Properties

Label 114.2.l.b.71.3
Level $114$
Weight $2$
Character 114.71
Analytic conductor $0.910$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.l (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.910294583043\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Defining polynomial: \(x^{18} - x^{15} - 18 x^{14} + 36 x^{13} + 10 x^{12} + 18 x^{11} + 90 x^{10} - 567 x^{9} + 270 x^{8} + 162 x^{7} + 270 x^{6} + 2916 x^{5} - 4374 x^{4} - 729 x^{3} + 19683\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 71.3
Root \(1.69944 - 0.334495i\) of defining polynomial
Character \(\chi\) \(=\) 114.71
Dual form 114.2.l.b.53.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(1.08684 - 1.34862i) q^{3} +(0.766044 - 0.642788i) q^{4} +(0.343148 - 0.408948i) q^{5} +(-0.560041 + 1.63901i) q^{6} +(-0.716507 - 1.24103i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.637553 - 2.93147i) q^{9} +O(q^{10})\) \(q+(-0.939693 + 0.342020i) q^{2} +(1.08684 - 1.34862i) q^{3} +(0.766044 - 0.642788i) q^{4} +(0.343148 - 0.408948i) q^{5} +(-0.560041 + 1.63901i) q^{6} +(-0.716507 - 1.24103i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.637553 - 2.93147i) q^{9} +(-0.182585 + 0.501649i) q^{10} +(1.25645 + 0.725411i) q^{11} +(-0.0343077 - 1.73171i) q^{12} +(2.94737 - 0.519701i) q^{13} +(1.09775 + 0.921124i) q^{14} +(-0.178568 - 0.907238i) q^{15} +(0.173648 - 0.984808i) q^{16} +(1.89590 + 5.20894i) q^{17} +(1.60173 + 2.53663i) q^{18} +(-4.35653 + 0.143752i) q^{19} -0.533844i q^{20} +(-2.45240 - 0.382503i) q^{21} +(-1.42878 - 0.251933i) q^{22} +(0.396438 + 0.472456i) q^{23} +(0.624519 + 1.61554i) q^{24} +(0.818753 + 4.64338i) q^{25} +(-2.59188 + 1.49642i) q^{26} +(-4.64636 - 2.32623i) q^{27} +(-1.34659 - 0.490120i) q^{28} +(-4.97822 - 1.81193i) q^{29} +(0.478093 + 0.791451i) q^{30} +(-4.28601 + 2.47453i) q^{31} +(0.173648 + 0.984808i) q^{32} +(2.34386 - 0.906066i) q^{33} +(-3.56312 - 4.24636i) q^{34} +(-0.753384 - 0.132842i) q^{35} +(-2.37271 - 1.83583i) q^{36} +6.41883i q^{37} +(4.04463 - 1.62510i) q^{38} +(2.50245 - 4.53972i) q^{39} +(0.182585 + 0.501649i) q^{40} +(-1.37347 + 7.78933i) q^{41} +(2.43533 - 0.479336i) q^{42} +(4.88757 + 4.10116i) q^{43} +(1.42878 - 0.251933i) q^{44} +(-1.41759 - 0.745203i) q^{45} +(-0.534119 - 0.308374i) q^{46} +(4.37381 - 12.0169i) q^{47} +(-1.13940 - 1.30452i) q^{48} +(2.47323 - 4.28377i) q^{49} +(-2.35751 - 4.08332i) q^{50} +(9.08542 + 3.10444i) q^{51} +(1.92376 - 2.29265i) q^{52} +(-1.41439 + 1.18682i) q^{53} +(5.16177 + 0.596790i) q^{54} +(0.727804 - 0.264899i) q^{55} +1.43301 q^{56} +(-4.54099 + 6.03154i) q^{57} +5.29771 q^{58} +(-1.75650 + 0.639313i) q^{59} +(-0.719953 - 0.580203i) q^{60} +(9.02625 - 7.57392i) q^{61} +(3.18119 - 3.79120i) q^{62} +(-3.18122 + 2.89164i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(0.798855 - 1.38366i) q^{65} +(-1.89262 + 1.65307i) q^{66} +(3.17216 - 8.71543i) q^{67} +(4.80058 + 2.77162i) q^{68} +(1.06803 - 0.0211592i) q^{69} +(0.753384 - 0.132842i) q^{70} +(-9.59384 - 8.05019i) q^{71} +(2.85751 + 0.913599i) q^{72} +(-2.80621 + 15.9148i) q^{73} +(-2.19537 - 6.03173i) q^{74} +(7.15201 + 3.94243i) q^{75} +(-3.24489 + 2.91044i) q^{76} -2.07905i q^{77} +(-0.798855 + 5.12183i) q^{78} +(-7.87896 - 1.38927i) q^{79} +(-0.343148 - 0.408948i) q^{80} +(-8.18705 + 3.73794i) q^{81} +(-1.37347 - 7.78933i) q^{82} +(4.29627 - 2.48045i) q^{83} +(-2.12452 + 1.28336i) q^{84} +(2.78076 + 1.01211i) q^{85} +(-5.99550 - 2.18218i) q^{86} +(-7.85414 + 4.74446i) q^{87} +(-1.25645 + 0.725411i) q^{88} +(-0.832120 - 4.71919i) q^{89} +(1.58698 + 0.215416i) q^{90} +(-2.75678 - 3.28540i) q^{91} +(0.607378 + 0.107097i) q^{92} +(-1.32101 + 8.46962i) q^{93} +12.7882i q^{94} +(-1.43615 + 1.83092i) q^{95} +(1.51686 + 0.836144i) q^{96} +(-2.83601 - 7.79188i) q^{97} +(-0.858945 + 4.87132i) q^{98} +(1.32547 - 4.14573i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18q + 3q^{3} - 9q^{8} - 3q^{9} + O(q^{10}) \) \( 18q + 3q^{3} - 9q^{8} - 3q^{9} - 12q^{13} - 12q^{14} + 18q^{15} + 6q^{17} - 6q^{19} - 24q^{22} + 3q^{24} - 18q^{25} + 18q^{26} - 6q^{27} + 6q^{28} - 6q^{29} - 24q^{33} - 6q^{34} - 24q^{35} + 3q^{38} + 6q^{39} + 3q^{41} - 6q^{43} + 24q^{44} - 54q^{45} + 18q^{46} + 30q^{47} + 21q^{49} + 3q^{50} + 42q^{51} - 6q^{52} - 60q^{53} + 54q^{54} + 30q^{55} + 12q^{57} + 12q^{58} + 3q^{59} + 24q^{60} + 54q^{61} + 6q^{62} - 18q^{63} - 9q^{64} + 24q^{65} - 27q^{66} - 15q^{67} - 27q^{68} + 30q^{69} + 24q^{70} + 36q^{71} + 6q^{72} - 42q^{73} + 6q^{74} - 24q^{78} - 6q^{79} - 3q^{81} + 3q^{82} + 36q^{83} - 30q^{84} - 6q^{86} - 60q^{89} - 18q^{91} - 66q^{93} + 6q^{95} + 9q^{97} + 12q^{98} - 102q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.664463 + 0.241845i
\(3\) 1.08684 1.34862i 0.627488 0.778626i
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) 0.343148 0.408948i 0.153461 0.182887i −0.683837 0.729635i \(-0.739690\pi\)
0.837297 + 0.546748i \(0.184134\pi\)
\(6\) −0.560041 + 1.63901i −0.228636 + 0.669123i
\(7\) −0.716507 1.24103i −0.270814 0.469064i 0.698256 0.715848i \(-0.253960\pi\)
−0.969071 + 0.246784i \(0.920626\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) −0.637553 2.93147i −0.212518 0.977157i
\(10\) −0.182585 + 0.501649i −0.0577386 + 0.158635i
\(11\) 1.25645 + 0.725411i 0.378834 + 0.218720i 0.677311 0.735697i \(-0.263145\pi\)
−0.298477 + 0.954417i \(0.596479\pi\)
\(12\) −0.0343077 1.73171i −0.00990379 0.499902i
\(13\) 2.94737 0.519701i 0.817454 0.144139i 0.250741 0.968054i \(-0.419326\pi\)
0.566713 + 0.823915i \(0.308215\pi\)
\(14\) 1.09775 + 0.921124i 0.293387 + 0.246181i
\(15\) −0.178568 0.907238i −0.0461061 0.234248i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) 1.89590 + 5.20894i 0.459823 + 1.26335i 0.925618 + 0.378460i \(0.123546\pi\)
−0.465795 + 0.884893i \(0.654232\pi\)
\(18\) 1.60173 + 2.53663i 0.377530 + 0.597889i
\(19\) −4.35653 + 0.143752i −0.999456 + 0.0329790i
\(20\) 0.533844i 0.119371i
\(21\) −2.45240 0.382503i −0.535158 0.0834690i
\(22\) −1.42878 0.251933i −0.304617 0.0537122i
\(23\) 0.396438 + 0.472456i 0.0826630 + 0.0985139i 0.805791 0.592200i \(-0.201741\pi\)
−0.723128 + 0.690714i \(0.757296\pi\)
\(24\) 0.624519 + 1.61554i 0.127479 + 0.329771i
\(25\) 0.818753 + 4.64338i 0.163751 + 0.928676i
\(26\) −2.59188 + 1.49642i −0.508309 + 0.293472i
\(27\) −4.64636 2.32623i −0.894192 0.447683i
\(28\) −1.34659 0.490120i −0.254482 0.0926240i
\(29\) −4.97822 1.81193i −0.924433 0.336466i −0.164432 0.986388i \(-0.552579\pi\)
