Properties

Label 114.3.d
Level $114$
Weight $3$
Character orbit 114.d
Rep. character $\chi_{114}(37,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 114.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(114, [\chi])\).

Total New Old
Modular forms 44 8 36
Cusp forms 36 8 28
Eisenstein series 8 0 8

Trace form

\( 8q - 16q^{4} + 4q^{5} - 12q^{7} - 24q^{9} + O(q^{10}) \) \( 8q - 16q^{4} + 4q^{5} - 12q^{7} - 24q^{9} + 4q^{11} + 32q^{16} + 4q^{17} - 36q^{19} - 8q^{20} - 56q^{23} + 140q^{25} - 96q^{26} + 24q^{28} - 48q^{30} + 236q^{35} + 48q^{36} + 48q^{38} - 96q^{39} + 48q^{42} + 100q^{43} - 8q^{44} - 12q^{45} - 188q^{47} - 36q^{49} + 28q^{55} + 36q^{57} + 168q^{58} - 180q^{61} - 96q^{62} + 36q^{63} - 64q^{64} + 24q^{66} - 8q^{68} - 356q^{73} - 192q^{74} + 72q^{76} + 68q^{77} + 16q^{80} + 72q^{81} + 72q^{82} + 136q^{83} + 148q^{85} - 144q^{87} + 112q^{92} + 168q^{93} - 140q^{95} - 12q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(114, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
114.3.d.a \(8\) \(3.106\) 8.0.\(\cdots\).3 None \(0\) \(0\) \(4\) \(-12\) \(q+\beta _{5}q^{2}+\beta _{4}q^{3}-2q^{4}+(-\beta _{1}-\beta _{6}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(114, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(114, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)