Properties

Label 1148.2.i.c
Level $1148$
Weight $2$
Character orbit 1148.i
Analytic conductor $9.167$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1148 = 2^{2} \cdot 7 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1148.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.16682615204\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( 3 - 2 \zeta_{6} ) q^{7} + 2 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( 3 - 2 \zeta_{6} ) q^{7} + 2 \zeta_{6} q^{9} + ( -3 + 3 \zeta_{6} ) q^{11} + 2 q^{13} + q^{15} + ( -1 + \zeta_{6} ) q^{17} + 3 \zeta_{6} q^{19} + ( 1 - 3 \zeta_{6} ) q^{21} + 5 \zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} + 5 q^{27} -2 q^{29} + ( -5 + 5 \zeta_{6} ) q^{31} + 3 \zeta_{6} q^{33} + ( 2 + \zeta_{6} ) q^{35} -7 \zeta_{6} q^{37} + ( 2 - 2 \zeta_{6} ) q^{39} + q^{41} + 4 q^{43} + ( -2 + 2 \zeta_{6} ) q^{45} + 3 \zeta_{6} q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + \zeta_{6} q^{51} + ( 3 - 3 \zeta_{6} ) q^{53} -3 q^{55} + 3 q^{57} + ( -5 + 5 \zeta_{6} ) q^{59} -3 \zeta_{6} q^{61} + ( 4 + 2 \zeta_{6} ) q^{63} + 2 \zeta_{6} q^{65} + ( 13 - 13 \zeta_{6} ) q^{67} + 5 q^{69} + ( 1 - \zeta_{6} ) q^{73} -4 \zeta_{6} q^{75} + ( -3 + 9 \zeta_{6} ) q^{77} + 11 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 4 q^{83} - q^{85} + ( -2 + 2 \zeta_{6} ) q^{87} -5 \zeta_{6} q^{89} + ( 6 - 4 \zeta_{6} ) q^{91} + 5 \zeta_{6} q^{93} + ( -3 + 3 \zeta_{6} ) q^{95} + 2 q^{97} -6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} + q^{5} + 4q^{7} + 2q^{9} + O(q^{10}) \) \( 2q + q^{3} + q^{5} + 4q^{7} + 2q^{9} - 3q^{11} + 4q^{13} + 2q^{15} - q^{17} + 3q^{19} - q^{21} + 5q^{23} + 4q^{25} + 10q^{27} - 4q^{29} - 5q^{31} + 3q^{33} + 5q^{35} - 7q^{37} + 2q^{39} + 2q^{41} + 8q^{43} - 2q^{45} + 3q^{47} + 2q^{49} + q^{51} + 3q^{53} - 6q^{55} + 6q^{57} - 5q^{59} - 3q^{61} + 10q^{63} + 2q^{65} + 13q^{67} + 10q^{69} + q^{73} - 4q^{75} + 3q^{77} + 11q^{79} - q^{81} + 8q^{83} - 2q^{85} - 2q^{87} - 5q^{89} + 8q^{91} + 5q^{93} - 3q^{95} + 4q^{97} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1148\mathbb{Z}\right)^\times\).

\(n\) \(493\) \(575\) \(785\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 2.00000 1.73205i 0 1.00000 + 1.73205i 0
821.1 0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 2.00000 + 1.73205i 0 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1148.2.i.c 2
7.c even 3 1 inner 1148.2.i.c 2
7.c even 3 1 8036.2.a.b 1
7.d odd 6 1 8036.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1148.2.i.c 2 1.a even 1 1 trivial
1148.2.i.c 2 7.c even 3 1 inner
8036.2.a.b 1 7.c even 3 1
8036.2.a.f 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1148, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \)
\( T_{11}^{2} + 3 T_{11} + 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 - T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( 7 - 4 T + T^{2} \)
$11$ \( 9 + 3 T + T^{2} \)
$13$ \( ( -2 + T )^{2} \)
$17$ \( 1 + T + T^{2} \)
$19$ \( 9 - 3 T + T^{2} \)
$23$ \( 25 - 5 T + T^{2} \)
$29$ \( ( 2 + T )^{2} \)
$31$ \( 25 + 5 T + T^{2} \)
$37$ \( 49 + 7 T + T^{2} \)
$41$ \( ( -1 + T )^{2} \)
$43$ \( ( -4 + T )^{2} \)
$47$ \( 9 - 3 T + T^{2} \)
$53$ \( 9 - 3 T + T^{2} \)
$59$ \( 25 + 5 T + T^{2} \)
$61$ \( 9 + 3 T + T^{2} \)
$67$ \( 169 - 13 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 1 - T + T^{2} \)
$79$ \( 121 - 11 T + T^{2} \)
$83$ \( ( -4 + T )^{2} \)
$89$ \( 25 + 5 T + T^{2} \)
$97$ \( ( -2 + T )^{2} \)
show more
show less