−0.760001 + 0.649922i \(0.774801\pi\)
\(30\) 0.478093 + 0.791451i 0.0872874 + 0.144499i
\(31\) −4.28601 + 2.47453i −0.769790 + 0.444439i −0.832800 0.553574i \(-0.813263\pi\)
0.0630096 + 0.998013i \(0.479930\pi\)
\(32\) 0.173648 + 0.984808i 0.0306970 + 0.174091i
\(33\) 2.34386 0.906066i 0.408014 0.157726i
\(34\) −3.56312 4.24636i −0.611071 0.728245i
\(35\) −0.753384 0.132842i −0.127345 0.0224544i
\(36\) −2.37271 1.83583i −0.395451 0.305971i
\(37\) 6.41883i 1.05525i 0.849478 + 0.527625i \(0.176917\pi\)
−0.849478 + 0.527625i \(0.823083\pi\)
\(38\) 4.04463 1.62510i 0.656126 0.263627i
\(39\) 2.50245 4.53972i 0.400712 0.726937i
\(40\) 0.182585 + 0.501649i 0.0288693 + 0.0793177i
\(41\) −1.37347 + 7.78933i −0.214500 + 1.21649i 0.667273 + 0.744814i \(0.267462\pi\)
−0.881772 + 0.471675i \(0.843650\pi\)
\(42\) 2.43533 0.479336i 0.375780 0.0739632i
\(43\) 4.88757 + 4.10116i 0.745348 + 0.625421i 0.934268 0.356571i \(-0.116054\pi\)
−0.188920 + 0.981992i \(0.560499\pi\)
\(44\) 1.42878 0.251933i 0.215397 0.0379803i
\(45\) −1.41759 0.745203i −0.211323 0.111088i
\(46\) −0.534119 0.308374i −0.0787516 0.0454672i
\(47\) 4.37381 12.0169i 0.637985 1.75285i −0.0199780 0.999800i \(-0.506360\pi\)
0.657963 0.753050i \(-0.271418\pi\)
\(48\) −1.13940 1.30452i −0.164459 0.188291i
\(49\) 2.47323 4.28377i 0.353319 0.611967i
\(50\) −2.35751 4.08332i −0.333402 0.577469i
\(51\) 9.08542 + 3.10444i 1.27221 + 0.434709i
\(52\) 1.92376 2.29265i 0.266778 0.317933i
\(53\) −1.41439 + 1.18682i −0.194282 + 0.163022i −0.734739 0.678349i \(-0.762696\pi\)
0.540458 + 0.841371i \(0.318251\pi\)
\(54\) 5.16177 + 0.596790i 0.702428 + 0.0812128i
\(55\) 0.727804 0.264899i 0.0981370 0.0357190i
\(56\) 1.43301 0.191495
\(57\) −4.54099 + 6.03154i −0.601468 + 0.798897i
\(58\) 5.29771 0.695624
\(59\) −1.75650 + 0.639313i −0.228676 + 0.0832314i −0.453817 0.891095i \(-0.649938\pi\)
0.225141 + 0.974326i \(0.427716\pi\)
\(60\) −0.719953 0.580203i −0.0929455 0.0749039i
\(61\) 9.02625 7.57392i 1.15569 0.969742i 0.155856 0.987780i \(-0.450186\pi\)
0.999837 + 0.0180382i \(0.00574206\pi\)
\(62\) 3.18119 3.79120i 0.404012 0.481483i
\(63\) −3.18122 + 2.89164i −0.400797 + 0.364313i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 0.798855 1.38366i 0.0990857 0.171622i
\(66\) −1.89262 + 1.65307i −0.232965 + 0.203479i
\(67\) 3.17216 8.71543i 0.387541 1.06476i −0.580564 0.814215i \(-0.697168\pi\)
0.968105 0.250545i \(-0.0806099\pi\)
\(68\) 4.80058 + 2.77162i 0.582156 + 0.336108i
\(69\) 1.06803 0.0211592i 0.128576 0.00254727i
\(70\) 0.753384 0.132842i 0.0900466 0.0158776i
\(71\) −9.59384 8.05019i −1.13858 0.955382i −0.139188 0.990266i \(-0.544449\pi\)
−0.999391 + 0.0348843i \(0.988894\pi\)
\(72\) 2.85751 + 0.913599i 0.336760 + 0.107669i
\(73\) −2.80621 + 15.9148i −0.328442 + 1.86269i 0.155852 + 0.987780i \(0.450188\pi\)
−0.484294 + 0.874905i \(0.660923\pi\)
\(74\) −2.19537 6.03173i −0.255207 0.701174i
\(75\) 7.15201 + 3.94243i 0.825843 + 0.455232i
\(76\) −3.24489 + 2.91044i −0.372215 + 0.333851i
\(77\) 2.07905i 0.236930i
\(78\) −0.798855 + 5.12183i −0.0904525 + 0.579933i
\(79\) −7.87896 1.38927i −0.886452 0.156305i −0.288159 0.957583i \(-0.593043\pi\)
−0.598293 + 0.801277i \(0.704154\pi\)
\(80\) −0.343148 0.408948i −0.0383651 0.0457218i
