(424\) 0.158302 1.10102i 0.00768784 0.0534701i
\(425\) −3.97942 + 8.85658i −0.193030 + 0.429607i
\(426\) −0.00242645 + 0.00531319i −0.000117562 + 0.000257425i
\(427\) −35.0192 5.03500i −1.69470 0.243661i
\(428\) 16.1009 + 25.0534i 0.778265 + 1.21100i
\(429\) −8.61347 2.52914i −0.415862 0.122108i
\(430\) 1.87961 2.52693i 0.0906430 0.121859i
\(431\) −0.618262 0.713512i −0.0297806 0.0343687i 0.740664 0.671876i \(-0.234511\pi\)
−0.770444 + 0.637507i \(0.779966\pi\)
\(432\) 6.84243 10.6470i 0.329206 0.512255i
\(433\) −28.3777 24.5894i −1.36374 1.18169i −0.964262 0.264951i \(-0.914644\pi\)
−0.399483 0.916741i \(-0.630810\pi\)
\(434\) 3.30005 0.968983i 0.158408 0.0465127i
\(435\) 7.65644 + 2.82908i 0.367098 + 0.135644i
\(436\) 28.1318 1.34727
\(437\) 3.78290 + 7.23362i 0.180961 + 0.346031i
\(438\) 0.753530i 0.0360050i
\(439\) −13.0134 28.4954i −0.621097 1.36001i −0.914719 0.404091i \(-0.867588\pi\)
0.293622 0.955922i \(-0.405139\pi\)
\(440\) −1.81920 + 3.35596i −0.0867270 + 0.159989i
\(441\) 6.99606 8.07388i 0.333146 0.384470i
\(442\) −1.37088 + 2.13313i −0.0652062 + 0.101463i
\(443\) 11.4266 9.90118i 0.542893 0.470419i −0.339716 0.940528i \(-0.610331\pi\)
0.882608 + 0.470109i \(0.155785\pi\)
\(444\) −0.528741 3.67748i −0.0250930 0.174525i
\(445\) −5.18577 9.42842i −0.245829 0.446950i
\(446\) −1.93753 + 1.24517i −0.0917446 + 0.0589607i
\(447\) −0.127167 0.0182838i −0.00601479 0.000864796i
\(448\) −21.5194 9.82758i −1.01670 0.464309i
\(449\) −12.1138 + 26.5254i −0.571684 + 1.25181i 0.374212 + 0.927343i \(0.377913\pi\)
−0.945896 + 0.324470i \(0.894814\pi\)
\(450\) 0.347817 2.52874i 0.0163962 0.119206i
\(451\) 12.5621 8.07315i 0.591524 0.380150i
\(452\) 6.74228 22.9621i 0.317130 1.08005i
\(453\) −3.45999 + 0.497471i −0.162564 + 0.0233732i
\(454\) 1.13197 + 1.30636i 0.0531258 + 0.0613104i
\(455\) −10.8450 49.1305i −0.508423 2.30327i
\(456\) −0.504950 + 0.582743i −0.0236464 + 0.0272894i
\(457\) 0.882742 + 3.00634i 0.0412929 + 0.140631i 0.977559 0.210660i \(-0.0675612\pi\)
−0.936267 + 0.351290i \(0.885743\pi\)
\(458\) 0.535010 0.244331i 0.0249994 0.0114168i
\(459\) 6.50456 0.303607
\(460\) −16.1114 + 13.5458i −0.751199 + 0.631575i
\(461\) −35.6709 −1.66136 −0.830679 0.556751i \(-0.812048\pi\)
−0.830679 + 0.556751i \(0.812048\pi\)
\(462\) −0.771915 + 0.352522i −0.0359128 + 0.0164008i
\(463\) 8.14417 + 27.7365i 0.378491 + 1.28902i 0.900042 + 0.435803i \(0.143536\pi\)
−0.521550 + 0.853220i \(0.674646\pi\)
\(464\) −15.2308 + 17.5773i −0.707071 + 0.816004i
\(465\) −6.95513 + 1.53527i −0.322537 + 0.0711965i
