Properties

Label 1148.2.d
Level $1148$
Weight $2$
Character orbit 1148.d
Rep. character $\chi_{1148}(1065,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $1$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1148 = 2^{2} \cdot 7 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1148.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 41 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1148, [\chi])\).

Total New Old
Modular forms 174 20 154
Cusp forms 162 20 142
Eisenstein series 12 0 12

Trace form

\( 20q + 4q^{5} - 20q^{9} + O(q^{10}) \) \( 20q + 4q^{5} - 20q^{9} + 4q^{21} + 8q^{31} + 20q^{37} + 4q^{39} - 16q^{41} + 20q^{43} - 4q^{45} - 20q^{49} + 52q^{51} - 36q^{57} + 20q^{59} - 4q^{61} - 12q^{73} + 8q^{77} + 20q^{81} - 48q^{83} + 44q^{87} - 4q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1148, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1148.2.d.a \(20\) \(9.167\) \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(0\) \(0\) \(4\) \(0\) \(q+\beta _{12}q^{3}+\beta _{2}q^{5}-\beta _{9}q^{7}+(-1-\beta _{7}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1148, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1148, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(82, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(164, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(287, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(574, [\chi])\)\(^{\oplus 2}\)