\(81\) −8.18705 + 3.73794i −0.909673 + 0.415326i
\(82\) −1.37347 7.78933i −0.151674 0.860187i
\(83\) 4.29627 2.48045i 0.471577 0.272265i −0.245323 0.969442i \(-0.578894\pi\)
0.716900 + 0.697176i \(0.245561\pi\)
\(84\) −2.12452 + 1.28336i −0.231804 + 0.140026i
\(85\) 2.78076 + 1.01211i 0.301616 + 0.109779i
\(86\) −5.99550 2.18218i −0.646511 0.235311i
\(87\) −7.85414 + 4.74446i −0.842052 + 0.508659i
\(88\) −1.25645 + 0.725411i −0.133938 + 0.0773291i
\(89\) −0.832120 4.71919i −0.0882046 0.500233i −0.996619 0.0821621i \(-0.973817\pi\)
0.908414 0.418071i \(-0.137294\pi\)
\(90\) 1.58698 + 0.215416i 0.167282 + 0.0227068i
\(91\) −2.75678 3.28540i −0.288989 0.344403i
\(92\) 0.607378 + 0.107097i 0.0633235 + 0.0111656i
\(93\) −1.32101 + 8.46962i −0.136983 + 0.878259i
\(94\) 12.7882i 1.31900i
\(95\) −1.43615 + 1.83092i −0.147346 + 0.187849i
\(96\) 1.51686 + 0.836144i 0.154814 + 0.0853386i
\(97\) −2.83601 7.79188i −0.287954 0.791146i −0.996352 0.0853335i \(-0.972804\pi\)
0.708399 0.705812i \(-0.249418\pi\)
\(98\) −0.858945 + 4.87132i −0.0867666 + 0.492078i
\(99\) 1.32547 4.14573i 0.133215 0.416662i
\(100\) 3.61191 + 3.03075i 0.361191 + 0.303075i
\(101\) 3.10192 0.546953i 0.308653 0.0544238i −0.0171763 0.999852i \(-0.505468\pi\)
0.325829 + 0.945429i \(0.394357\pi\)
\(102\) −9.59928 + 0.190176i −0.950470 + 0.0188302i
\(103\) −8.85438 5.11208i −0.872448 0.503708i −0.00428731 0.999991i \(-0.501365\pi\)
−0.868161 + 0.496282i \(0.834698\pi\)
\(104\) −1.02361 + 2.81235i −0.100373 + 0.275774i
\(105\) −0.997962 + 0.871651i −0.0973911 + 0.0850644i
\(106\) 0.923180 1.59899i 0.0896672 0.155308i
\(107\) 5.80970 + 10.0627i 0.561645 + 0.972798i 0.997353 + 0.0727101i \(0.0231648\pi\)
−0.435708 + 0.900088i \(0.643502\pi\)
\(108\) −5.05459 + 1.20463i −0.486378 + 0.115916i
\(109\) −0.0205152 + 0.0244490i −0.00196500 + 0.00234179i −0.767026 0.641616i \(-0.778264\pi\)
0.765061 + 0.643958i \(0.222709\pi\)
\(110\) −0.593311 + 0.497847i −0.0565700 + 0.0474678i
\(111\) 8.65657 + 6.97625i 0.821645 + 0.662156i
\(112\) −1.34659 + 0.490120i −0.127241 + 0.0463120i
\(113\) 10.3475 0.973413 0.486706 0.873566i \(-0.338198\pi\)
0.486706 + 0.873566i \(0.338198\pi\)
\(114\) 2.20422 7.22090i 0.206445 0.676299i
\(115\) 0.329247 0.0307024
\(116\) −4.97822 + 1.81193i −0.462216 + 0.168233i
\(117\) −3.40259 8.30880i −0.314570 0.768149i
\(118\) 1.43191 1.20152i 0.131818 0.110608i
\(119\) 5.10601 6.08510i 0.468067 0.557820i
\(120\) 0.874975 + 0.298975i 0.0798740 + 0.0272925i
\(121\) −4.44756 7.70340i −0.404323 0.700309i
\(122\) −5.89147 + 10.2043i −0.533388 + 0.923856i
\(123\) 9.01210 + 10.3180i 0.812594 + 0.930347i
\(124\) −1.69268 + 4.65059i −0.152007 + 0.417636i
\(125\) 4.49147 + 2.59315i 0.401729 + 0.231938i
\(126\) 2.00037 3.80530i 0.178207 0.339003i
\(127\) −0.772141 + 0.136149i −0.0685165 + 0.0120813i −0.207801 0.978171i \(-0.566631\pi\)
0.139285 + 0.990252i \(0.455520\pi\)
\(128\) 0.766044 + 0.642788i 0.0677094 + 0.0568149i
\(129\) 10.8429 2.13417i 0.954666 0.187903i
\(130\) −0.277439 + 1.57344i −0.0243330 + 0.138000i
\(131\) 3.93973 + 10.8243i 0.344216 + 0.945726i 0.984157 + 0.177301i \(0.0567367\pi\)
−0.639941 + 0.768424i \(0.721041\pi\)
\(132\) 1.21310 2.20069i 0.105586 0.191546i
