Properties

Label 1140.2.m
Level $1140$
Weight $2$
Character orbit 1140.m
Rep. character $\chi_{1140}(379,\cdot)$
Character field $\Q$
Dimension $120$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1140.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 380 \)
Character field: \(\Q\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1140, [\chi])\).

Total New Old
Modular forms 248 120 128
Cusp forms 232 120 112
Eisenstein series 16 0 16

Trace form

\( 120q - 4q^{4} - 4q^{6} - 120q^{9} + O(q^{10}) \) \( 120q - 4q^{4} - 4q^{6} - 120q^{9} + 4q^{16} - 8q^{20} + 4q^{24} - 40q^{26} + 4q^{36} - 56q^{44} + 136q^{49} + 4q^{54} - 32q^{61} - 52q^{64} + 24q^{66} - 32q^{74} - 28q^{76} + 24q^{80} + 120q^{81} - 40q^{85} - 44q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1140, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1140, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1140, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 2}\)