Properties

Label 1140.2.a.g
Level $1140$
Weight $2$
Character orbit 1140.a
Self dual yes
Analytic conductor $9.103$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1140,2,Mod(1,1140)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1140, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1140.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1140.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.10294583043\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + q^{5} + ( - \beta_{2} + 1) q^{7} + q^{9} + ( - \beta_{2} + \beta_1 + 2) q^{11} + (\beta_{2} + 1) q^{13} + q^{15} + (2 \beta_{2} - \beta_1 + 1) q^{17} - q^{19} + ( - \beta_{2} + 1) q^{21}+ \cdots + ( - \beta_{2} + \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 3 q^{5} + 4 q^{7} + 3 q^{9} + 6 q^{11} + 2 q^{13} + 3 q^{15} + 2 q^{17} - 3 q^{19} + 4 q^{21} + 6 q^{23} + 3 q^{25} + 3 q^{27} + 6 q^{33} + 4 q^{35} - 6 q^{37} + 2 q^{39} + 12 q^{41} - 8 q^{43}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.51414
−2.08613
0.571993
0 1.00000 0 1.00000 0 −1.32088 0 1.00000 0
1.2 0 1.00000 0 1.00000 0 0.648061 0 1.00000 0
1.3 0 1.00000 0 1.00000 0 4.67282 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1140.2.a.g 3
3.b odd 2 1 3420.2.a.m 3
4.b odd 2 1 4560.2.a.br 3
5.b even 2 1 5700.2.a.w 3
5.c odd 4 2 5700.2.f.q 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1140.2.a.g 3 1.a even 1 1 trivial
3420.2.a.m 3 3.b odd 2 1
4560.2.a.br 3 4.b odd 2 1
5700.2.a.w 3 5.b even 2 1
5700.2.f.q 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1140))\):

\( T_{7}^{3} - 4T_{7}^{2} - 4T_{7} + 4 \) Copy content Toggle raw display
\( T_{11}^{3} - 6T_{11}^{2} - 12T_{11} + 76 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 76 \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$29$ \( T^{3} - 24T - 36 \) Copy content Toggle raw display
$31$ \( T^{3} - 72T - 208 \) Copy content Toggle raw display
$37$ \( T^{3} + 6 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( T^{3} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$43$ \( T^{3} + 8 T^{2} + \cdots - 468 \) Copy content Toggle raw display
$47$ \( T^{3} - 6 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$53$ \( T^{3} - 8 T^{2} + \cdots + 1488 \) Copy content Toggle raw display
$59$ \( T^{3} + 4 T^{2} + \cdots - 864 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$67$ \( T^{3} + 8 T^{2} + \cdots - 768 \) Copy content Toggle raw display
$71$ \( T^{3} - 16 T^{2} + \cdots + 1312 \) Copy content Toggle raw display
$73$ \( T^{3} + 10 T^{2} + \cdots - 328 \) Copy content Toggle raw display
$79$ \( T^{3} + 16T^{2} - 384 \) Copy content Toggle raw display
$83$ \( T^{3} - 2 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$89$ \( T^{3} - 24T - 36 \) Copy content Toggle raw display
$97$ \( T^{3} + 10 T^{2} + \cdots + 12 \) Copy content Toggle raw display
show more
show less