\(133\) 3.29988 + 5.30357i 0.286136 + 0.459878i
\(134\) 9.27477i 0.801218i
\(135\) −2.54570 + 1.10188i −0.219099 + 0.0948347i
\(136\) −5.45902 0.962573i −0.468107 0.0825399i
\(137\) −8.70595 10.3754i −0.743800 0.886426i 0.252909 0.967490i \(-0.418613\pi\)
−0.996709 + 0.0810638i \(0.974168\pi\)
\(138\) −0.996382 + 0.385171i −0.0848177 + 0.0327879i
\(139\) −1.25656 7.12628i −0.106580 0.604444i −0.990578 0.136953i \(-0.956269\pi\)
0.883998 0.467491i \(-0.154842\pi\)
\(140\) −0.662515 + 0.382503i −0.0559927 + 0.0323274i
\(141\) −11.4526 18.9591i −0.964487 1.59664i
\(142\) 11.7686 + 4.28342i 0.987598 + 0.359456i
\(143\) 4.08022 + 1.48508i 0.341205 + 0.124188i
\(144\) −2.99765 + 0.118822i −0.249804 + 0.00990185i
\(145\) −2.44925 + 1.41408i −0.203399 + 0.117433i
\(146\) −2.80621 15.9148i −0.232243 1.31712i
\(147\) −3.08916 7.99123i −0.254790 0.659105i
\(148\) 4.12595 + 4.91711i 0.339151 + 0.404184i
\(149\) −19.4195 3.42419i −1.59091 0.280520i −0.693079 0.720861i \(-0.743746\pi\)
−0.897831 + 0.440341i \(0.854858\pi\)
\(150\) −8.06908 1.25854i −0.658838 0.102759i
\(151\) 4.23079i 0.344297i −0.985071 0.172148i \(-0.944929\pi\)
0.985071 0.172148i \(-0.0550709\pi\)
\(152\) 2.05377 3.84474i 0.166583 0.311850i
\(153\) 14.0611 8.87874i 1.13677 0.717804i
\(154\) 0.711077 + 1.95367i 0.0573002 + 0.157431i
\(155\) −0.458783 + 2.60189i −0.0368503 + 0.208989i
\(156\) −1.00109 5.08617i −0.0801513 0.407219i
\(157\) 7.78482 + 6.53224i 0.621296 + 0.521330i 0.898211 0.439565i \(-0.144867\pi\)
−0.276914 + 0.960895i \(0.589312\pi\)
\(158\) 7.87896 1.38927i 0.626817 0.110525i
\(159\) 0.0633444 + 3.19736i 0.00502354 + 0.253567i
\(160\) 0.462322 + 0.266922i 0.0365498 + 0.0211020i
\(161\) 0.302280 0.830508i 0.0238230 0.0654532i
\(162\) 6.41486 6.31265i 0.503999 0.495968i
\(163\) −5.20216 + 9.01041i −0.407465 + 0.705750i −0.994605 0.103735i \(-0.966920\pi\)
0.587140 + 0.809485i \(0.300254\pi\)
\(164\) 3.95475 + 6.84982i 0.308814 + 0.534881i
\(165\) 0.433759 1.26943i 0.0337681 0.0988253i
\(166\) −3.18881 + 3.80028i −0.247500 + 0.294959i
\(167\) −18.2265 + 15.2939i −1.41041 + 1.18347i −0.454162 + 0.890919i \(0.650061\pi\)
−0.956249 + 0.292555i \(0.905494\pi\)
\(168\) 1.55746 1.93259i 0.120161 0.149103i
\(169\) −3.79909 + 1.38276i −0.292238 + 0.106366i
\(170\) −2.95922 −0.226962
\(171\) 3.19892 + 12.6794i 0.244628 + 0.969617i
\(172\) 6.38027 0.486491
\(173\) 23.5435 8.56912i 1.78998 0.651498i 0.790752 0.612137i \(-0.209690\pi\)
0.999225 0.0393612i \(-0.0125323\pi\)
\(174\) 5.75777 7.14460i 0.436496 0.541631i
\(175\) 5.17592 4.34311i 0.391263 0.328308i
\(176\) 0.932570 1.11139i 0.0702951 0.0837745i
\(177\) −1.04684 + 3.06368i −0.0786856 + 0.230280i
\(178\) 2.39599 + 4.14998i 0.179587 + 0.311054i
\(179\) −7.77173 + 13.4610i −0.580886 + 1.00612i 0.414488 + 0.910055i \(0.363961\pi\)
−0.995375 + 0.0960699i \(0.969373\pi\)
\(180\) −1.56495 + 0.340354i −0.116644 + 0.0253685i
\(181\) 7.17064 19.7012i 0.532990 1.46438i −0.322506 0.946567i \(-0.604525\pi\)
0.855496 0.517810i \(-0.173252\pi\)
\(182\) 3.71420 + 2.14439i 0.275315 + 0.158953i
\(183\) −0.404246 20.4046i −0.0298827 1.50835i
\(184\) −0.607378 + 0.107097i −0.0447765 + 0.00789530i
\(185\) 2.62497 + 2.20261i 0.192992 + 0.161939i
\(186\) −1.65544 8.41065i −0.121382 0.616699i
