Properties

Label 115.2.b
Level $115$
Weight $2$
Character orbit 115.b
Rep. character $\chi_{115}(24,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 115.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(115, [\chi])\).

Total New Old
Modular forms 14 10 4
Cusp forms 10 10 0
Eisenstein series 4 0 4

Trace form

\( 10 q - 8 q^{4} - 2 q^{5} - 4 q^{6} - 10 q^{9} + 2 q^{10} + 4 q^{11} + 4 q^{14} + 10 q^{15} - 4 q^{16} - 8 q^{19} - 16 q^{20} + 24 q^{24} - 10 q^{25} + 20 q^{26} + 2 q^{29} + 14 q^{30} - 10 q^{31} - 8 q^{34}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(115, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
115.2.b.a 115.b 5.b $2$ $0.918$ \(\Q(\sqrt{-1}) \) None 115.2.b.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-2 i q^{3}-2 q^{4}+(i+2)q^{5}+\cdots\)
115.2.b.b 115.b 5.b $8$ $0.918$ 8.0.527896576.2 None 115.2.b.b \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{2}+(-\beta _{1}-\beta _{3}+\beta _{5})q^{3}+(-1+\cdots)q^{4}+\cdots\)