Properties

Label 114.4.a.f
Level $114$
Weight $4$
Character orbit 114.a
Self dual yes
Analytic conductor $6.726$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [114,4,Mod(1,114)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(114, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("114.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 114.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,6,8,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.72621774065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{273}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 68 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{273})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 3 q^{3} + 4 q^{4} + ( - \beta + 6) q^{5} + 6 q^{6} + (\beta + 4) q^{7} + 8 q^{8} + 9 q^{9} + ( - 2 \beta + 12) q^{10} + (7 \beta - 4) q^{11} + 12 q^{12} + ( - 4 \beta + 10) q^{13} + (2 \beta + 8) q^{14}+ \cdots + (63 \beta - 36) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 11 q^{5} + 12 q^{6} + 9 q^{7} + 16 q^{8} + 18 q^{9} + 22 q^{10} - q^{11} + 24 q^{12} + 16 q^{13} + 18 q^{14} + 33 q^{15} + 32 q^{16} + 9 q^{17} + 36 q^{18} - 38 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.76136
−7.76136
2.00000 3.00000 4.00000 −2.76136 6.00000 12.7614 8.00000 9.00000 −5.52271
1.2 2.00000 3.00000 4.00000 13.7614 6.00000 −3.76136 8.00000 9.00000 27.5227
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 114.4.a.f 2
3.b odd 2 1 342.4.a.g 2
4.b odd 2 1 912.4.a.j 2
19.b odd 2 1 2166.4.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.4.a.f 2 1.a even 1 1 trivial
342.4.a.g 2 3.b odd 2 1
912.4.a.j 2 4.b odd 2 1
2166.4.a.l 2 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 11T_{5} - 38 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(114))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 11T - 38 \) Copy content Toggle raw display
$7$ \( T^{2} - 9T - 48 \) Copy content Toggle raw display
$11$ \( T^{2} + T - 3344 \) Copy content Toggle raw display
$13$ \( T^{2} - 16T - 1028 \) Copy content Toggle raw display
$17$ \( T^{2} - 9T - 594 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 4T - 1088 \) Copy content Toggle raw display
$29$ \( T^{2} + 20T - 4268 \) Copy content Toggle raw display
$31$ \( T^{2} + 238T - 31976 \) Copy content Toggle raw display
$37$ \( T^{2} + 262T + 10336 \) Copy content Toggle raw display
$41$ \( T^{2} + 122T - 116672 \) Copy content Toggle raw display
$43$ \( T^{2} + 427T - 4172 \) Copy content Toggle raw display
$47$ \( T^{2} - 125T - 122288 \) Copy content Toggle raw display
$53$ \( T^{2} - 140T - 34412 \) Copy content Toggle raw display
$59$ \( T^{2} - 96T - 211728 \) Copy content Toggle raw display
$61$ \( T^{2} + 551T + 74194 \) Copy content Toggle raw display
$67$ \( T^{2} + 912T - 6096 \) Copy content Toggle raw display
$71$ \( T^{2} - 704T - 155648 \) Copy content Toggle raw display
$73$ \( T^{2} + 321T + 14226 \) Copy content Toggle raw display
$79$ \( T^{2} + 512T - 672656 \) Copy content Toggle raw display
$83$ \( T^{2} - 1188 T - 128736 \) Copy content Toggle raw display
$89$ \( T^{2} - 1776 T + 787452 \) Copy content Toggle raw display
$97$ \( T^{2} - 1772 T + 780628 \) Copy content Toggle raw display
show more
show less