\(466\) 1.76184 + 2.03327i 0.0816155 + 0.0941893i
\(467\) 39.4110 5.66644i 1.82372 0.262212i 0.856501 0.516146i \(-0.172634\pi\)
0.967221 + 0.253934i \(0.0817247\pi\)
\(468\) −9.92029 + 33.7854i −0.458566 + 1.56173i
\(469\) 13.6497 8.77214i 0.630286 0.405060i
\(470\) −3.31754 + 2.49934i −0.153027 + 0.115286i
\(471\) −1.07206 + 2.34748i −0.0493979 + 0.108166i
\(472\) 6.50180 + 2.96927i 0.299270 + 0.136672i
\(473\) −16.1619 2.32373i −0.743126 0.106845i
\(474\) −1.18191 + 0.759567i −0.0542869 + 0.0348881i
\(475\) 2.34775 8.18035i 0.107722 0.375340i
\(476\) −1.80189 12.5324i −0.0825896 0.574423i
\(477\) 2.91439 2.52533i 0.133441 0.115627i
\(478\) −0.0933550 + 0.145263i −0.00426996 + 0.00664418i
\(479\) 21.5479 24.8676i 0.984547 1.13623i −0.00612775 0.999981i \(-0.501951\pi\)
0.990675 0.136247i \(-0.0435040\pi\)
\(480\) −2.63017 1.42577i −0.120050 0.0650770i
\(481\) 8.98153 + 19.6668i 0.409523 + 0.896730i
\(482\) 0.125677i 0.00572443i
\(483\) −9.43365 + 0.504694i −0.429246 + 0.0229644i
\(484\) −11.7883 −0.535834
\(485\) 6.14605 + 2.27099i 0.279078 + 0.103120i
\(486\) −2.51217 + 0.737638i −0.113954 + 0.0334600i
\(487\) −13.3388 11.5581i −0.604437 0.523748i 0.298002 0.954565i \(-0.403680\pi\)
−0.902439 + 0.430818i \(0.858225\pi\)
\(488\) 4.39877 6.84462i 0.199123 0.309841i
\(489\) −5.07097 5.85221i −0.229317 0.264646i
\(490\) −1.39516 1.03777i −0.0630270 0.0468816i
\(491\) −18.5782 5.45504i −0.838421 0.246183i −0.165791 0.986161i \(-0.553018\pi\)
−0.672631 + 0.739978i \(0.734836\pi\)
\(492\) 4.20498 + 6.54308i 0.189575 + 0.294985i
\(493\) −11.8317 1.70114i −0.532873 0.0766155i
\(494\) 0.923283 2.02171i 0.0415405 0.0909609i
\(495\) −12.3854 + 4.66268i −0.556682 + 0.209572i
\(496\) 2.88830 20.0886i 0.129688 0.902003i
\(497\) 0.0917617 + 0.142784i 0.00411608 + 0.00640474i
\(498\) −0.235261 + 0.801224i −0.0105423 + 0.0359037i
\(499\) 4.09970 + 28.5140i 0.183528 + 1.27646i 0.848340 + 0.529452i \(0.177602\pi\)
−0.664812 + 0.747011i \(0.731488\pi\)
\(500\) 21.9027 + 1.36481i 0.979521 + 0.0610363i
\(501\) 0.772593 + 0.496515i 0.0345169 + 0.0221827i
\(502\) −0.971605 0.841901i −0.0433649 0.0375759i
\(503\) 2.81375 + 9.58275i 0.125459 + 0.427274i 0.998136 0.0610233i \(-0.0194364\pi\)
−0.872677 + 0.488297i \(0.837618\pi\)
\(504\) 2.79164 + 6.11283i 0.124349 + 0.272287i
\(505\) 7.33990 + 7.29517i 0.326621 + 0.324631i
\(506\) −1.92247 0.756626i −0.0854642 0.0336361i
\(507\) 19.5010i 0.866068i
\(508\) 6.95707 3.17719i 0.308670 0.140965i
\(509\) 30.6279 8.99315i 1.35756 0.398615i 0.479656 0.877457i \(-0.340762\pi\)
