Properties

Label 1148.2.cc
Level $1148$
Weight $2$
Character orbit 1148.cc
Rep. character $\chi_{1148}(13,\cdot)$
Character field $\Q(\zeta_{40})$
Dimension $448$
Sturm bound $336$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1148 = 2^{2} \cdot 7 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1148.cc (of order \(40\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 287 \)
Character field: \(\Q(\zeta_{40})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1148, [\chi])\).

Total New Old
Modular forms 2784 448 2336
Cusp forms 2592 448 2144
Eisenstein series 192 0 192

Trace form

\( 448q + 16q^{9} + O(q^{10}) \) \( 448q + 16q^{9} + 24q^{15} + 4q^{21} + 8q^{29} - 40q^{35} + 72q^{37} - 8q^{43} - 16q^{49} + 72q^{51} - 112q^{57} - 8q^{63} - 56q^{65} + 16q^{67} - 32q^{71} - 84q^{77} - 8q^{79} + 16q^{85} - 76q^{91} + 32q^{93} - 48q^{95} + 16q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1148, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1148, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1148, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(287, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(574, [\chi])\)\(^{\oplus 2}\)