Properties

Label 115.2.j
Level $115$
Weight $2$
Character orbit 115.j
Rep. character $\chi_{115}(4,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $100$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 115.j (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(115, [\chi])\).

Total New Old
Modular forms 140 140 0
Cusp forms 100 100 0
Eisenstein series 40 40 0

Trace form

\( 100 q - 14 q^{4} - 9 q^{5} - 18 q^{6} - 12 q^{9} - 13 q^{10} - 26 q^{11} - 26 q^{14} - 10 q^{15} - 18 q^{16} - 14 q^{19} + 49 q^{20} - 22 q^{21} - 68 q^{24} + 21 q^{25} - 42 q^{26} - 24 q^{29} + 19 q^{30}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(115, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
115.2.j.a 115.j 115.j $100$ $0.918$ None 115.2.j.a \(0\) \(0\) \(-9\) \(0\) $\mathrm{SU}(2)[C_{22}]$