0.877901 + 0.478842i \(0.158943\pi\)
\(510\) −0.0369244 0.495007i −0.00163504 0.0219193i
\(511\) 18.4200 + 11.8378i 0.814854 + 0.523675i
\(512\) 10.8053 9.36285i 0.477532 0.413783i
\(513\) −5.64334 + 0.811390i −0.249160 + 0.0358238i
\(514\) 0.779770 + 0.228961i 0.0343942 + 0.0100990i
\(515\) −0.246764 + 1.15128i −0.0108737 + 0.0507316i
\(516\) 1.21034 8.41810i 0.0532823 0.370586i
\(517\) 19.5890 + 8.94601i 0.861524 + 0.393445i
\(518\) 1.85910 + 0.849020i 0.0816840 + 0.0373038i
\(519\) 1.62156 11.2782i 0.0711784 0.495057i
\(520\) 11.3136 + 2.42494i 0.496135 + 0.106341i
\(521\) −28.5753 8.39048i −1.25191 0.367594i −0.412432 0.910989i \(-0.635320\pi\)
−0.839477 + 0.543395i \(0.817139\pi\)
\(522\) 3.11045 0.447215i 0.136141 0.0195741i
\(523\) −16.4176 + 14.2259i −0.717890 + 0.622055i −0.935230 0.354041i \(-0.884807\pi\)
0.217340 + 0.976096i \(0.430262\pi\)
\(524\) 20.4495 + 13.1421i 0.893339 + 0.574114i
\(525\) 7.48291 + 6.40432i 0.326581 + 0.279508i
\(526\) −3.98945 + 1.17141i −0.173948 + 0.0510758i
\(527\) 9.48799 4.33302i 0.413303 0.188749i
\(528\) 5.00745i 0.217921i
\(529\) −16.8304 15.6760i −0.731756 0.681567i
\(530\) −0.445168 0.442455i −0.0193368 0.0192190i
\(531\) 10.2940 + 22.5406i 0.446719 + 0.978179i
\(532\) 3.12664 + 10.6483i 0.135557 + 0.461664i
\(533\) −34.2065 29.6401i −1.48165 1.28385i
\(534\) 0.462781 + 0.297411i 0.0200265 + 0.0128702i
\(535\) 33.8474 + 2.31687i 1.46335 + 0.100167i
\(536\) 0.531032 + 3.69341i 0.0229371 + 0.159531i
\(537\) −2.73112 + 9.30134i −0.117857 + 0.401382i
\(538\) −0.725259 1.12852i −0.0312681 0.0486541i
\(539\) −1.28297 + 8.92328i −0.0552616 + 0.384353i
\(540\) −5.17970 13.7588i −0.222899 0.592083i
\(541\) −2.16838 + 4.74808i −0.0932257 + 0.204136i −0.950500 0.310724i \(-0.899429\pi\)
0.857275 + 0.514860i \(0.172156\pi\)
\(542\) 0.829252 + 0.119228i 0.0356194 + 0.00512130i
\(543\) −2.49684 3.88516i −0.107150 0.166728i
\(544\) 4.20378 + 1.23434i 0.180236 + 0.0529220i
\(545\) 19.1270 25.7141i 0.819310 1.10147i
\(546\) 1.68441 + 1.94392i 0.0720863 + 0.0831920i
\(547\) 5.49555 8.55124i 0.234973 0.365625i −0.703663 0.710533i \(-0.748454\pi\)
0.938636 + 0.344909i \(0.112090\pi\)
\(548\) −20.3293 17.6154i −0.868423 0.752493i
\(549\) 27.0643 7.94678i 1.15507 0.339160i
\(550\) 0.906745 + 1.95380i 0.0386637 + 0.0833105i
\(551\) 10.4774 0.446350
\(552\) 0.795653 2.02163i 0.0338652 0.0860464i
\(553\) 40.8244i 1.73603i
\(554\) −1.53661 3.36471i −0.0652843 0.142953i
\(555\) −3.72092 2.01704i −0.157944 0.0856187i
\(556\) 1.67946 1.93820i 0.0712250 0.0821981i
