Properties

Label 1148.2.n.d
Level $1148$
Weight $2$
Character orbit 1148.n
Analytic conductor $9.167$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1148 = 2^{2} \cdot 7 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1148.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.16682615204\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q - 10q^{3} + 4q^{5} - 6q^{7} + 38q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q - 10q^{3} + 4q^{5} - 6q^{7} + 38q^{9} + 11q^{11} - 4q^{13} + 10q^{15} + 9q^{17} - 23q^{19} + 5q^{21} + 28q^{23} - 10q^{25} - 76q^{27} + 28q^{29} - 18q^{31} - 27q^{33} - q^{35} - 29q^{37} - 6q^{39} + 65q^{41} - 15q^{43} - 20q^{45} - 11q^{47} - 6q^{49} - 18q^{51} + 8q^{53} - 50q^{55} + 8q^{57} + 55q^{59} - 10q^{61} - 2q^{63} - 11q^{65} + 65q^{67} - 2q^{69} - 14q^{71} + 48q^{73} - 77q^{75} + 11q^{77} + 22q^{79} + 80q^{81} - 22q^{83} - 78q^{85} - 4q^{87} + 16q^{89} - 4q^{91} - 60q^{93} + 56q^{95} + 15q^{97} + 80q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
57.1 0 −3.15594 0 1.01403 + 0.736733i 0 0.309017 + 0.951057i 0 6.95994 0
57.2 0 −2.86083 0 −3.47370 2.52379i 0 0.309017 + 0.951057i 0 5.18432 0
57.3 0 −0.839141 0 3.00819 + 2.18558i 0 0.309017 + 0.951057i 0 −2.29584 0
57.4 0 1.14291 0 −1.88811 1.37180i 0 0.309017 + 0.951057i 0 −1.69375 0
57.5 0 1.35294 0 2.62263 + 1.90545i 0 0.309017 + 0.951057i 0 −1.16955 0
57.6 0 2.97808 0 0.835003 + 0.606666i 0 0.309017 + 0.951057i 0 5.86899 0
141.1 0 −3.15594 0 1.01403 0.736733i 0 0.309017 0.951057i 0 6.95994 0
141.2 0 −2.86083 0 −3.47370 + 2.52379i 0 0.309017 0.951057i 0 5.18432 0
141.3 0 −0.839141 0 3.00819 2.18558i 0 0.309017 0.951057i 0 −2.29584 0
141.4 0 1.14291 0 −1.88811 + 1.37180i 0 0.309017 0.951057i 0 −1.69375 0
141.5 0 1.35294 0 2.62263 1.90545i 0 0.309017 0.951057i 0 −1.16955 0
141.6 0 2.97808 0 0.835003 0.606666i 0 0.309017 0.951057i 0 5.86899 0
365.1 0 −3.33413 0 −0.141417 + 0.435238i 0 −0.809017 0.587785i 0 8.11640 0
365.2 0 −2.40864 0 1.08800 3.34852i 0 −0.809017 0.587785i 0 2.80153 0
365.3 0 −1.21617 0 0.00173847 0.00535046i 0 −0.809017 0.587785i 0 −1.52092 0
365.4 0 −0.0323142 0 −0.719662 + 2.21489i 0 −0.809017 0.587785i 0 −2.99896 0
365.5 0 1.51551 0 0.929786 2.86159i 0 −0.809017 0.587785i 0 −0.703221 0
365.6 0 1.85770 0 −1.27648 + 3.92860i 0 −0.809017 0.587785i 0 0.451065 0
953.1 0 −3.33413 0 −0.141417 0.435238i 0 −0.809017 + 0.587785i 0 8.11640 0
953.2 0 −2.40864 0 1.08800 + 3.34852i 0 −0.809017 + 0.587785i 0 2.80153 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 953.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1148.2.n.d 24
41.d even 5 1 inner 1148.2.n.d 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1148.2.n.d 24 1.a even 1 1 trivial
1148.2.n.d 24 41.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{12} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(1148, [\chi])\).