\(187\) −1.39652 + 7.92007i −0.102124 + 0.579173i
\(188\) −4.37381 12.0169i −0.318993 0.876425i
\(189\) 0.442240 + 7.43302i 0.0321682 + 0.540673i
\(190\) 0.723325 2.21170i 0.0524755 0.160453i
\(191\) 1.59398i 0.115336i −0.998336 0.0576682i \(-0.981633\pi\)
0.998336 0.0576682i \(-0.0183665\pi\)
\(192\) −1.71136 0.266922i −0.123507 0.0192634i
\(193\) 4.28991 + 0.756427i 0.308795 + 0.0544488i 0.325898 0.945405i \(-0.394333\pi\)
−0.0171035 + 0.999854i \(0.505444\pi\)
\(194\) 5.32996 + 6.35200i 0.382669 + 0.456047i
\(195\) −0.997799 2.58117i −0.0714539 0.184841i
\(196\) −0.858945 4.87132i −0.0613532 0.347951i
\(197\) −5.69700 + 3.28916i −0.405894 + 0.234343i −0.689024 0.724738i \(-0.741961\pi\)
0.283130 + 0.959082i \(0.408627\pi\)
\(198\) 0.172390 + 4.34905i 0.0122512 + 0.309074i
\(199\) 10.2412 + 3.72750i 0.725981 + 0.264235i 0.678463 0.734635i \(-0.262647\pi\)
0.0475182 + 0.998870i \(0.484869\pi\)
\(200\) −4.43066 1.61263i −0.313295 0.114030i
\(201\) −8.30618 13.7503i −0.585873 0.969873i
\(202\) −2.72779 + 1.57489i −0.191926 + 0.110809i
\(203\) 1.31829 + 7.47637i 0.0925255 + 0.524738i
\(204\) 8.95533 3.46185i 0.626998 0.242378i
\(205\) 2.71413 + 3.23457i 0.189563 + 0.225912i
\(206\) 10.0688 + 1.77541i 0.701529 + 0.123698i
\(207\) 1.13224 1.46336i 0.0786962 0.101711i
\(208\) 2.99284i 0.207516i
\(209\) −5.57803 2.97966i −0.385841 0.206107i
\(210\) 0.639655 1.16041i 0.0441404 0.0800757i
\(211\) −2.58901 7.11324i −0.178235 0.489695i 0.818116 0.575054i \(-0.195019\pi\)
−0.996350 + 0.0853581i \(0.972797\pi\)
\(212\) −0.320617 + 1.81831i −0.0220201 + 0.124882i
\(213\) −21.2836 + 4.18917i −1.45833 + 0.287037i
\(214\) −8.90098 7.46881i −0.608459 0.510558i
\(215\) 3.35432 0.591458i 0.228763 0.0403371i
\(216\) 4.33775 2.86075i 0.295147 0.194650i
\(217\) 6.14192 + 3.54604i 0.416940 + 0.240721i
\(218\) 0.0109159 0.0299912i 0.000739318 0.00203126i
\(219\) 18.4131 + 21.0814i 1.24424 + 1.42455i
\(220\) 0.387256 0.670747i 0.0261088 0.0452218i
\(221\) 8.29501 + 14.3674i 0.557983 + 0.966454i
\(222\) −10.5205 3.59481i −0.706092 0.241268i
\(223\) −7.40150 + 8.82076i −0.495641 + 0.590682i −0.954643 0.297753i \(-0.903763\pi\)
0.459002 + 0.888435i \(0.348207\pi\)
\(224\) 1.09775 0.921124i 0.0733467 0.0615452i
\(225\) 13.0899 5.36055i 0.872662 0.357370i
\(226\) −9.72349 + 3.53906i −0.646797 + 0.235415i
\(227\) 1.54291 0.102407 0.0512033 0.998688i \(-0.483694\pi\)
0.0512033 + 0.998688i \(0.483694\pi\)
\(228\) 0.398399 + 7.53932i 0.0263846 + 0.499303i
\(229\) −8.17334 −0.540110 −0.270055 0.962845i \(-0.587042\pi\)
−0.270055 + 0.962845i \(0.587042\pi\)
\(230\) −0.309391 + 0.112609i −0.0204006 + 0.00742522i
\(231\) −2.80385 2.25960i −0.184480 0.148671i
\(232\) 4.05828 3.40531i 0.266439 0.223569i
\(233\) 5.39612 6.43084i 0.353511 0.421298i −0.559757 0.828657i \(-0.689106\pi\)
0.913268 + 0.407358i \(0.133550\pi\)
\(234\) 6.03917 + 6.64396i 0.394793 + 0.434329i
\(235\) −3.41344 5.91225i −0.222668 0.385673i
\(236\) −0.934613 + 1.61880i −0.0608381 + 0.105375i
\(237\) −10.4368 + 9.11581i −0.677942 + 0.592135i
\(238\) −2.71685 + 7.46448i −0.176107 + 0.483851i
\(239\) −7.60840 4.39271i −0.492147 0.284141i 0.233318 0.972401i \(-0.425042\pi\)
−0.725465 + 0.688260i \(0.758375\pi\)