\(557\) −19.0010 + 29.5661i −0.805096 + 1.25275i 0.159020 + 0.987275i \(0.449167\pi\)
−0.964117 + 0.265479i \(0.914470\pi\)
\(558\) −2.07235 + 1.79570i −0.0877295 + 0.0760180i
\(559\) 7.04340 + 48.9879i 0.297904 + 2.07197i
\(560\) −24.5907 + 13.5252i −1.03915 + 0.571546i
\(561\) −2.16501 + 1.39137i −0.0914068 + 0.0587436i
\(562\) −1.27146 0.182808i −0.0536332 0.00771129i
\(563\) −28.3121 12.9297i −1.19321 0.544921i −0.283022 0.959113i \(-0.591337\pi\)
−0.910189 + 0.414192i \(0.864064\pi\)
\(564\) −4.65962 + 10.2031i −0.196205 + 0.429630i
\(565\) −16.4046 21.7749i −0.690146 0.916078i
\(566\) 0.973801 0.625824i 0.0409319 0.0263053i
\(567\) −5.57632 + 18.9912i −0.234183 + 0.797555i
\(568\) −0.0386352 + 0.00555490i −0.00162110 + 0.000233078i
\(569\) −29.1395 33.6288i −1.22159 1.40979i −0.883337 0.468739i \(-0.844708\pi\)
−0.338256 0.941054i \(-0.609837\pi\)
\(570\) 0.0937835 + 0.424861i 0.00392816 + 0.0177955i
\(571\) −10.7055 + 12.3548i −0.448013 + 0.517034i −0.934166 0.356840i \(-0.883854\pi\)
0.486153 + 0.873874i \(0.338400\pi\)
\(572\) −8.37120 28.5097i −0.350018 1.19205i
\(573\) −3.73066 + 1.70373i −0.155850 + 0.0711745i
\(574\) −4.27856 −0.178584
\(575\) 1.42736 + 23.9366i 0.0595250 + 0.998227i
\(576\) 18.8612 0.785884
\(577\) −18.4367 + 8.41977i −0.767531 + 0.350520i −0.760400 0.649455i \(-0.774997\pi\)
−0.00713075 + 0.999975i \(0.502270\pi\)
\(578\) −0.718451 2.44682i −0.0298836 0.101774i
\(579\) −2.25611 + 2.60369i −0.0937608 + 0.108206i
\(580\) 5.82346 + 26.3816i 0.241806 + 1.09544i
\(581\) 15.8900 + 18.3380i 0.659229 + 0.760790i
\(582\) −0.331560 + 0.0476711i −0.0137436 + 0.00197603i
\(583\) −0.916790 + 3.12230i −0.0379696 + 0.129312i
\(584\) −4.23607 + 2.72236i −0.175290 + 0.112652i
\(585\) 24.1370 + 32.0386i 0.997940 + 1.32464i
\(586\) −1.28133 + 2.80572i −0.0529312 + 0.115903i
\(587\) 22.3982 + 10.2289i 0.924474 + 0.422193i 0.820019 0.572337i \(-0.193963\pi\)
0.104455 + 0.994530i \(0.466690\pi\)
\(588\) −4.64778 0.668250i −0.191671 0.0275582i
\(589\) −7.69125 + 4.94287i −0.316912 + 0.203667i
\(590\) 3.53390 1.94370i 0.145488 0.0800208i
\(591\) 0.817168 + 5.68353i 0.0336138 + 0.233789i
\(592\) 9.11436 7.89764i 0.374598 0.324591i
\(593\) −14.1304 + 21.9873i −0.580266 + 0.902912i −0.999989 0.00474074i \(-0.998491\pi\)
0.419723 + 0.907652i \(0.362127\pi\)
\(594\) 0.944945 1.09052i 0.0387716 0.0447448i
\(595\) −12.6805 6.87386i −0.519850 0.281801i
\(596\) −0.176650 0.386810i −0.00723587 0.0158443i
\(597\) 9.57287i 0.391792i
\(598\) −0.558792 + 6.23722i −0.0228507 + 0.255059i
\(599\) 7.94091 0.324457 0.162228 0.986753i \(-0.448132\pi\)
