Newspace parameters
Level: | \( N \) | \(=\) | \( 1148 = 2^{2} \cdot 7 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1148.i (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.16682615204\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
165.1 | 0 | −1.62107 | + | 2.80777i | 0 | −0.748394 | − | 1.29626i | 0 | 2.53169 | + | 0.768468i | 0 | −3.75571 | − | 6.50509i | 0 | ||||||||||
165.2 | 0 | −1.45317 | + | 2.51697i | 0 | −0.253051 | − | 0.438298i | 0 | −2.53278 | − | 0.764863i | 0 | −2.72341 | − | 4.71709i | 0 | ||||||||||
165.3 | 0 | −1.36871 | + | 2.37067i | 0 | 0.431527 | + | 0.747427i | 0 | −2.57022 | + | 0.627666i | 0 | −2.24672 | − | 3.89144i | 0 | ||||||||||
165.4 | 0 | −1.23867 | + | 2.14545i | 0 | 1.74922 | + | 3.02973i | 0 | 1.19623 | − | 2.35988i | 0 | −1.56862 | − | 2.71694i | 0 | ||||||||||
165.5 | 0 | −1.05884 | + | 1.83397i | 0 | −1.96828 | − | 3.40916i | 0 | 1.39753 | − | 2.24653i | 0 | −0.742303 | − | 1.28571i | 0 | ||||||||||
165.6 | 0 | −0.370691 | + | 0.642056i | 0 | 1.24331 | + | 2.15348i | 0 | 0.670716 | + | 2.55932i | 0 | 1.22518 | + | 2.12207i | 0 | ||||||||||
165.7 | 0 | −0.224795 | + | 0.389356i | 0 | 0.393901 | + | 0.682257i | 0 | 1.75718 | + | 1.97796i | 0 | 1.39893 | + | 2.42303i | 0 | ||||||||||
165.8 | 0 | 0.257541 | − | 0.446074i | 0 | −1.09982 | − | 1.90494i | 0 | −2.48493 | + | 0.908374i | 0 | 1.36735 | + | 2.36831i | 0 | ||||||||||
165.9 | 0 | 0.637220 | − | 1.10370i | 0 | −2.18714 | − | 3.78824i | 0 | 1.89439 | + | 1.84696i | 0 | 0.687901 | + | 1.19148i | 0 | ||||||||||
165.10 | 0 | 0.702089 | − | 1.21605i | 0 | −1.80784 | − | 3.13127i | 0 | 0.606375 | − | 2.57533i | 0 | 0.514141 | + | 0.890519i | 0 | ||||||||||
165.11 | 0 | 0.864978 | − | 1.49819i | 0 | 0.0691753 | + | 0.119815i | 0 | 0.329472 | − | 2.62516i | 0 | 0.00362599 | + | 0.00628040i | 0 | ||||||||||
165.12 | 0 | 0.966125 | − | 1.67338i | 0 | 0.237733 | + | 0.411765i | 0 | −1.29492 | + | 2.30720i | 0 | −0.366793 | − | 0.635305i | 0 | ||||||||||
165.13 | 0 | 1.14590 | − | 1.98477i | 0 | 1.96151 | + | 3.39744i | 0 | −0.412096 | + | 2.61346i | 0 | −1.12620 | − | 1.95063i | 0 | ||||||||||
165.14 | 0 | 1.55023 | − | 2.68508i | 0 | 1.65684 | + | 2.86974i | 0 | −1.55882 | − | 2.13778i | 0 | −3.30645 | − | 5.72694i | 0 | ||||||||||
165.15 | 0 | 1.71186 | − | 2.96502i | 0 | −1.17870 | − | 2.04157i | 0 | 1.97017 | − | 1.76591i | 0 | −4.36091 | − | 7.55332i | 0 | ||||||||||
821.1 | 0 | −1.62107 | − | 2.80777i | 0 | −0.748394 | + | 1.29626i | 0 | 2.53169 | − | 0.768468i | 0 | −3.75571 | + | 6.50509i | 0 | ||||||||||
821.2 | 0 | −1.45317 | − | 2.51697i | 0 | −0.253051 | + | 0.438298i | 0 | −2.53278 | + | 0.764863i | 0 | −2.72341 | + | 4.71709i | 0 | ||||||||||
821.3 | 0 | −1.36871 | − | 2.37067i | 0 | 0.431527 | − | 0.747427i | 0 | −2.57022 | − | 0.627666i | 0 | −2.24672 | + | 3.89144i | 0 | ||||||||||
821.4 | 0 | −1.23867 | − | 2.14545i | 0 | 1.74922 | − | 3.02973i | 0 | 1.19623 | + | 2.35988i | 0 | −1.56862 | + | 2.71694i | 0 | ||||||||||
821.5 | 0 | −1.05884 | − | 1.83397i | 0 | −1.96828 | + | 3.40916i | 0 | 1.39753 | + | 2.24653i | 0 | −0.742303 | + | 1.28571i | 0 | ||||||||||
See all 30 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1148.2.i.e | ✓ | 30 |
7.c | even | 3 | 1 | inner | 1148.2.i.e | ✓ | 30 |
7.c | even | 3 | 1 | 8036.2.a.q | 15 | ||
7.d | odd | 6 | 1 | 8036.2.a.r | 15 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1148.2.i.e | ✓ | 30 | 1.a | even | 1 | 1 | trivial |
1148.2.i.e | ✓ | 30 | 7.c | even | 3 | 1 | inner |
8036.2.a.q | 15 | 7.c | even | 3 | 1 | ||
8036.2.a.r | 15 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1148, [\chi])\):
\(T_{3}^{30} - \cdots\) |
\(16\!\cdots\!66\)\( T_{11}^{14} + \)\(35\!\cdots\!24\)\( T_{11}^{13} + \)\(93\!\cdots\!08\)\( T_{11}^{12} + \)\(14\!\cdots\!70\)\( T_{11}^{11} + \)\(34\!\cdots\!42\)\( T_{11}^{10} + \)\(28\!\cdots\!75\)\( T_{11}^{9} + \)\(59\!\cdots\!84\)\( T_{11}^{8} - \)\(70\!\cdots\!83\)\( T_{11}^{7} + \)\(85\!\cdots\!27\)\( T_{11}^{6} - \)\(15\!\cdots\!25\)\( T_{11}^{5} + \)\(36\!\cdots\!63\)\( T_{11}^{4} - \)\(36\!\cdots\!28\)\( T_{11}^{3} + \)\(11\!\cdots\!07\)\( T_{11}^{2} - \)\(15\!\cdots\!02\)\( T_{11} + 220991189409 \)">\(T_{11}^{30} + \cdots\) |