\(240\) −0.924463 + 0.0183150i −0.0596739 + 0.00118223i
\(241\) −13.2349 + 2.33367i −0.852536 + 0.150325i −0.582806 0.812611i \(-0.698045\pi\)
−0.269730 + 0.962936i \(0.586934\pi\)
\(242\) 6.81405 + 5.71767i 0.438024 + 0.367546i
\(243\) −3.85697 + 15.1038i −0.247425 + 0.968907i
\(244\) 2.04609 11.6039i 0.130987 0.742865i
\(245\) −0.903153 2.48139i −0.0577003 0.158530i
\(246\) −11.9976 6.61347i −0.764938 0.421660i
\(247\) −12.7656 + 2.68778i −0.812256 + 0.171020i
\(248\) 4.94906i 0.314265i
\(249\) 1.32418 8.48990i 0.0839162 0.538026i
\(250\) −5.10751 0.900591i −0.323027 0.0569584i
\(251\) 5.05003 + 6.01839i 0.318755 + 0.379877i 0.901501 0.432777i \(-0.142466\pi\)
−0.582746 + 0.812654i \(0.698022\pi\)
\(252\) −0.578248 + 4.25998i −0.0364262 + 0.268353i
\(253\) 0.155379 + 0.881197i 0.00976858 + 0.0554004i
\(254\) 0.679010 0.392026i 0.0426049 0.0245979i
\(255\) 4.38720 2.65018i 0.274737 0.165961i
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) −11.5445 4.20184i −0.720123 0.262103i −0.0441451 0.999025i \(-0.514056\pi\)
−0.675978 + 0.736922i \(0.736279\pi\)
\(258\) −9.45909 + 5.71396i −0.588897 + 0.355736i
\(259\) 7.96595 4.59914i 0.494980 0.285777i
\(260\) −0.277439 1.57344i −0.0172061 0.0975804i
\(261\) −2.13773 + 15.7487i −0.132322 + 0.974821i
\(262\) −7.40427 8.82407i −0.457438 0.545153i
\(263\) −23.4707 4.13852i −1.44727 0.255192i −0.605849 0.795579i \(-0.707167\pi\)
−0.841416 + 0.540387i \(0.818278\pi\)
\(264\) −0.387256 + 2.48288i −0.0238340 + 0.152811i
\(265\) 0.985668i 0.0605491i
\(266\) −4.91481 3.85510i −0.301346 0.236371i
\(267\) −7.26877 4.00679i −0.444842 0.245212i
\(268\) −3.17216 8.71543i −0.193770 0.532380i
\(269\) −3.30229 + 18.7282i −0.201344 + 1.14188i 0.701745 + 0.712428i \(0.252404\pi\)
−0.903090 + 0.429452i \(0.858707\pi\)
\(270\) 2.01531 1.90611i 0.122648 0.116002i
\(271\) 4.13554 + 3.47013i 0.251216 + 0.210795i 0.759696 0.650279i \(-0.225348\pi\)
−0.508480 + 0.861074i \(0.669792\pi\)
\(272\) 5.45902 0.962573i 0.331002 0.0583645i
\(273\) −7.42693 + 0.147138i −0.449499 + 0.00890522i
\(274\) 11.7295 + 6.77203i 0.708605 + 0.409113i
\(275\) −2.33964 + 6.42810i −0.141085 + 0.387629i
\(276\) 0.804557 0.702725i 0.0484286 0.0422990i
\(277\) 0.0466956 0.0808791i 0.00280567 0.00485956i −0.864619 0.502428i \(-0.832440\pi\)
0.867425 + 0.497568i \(0.165774\pi\)
\(278\) 3.61811 + 6.26675i 0.217000 + 0.375855i
\(279\) 9.98657 + 10.9867i 0.597880 + 0.657755i
\(280\) 0.491736 0.586029i 0.0293869 0.0350219i
\(281\) 7.81505 6.55760i 0.466207 0.391194i −0.379202 0.925314i \(-0.623801\pi\)
0.845409 + 0.534120i \(0.179357\pi\)
\(282\) 17.2464 + 13.8987i 1.02701 + 0.827655i
\(283\) 18.1732 6.61449i 1.08028 0.393190i 0.260269 0.965536i \(-0.416189\pi\)
0.820013 + 0.572346i \(0.193966\pi\)
\(284\) −12.5239 −0.743155
\(285\) 0.908354 + 3.92674i 0.0538063 + 0.232600i
\(286\) −4.34208 −0.256752
\(287\) 10.6509 3.87660i 0.628701 0.228828i
\(288\) 2.77623 1.13691i 0.163591 0.0669932i
\(289\) −10.5158 + 8.82384i −0.618579 + 0.519049i
\(290\) 1.81790 2.16649i 0.106751 0.127221i
\(291\) −13.5906 4.64383i −0.796694 0.272226i
\(292\) 8.08015 + 13.9952i 0.472855 + 0.819009i
\(293\) 8.09268 14.0169i 0.472780 0.818878i −0.526735 0.850030i \(-0.676584\pi\)