0.162228 + 0.986753i \(0.448132\pi\)
\(600\) −2.05458 + 0.953515i −0.0838780 + 0.0389271i
\(601\) −5.24492 + 1.54005i −0.213945 + 0.0628198i −0.386948 0.922101i \(-0.626471\pi\)
0.173004 + 0.984921i \(0.444653\pi\)
\(602\) 3.53572 + 3.06372i 0.144105 + 0.124868i
\(603\) −6.99377 + 10.8825i −0.284808 + 0.443170i
\(604\) −7.57671 8.74399i −0.308292 0.355788i
\(605\) −8.01498 + 10.7752i −0.325855 + 0.438076i
\(606\) −0.507624 0.149052i −0.0206208 0.00605481i
\(607\) 10.7420 + 16.7149i 0.436005 + 0.678437i 0.987833 0.155521i \(-0.0497057\pi\)
−0.551827 + 0.833958i \(0.686069\pi\)
\(608\) −3.80117 0.546525i −0.154158 0.0221645i
\(609\) −5.03711 + 11.0297i −0.204114 + 0.446947i
\(610\) −1.61750 4.29655i −0.0654908 0.173962i
\(611\) 9.28952 64.6100i 0.375814 2.61384i
\(612\) 5.45749 + 8.49202i 0.220606 + 0.343270i
\(613\) 5.11722 17.4277i 0.206683 0.703897i −0.789272 0.614043i \(-0.789542\pi\)
0.995955 0.0898532i \(-0.0286398\pi\)
\(614\) 0.103012 + 0.716462i 0.00415721 + 0.0289141i
\(615\) 8.83975 + 0.605085i 0.356453 + 0.0243994i
\(616\) −4.77053 3.06584i −0.192210 0.123526i
\(617\) −9.83715 8.52394i −0.396029 0.343161i 0.433969 0.900928i \(-0.357113\pi\)
−0.829998 + 0.557767i \(0.811658\pi\)
\(618\) −0.0169586 0.0577558i −0.000682176 0.00232328i
\(619\) 15.6451 + 34.2580i 0.628830 + 1.37695i 0.908919 + 0.416972i \(0.136909\pi\)
−0.280089 + 0.959974i \(0.590364\pi\)
\(620\) −16.7209 16.6190i −0.671527 0.667435i
\(621\) 14.2350 7.44434i 0.571230 0.298731i
\(622\) 2.00189i 0.0802683i
\(623\) 14.5404 6.64039i 0.582550 0.266042i
\(624\) 14.5631 4.27612i 0.582991 0.171182i
\(625\) 16.1393 19.0924i 0.645574 0.763698i
\(626\) 1.85019 + 1.18905i 0.0739486 + 0.0475239i
\(627\) 1.70480 1.47721i 0.0680830 0.0589943i
\(628\) −8.45489 + 1.21563i −0.337387 + 0.0485089i
\(629\) 5.94712 + 1.74623i 0.237127 + 0.0696269i
\(630\) 3.70767 + 0.794696i 0.147717 + 0.0316614i
\(631\) 3.45896 24.0576i 0.137699 0.957717i −0.797431 0.603411i \(-0.793808\pi\)
0.935130 0.354306i \(-0.115283\pi\)
\(632\) −8.54002 3.90010i −0.339704 0.155138i
\(633\) 7.26268 + 3.31676i 0.288666 + 0.131829i
\(634\) 0.440647 3.06477i 0.0175003 0.121718i
\(635\) 1.82602 8.51936i 0.0724635 0.338080i
\(636\) −1.62628 0.477519i −0.0644862 0.0189349i
\(637\) 27.0471 3.88879i 1.07165 0.154079i
\(638\) −2.00405 + 1.73651i −0.0793409 + 0.0687493i
\(639\) −0.113837 0.0731589i −0.00450334 0.00289412i
\(640\) −0.978912 13.1233i −0.0386949 0.518742i
\(641\) 31.3889 9.21661i 1.23979 0.364034i 0.404852 0.914382i \(-0.367323\pi\)
