Properties

Label 1148.2.br
Level $1148$
Weight $2$
Character orbit 1148.br
Rep. character $\chi_{1148}(325,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $224$
Sturm bound $336$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1148 = 2^{2} \cdot 7 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1148.br (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 287 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1148, [\chi])\).

Total New Old
Modular forms 1392 224 1168
Cusp forms 1296 224 1072
Eisenstein series 96 0 96

Trace form

\( 224q - 8q^{9} + O(q^{10}) \) \( 224q - 8q^{9} + 24q^{15} + 36q^{17} - 24q^{19} - 8q^{21} + 32q^{29} + 60q^{33} + 24q^{37} + 16q^{43} + 24q^{47} + 48q^{49} + 24q^{51} - 24q^{53} - 112q^{57} - 92q^{63} + 76q^{65} + 16q^{67} - 80q^{71} - 36q^{73} - 228q^{75} + 32q^{77} + 4q^{79} + 16q^{85} + 60q^{87} - 48q^{89} + 48q^{91} - 16q^{93} - 48q^{95} + 208q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1148, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1148, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1148, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(287, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(574, [\chi])\)\(^{\oplus 2}\)