0.834935 + 0.550348i \(0.185505\pi\)
\(642\) −1.57770 + 0.720511i −0.0622668 + 0.0284363i
\(643\) 8.09996i 0.319431i 0.987163 + 0.159716i \(0.0510577\pi\)
−0.987163 + 0.159716i \(0.948942\pi\)
\(644\) −18.2865 25.3645i −0.720589 0.999502i
\(645\) −6.87172 6.82985i −0.270574 0.268925i
\(646\) −0.264686 0.579582i −0.0104139 0.0228034i
\(647\) −3.82802 13.0370i −0.150495 0.512539i 0.849389 0.527767i \(-0.176971\pi\)
−0.999884 + 0.0152284i \(0.995152\pi\)
\(648\) −3.44002 2.98080i −0.135137 0.117097i
\(649\) −17.5910 11.3050i −0.690507 0.443762i
\(650\) 4.90792 4.30553i 0.192504 0.168877i
\(651\) −1.50580 10.4731i −0.0590170 0.410472i
\(652\) 7.22094 24.5923i 0.282794 0.963107i
\(653\) 14.8207 + 23.0614i 0.579978 + 0.902463i 0.999987 0.00505700i \(-0.00160970\pi\)
−0.420010 + 0.907520i \(0.637973\pi\)
\(654\) −0.233166 + 1.62171i −0.00911752 + 0.0634137i
\(655\) 25.9164 9.75663i 1.01264 0.381223i
\(656\) −10.4880 + 22.9655i −0.409487 + 0.896652i
\(657\) −17.2793 2.48438i −0.674128 0.0969250i
\(658\) −3.33595 5.19084i −0.130049 0.202360i
\(659\) −18.9335 5.55939i −0.737546 0.216563i −0.108680 0.994077i \(-0.534662\pi\)
−0.628866 + 0.777514i \(0.716481\pi\)
\(660\) 4.66713 + 3.47156i 0.181668 + 0.135130i
\(661\) 13.2575 + 15.3000i 0.515658 + 0.595101i 0.952538 0.304419i \(-0.0984622\pi\)
−0.436880 + 0.899520i \(0.643917\pi\)
\(662\) −0.600821 + 0.934895i −0.0233516 + 0.0363357i
\(663\) 5.89532 + 5.10832i 0.228955 + 0.198391i
\(664\) −5.35415 + 1.57212i −0.207781 + 0.0610100i
\(665\) 11.8590 + 4.38196i 0.459874 + 0.169925i
\(666\) −1.62945 −0.0631399
\(667\) −27.8401 + 9.81825i −1.07797 + 0.380164i
\(668\) 3.03975i 0.117612i
\(669\) 2.94335 + 6.44503i 0.113796 + 0.249179i
\(670\) 1.85100 + 1.00339i 0.0715103 + 0.0387644i
\(671\) −15.5872 + 17.9885i −0.601735 + 0.694440i
\(672\) 2.40279 3.73882i 0.0926897 0.144228i
\(673\) 12.4252 10.7665i 0.478957 0.415019i −0.381635 0.924313i \(-0.624639\pi\)
0.860592 + 0.509294i \(0.170094\pi\)
\(674\) −0.884975 6.15513i −0.0340880 0.237087i
\(675\) −16.0980 4.62013i −0.619613 0.177829i
\(676\) −54.2997 + 34.8963i −2.08845 + 1.34216i
\(677\) 25.0565 + 3.60259i 0.963001 + 0.138459i 0.605842 0.795585i \(-0.292836\pi\)
0.357159 + 0.934044i \(0.383745\pi\)
\(678\) 1.26781 + 0.578989i 0.0486899 + 0.0222359i
\(679\) −4.04343 + 8.85388i −0.155173 + 0.339781i
\(680\) 2.64935 1.99594i 0.101598 0.0765408i
\(681\) 4.47352 2.87496i 0.171426 0.110169i
\(682\) 0.651906 2.22019i 0.0249628 0.0850154i
\(683\) 3.47427 0.499524i 0.132939 0.0191138i −0.0755240 0.997144i \(-0.524063\pi\)
0.208463 + 0.978030i \(0.433154\pi\)
\(684\) −5.79422 6.68688i −0.221547 0.255679i
\(685\) −29.9235 + 6.60530i −1.14332 + 0.252376i
\(686\) −1.24372 + 1.43533i −0.0474854 + 0.0548011i
\(687\) −0.509767 1.73611i −0.0194488 0.0662366i
\(688\) 25.1118 11.4682i 0.957379 0.437220i
\(689\) 9.86345 0.375767
\(690\) −0.647333 1.04104i −0.0246435 0.0396318i
\(691\) −23.1533 −0.880793 −0.440397 0.897803i \(-0.645162\pi\)
−0.440397 + 0.897803i \(0.645162\pi\)
\(692\) 34.3054 15.6667i 1.30409 0.595560i
\(693\) −5.53872 18.8631i −0.210398 0.716551i
\(694\) 3.20285 3.69628i 0.121578 0.140309i
\(695\) −0.629752 2.85292i −0.0238879 0.108218i
\(696\) −1.82609 2.10741i −0.0692176 0.0798813i
\(697\) −12.8435 + 1.84662i −0.486483 + 0.0699457i
\(698\) 0.774680 2.63832i 0.0293221 0.0998618i
\(699\) 6.96276 4.47470i 0.263356 0.169249i
\(700\) −4.44219 + 32.2962i −0.167899 + 1.22068i
\(701\) 0.707265 1.54869i 0.0267130 0.0584934i −0.895805 0.444447i \(-0.853400\pi\)
0.922518 + 0.385954i \(0.126128\pi\)
\(702\) −3.97850 1.81692i −0.150159 0.0685752i
\(703\) −5.37754 0.773173i −0.202818 0.0291608i
\(704\) −13.3894 + 8.60482i −0.504631 + 0.324306i
\(705\) 6.15816 + 11.1963i 0.231930 + 0.421679i
\(706\) 0.231548 + 1.61045i 0.00871441 + 0.0606101i
\(707\) −11.6182 + 10.0673i −0.436949 + 0.378619i
\(708\) 5.88834 9.16244i 0.221298 0.344346i
\(709\) 32.3210 37.3005i 1.21384 1.40085i 0.323084 0.946370i \(-0.395281\pi\)
0.890758 0.454478i \(-0.150174\pi\)
\(710\) −0.0104961 + 0.0193625i −0.000393910 + 0.000726663i
\(711\) −13.5210 29.6068i −0.507076 1.11034i
\(712\) 3.67608i 0.137767i
\(713\) 15.8050 20.3415i 0.591903 0.761794i
\(714\) 0.737389 0.0275961
\(715\) −31.7512 11.7322i −1.18743 0.438758i
\(716\) −30.7865 + 9.03972i −1.15054 + 0.337830i
\(717\) 0.401462 + 0.347869i 0.0149929 + 0.0129914i
\(718\) 2.17107 3.37825i 0.0810236 0.126075i
\(719\) 13.2519 + 15.2935i 0.494211 + 0.570350i 0.946986 0.321275i \(-0.104111\pi\)
−0.452775 + 0.891625i \(0.649566\pi\)
\(720\) 13.3542 17.9532i 0.497680 0.669075i
\(721\) −1.67826 0.492780i −0.0625015 0.0183521i
\(722\) −1.67820 2.61132i −0.0624560 0.0971834i
\(723\) 0.382693 + 0.0550230i 0.0142325 + 0.00204633i
\(724\) 6.35008 13.9047i 0.235999 0.516765i
\(725\) 28.0737 + 12.6141i 1.04263 + 0.468474i
\(726\) 0.0977060 0.679560i 0.00362621 0.0252208i
\(727\) −14.2732 22.2096i −0.529364 0.823707i 0.468860 0.883272i \(-0.344665\pi\)
−0.998224 + 0.0595657i \(0.981028\pi\)
\(728\) −4.84254 + 16.4922i −0.179476 + 0.611241i
\(729\) −1.39770 9.72123i −0.0517667 0.360045i
\(730\) −0.194033 + 2.83465i −0.00718149 + 0.104915i
\(731\) 11.9359 + 7.67075i 0.441466 + 0.283713i
\(732\) −9.36951 8.11872i −0.346307 0.300077i
\(733\) −7.23354 24.6352i −0.267177 0.909921i −0.978359 0.206914i \(-0.933658\pi\)
0.711182 0.703008i \(-0.248160\pi\)
\(734\) −0.717405 1.57090i −0.0264799 0.0579829i
\(735\) −3.77088 + 3.79400i −0.139091 + 0.139944i
\(736\) 10.6125 2.10984i 0.391182 0.0777696i
\(737\) 10.9161i 0.402098i
\(738\) 3.10291 1.41705i 0.114220 0.0521624i
\(739\) 14.2986 4.19846i 0.525984 0.154443i −0.00795122 0.999968i \(-0.502531\pi\)
0.533935 + 0.845526i \(0.320713\pi\)
\(740\) −1.04209 13.9702i −0.0383079 0.513555i
\(741\) −5.75198 3.69658i −0.211304 0.135797i
\(742\) 0.704651 0.610584i 0.0258686 0.0224152i
\(743\) 23.0482 3.31384i 0.845558 0.121573i 0.294099 0.955775i \(-0.404980\pi\)
0.551459 + 0.834202i \(0.314071\pi\)
\(744\) 2.33471 + 0.685532i 0.0855945 + 0.0251328i
\(745\) −0.473672 0.101526i −0.0173540 0.00371963i
\(746\) −0.253545 + 1.76345i −0.00928295 + 0.0645643i
\(747\) −17.5973 8.03642i −0.643852 0.294037i
\(748\) −7.74842 3.53859i −0.283310 0.129384i
\(749\) −7.17251 + 49.8859i −0.262078 + 1.82279i
\(750\) −0.260215 + 1.25131i −0.00950170 + 0.0456914i
\(751\) −7.02028 2.06134i −0.256173 0.0752193i 0.151124 0.988515i \(-0.451711\pi\)
−0.407298 + 0.913295i \(0.633529\pi\)
\(752\) −36.0396 + 5.18171i −1.31423 + 0.188958i
\(753\) −2.98901 + 2.59000i −0.108926 + 0.0943847i
\(754\) 6.76165 + 4.34545i 0.246245 + 0.158252i
\(755\) −13.1440 + 0.980458i −0.478358 + 0.0356825i
\(756\) 20.9548 6.15288i 0.762118 0.223778i
\(757\) 27.4138 12.5195i 0.996372 0.455028i 0.150613 0.988593i \(-0.451875\pi\)
0.845759 + 0.533565i \(0.179148\pi\)
\(758\) 2.05990i 0.0748188i
\(759\) −3.14565 + 5.52277i −0.114180 + 0.200464i
\(760\) −2.04959 + 2.06216i −0.0743465 + 0.0748023i
\(761\) 9.46300 + 20.7211i 0.343034 + 0.751139i 0.999996 0.00278453i \(-0.000886345\pi\)
−0.656963 + 0.753923i \(0.728159\pi\)
\(762\) 0.125492 + 0.427386i 0.00454609 + 0.0154826i
\(763\) 35.9796 + 31.1765i 1.30255 + 1.12866i
\(764\) −11.4199 7.33910i −0.413156 0.265519i
\(765\) 11.4728 + 0.785318i 0.414800 + 0.0283932i
\(766\) −0.791534 5.50524i −0.0285993 0.198912i
\(767\) −17.8565 + 60.8137i −0.644761 + 2.19585i
\(768\) −4.20303 6.54004i −0.151664 0.235993i
\(769\) 4.58151 31.8651i 0.165214 1.14909i −0.723400 0.690429i \(-0.757422\pi\)
0.888614 0.458657i \(-0.151669\pi\)
\(770\) −2.99459 + 1.12736i −0.107918 + 0.0406272i
\(771\) 1.03859 2.27420i 0.0374040 0.0819033i
\(772\) −11.2871 1.62284i −0.406232 0.0584074i
\(773\) 1.79500 + 2.79308i