0.999515 + 0.0311512i \(0.00991734\pi\)
\(294\) 5.63602 + 6.45274i 0.328700 + 0.376332i
\(295\) −0.341293 + 0.937695i −0.0198709 + 0.0545947i
\(296\) −5.55887 3.20942i −0.323103 0.186544i
\(297\) −4.15044 6.29331i −0.240833 0.365175i
\(298\) 19.4195 3.42419i 1.12494 0.198358i
\(299\) 1.41399 + 1.18647i 0.0817729 + 0.0686156i
\(300\) 8.01290 1.57715i 0.462625 0.0910566i
\(301\) 1.58767 9.00413i 0.0915118 0.518989i
\(302\) 1.44702 + 3.97564i 0.0832664 + 0.228772i
\(303\) 2.63367 4.77777i 0.151300 0.274476i
\(304\) −0.614935 + 4.31530i −0.0352689 + 0.247500i
\(305\) 6.29025i 0.360179i
\(306\) −10.1764 + 13.1525i −0.581747 + 0.751877i
\(307\) 17.5661 + 3.09738i 1.00255 + 0.176777i 0.650745 0.759296i \(-0.274457\pi\)
0.351806 + 0.936073i \(0.385568\pi\)
\(308\) −1.33639 1.59264i −0.0761477 0.0907493i
\(309\) −16.5176 + 6.38518i −0.939651 + 0.363240i
\(310\) −0.458783 2.60189i −0.0260571 0.147777i
\(311\) 28.3493 16.3675i 1.60754 0.928114i 0.617622 0.786475i \(-0.288096\pi\)
0.989918 0.141639i \(-0.0452373\pi\)
\(312\) 2.68029 + 4.43704i 0.151741 + 0.251198i
\(313\) −24.8285 9.03684i −1.40339 0.510792i −0.474208 0.880413i \(-0.657265\pi\)
−0.929183 + 0.369621i \(0.879488\pi\)
\(314\) −9.54950 3.47573i −0.538909 0.196147i
\(315\) 0.0908997 + 2.29322i 0.00512162 + 0.129208i
\(316\) −6.92864 + 4.00025i −0.389767 + 0.225032i
\(317\) −2.32840 13.2050i −0.130776 0.741669i −0.977708 0.209968i \(-0.932664\pi\)
0.846932 0.531701i \(-0.178447\pi\)
\(318\) −1.15309 2.98287i −0.0646619 0.167271i
\(319\) −4.94049 5.88785i −0.276614 0.329656i
\(320\) −0.525734 0.0927010i −0.0293894 0.00518214i
\(321\) 19.8850 + 3.10148i 1.10987 + 0.173107i
\(322\) 0.883809i 0.0492527i
\(323\) −9.00833 22.4203i −0.501237 1.24750i
\(324\) −3.86895 + 8.12596i −0.214942 + 0.451442i
\(325\) 4.82634 + 13.2603i 0.267717 + 0.735547i
\(326\) 1.80669 10.2463i 0.100063 0.567488i
\(327\) 0.0106757 + 0.0542394i 0.000590369 + 0.00299945i
\(328\) −6.05902 5.08412i −0.334554 0.280724i
\(329\) −18.0472 + 3.18221i −0.994975 + 0.175441i
\(330\) 0.0265718 + 1.34123i 0.00146273 + 0.0738324i
\(331\) 21.6450 + 12.4967i 1.18971 + 0.686882i 0.958242 0.285959i \(-0.0923121\pi\)
0.231473 + 0.972841i \(0.425645\pi\)
\(332\) 1.69673 4.66173i 0.0931202 0.255846i
\(333\) 18.8166 4.09234i 1.03114 0.224259i
\(334\) 11.8965 20.6054i 0.650948 1.12748i
\(335\) −2.47564 4.28793i −0.135259 0.234275i
\(336\) −0.802548 + 2.34873i −0.0437826 + 0.128133i
\(337\) 10.7174 12.7725i 0.583815 0.695764i −0.390589 0.920565i \(-0.627729\pi\)
0.974405 + 0.224801i \(0.0721732\pi\)
\(338\) 3.09705 2.59873i 0.168457 0.141352i
\(339\) 11.2461 13.9549i 0.610805 0.757925i
\(340\) 2.78076 1.01211i 0.150808 0.0548896i
\(341\) −7.18020 −0.388830
\(342\) −7.34261 10.8206i −0.397043 0.585113i
\(343\) −17.1195 −0.924364
\(344\) −5.99550 + 2.18218i −0.323256 + 0.117655i
\(345\) 0.357839 0.444029i 0.0192654 0.0239057i
\(346\) −19.1928 + 16.1047i −1.03181 + 0.865793i
\(347\) 23.0175 27.4312i 1.23564 1.47258i 0.406399 0.913696i \(-0.366784\pi\)
0.829244 0.558886i \(-0.188771\pi\)
\(348\) −2.96694 + 8.68301i −0.159045 + 0.465458i
\(349\) 9.77902 + 16.9378i 0.523459 + 0.906657i 0.999627 + 0.0273031i \(0.00869193\pi\)
−0.476168 + 0.879354i \(0.657975\pi\)
\(350\) −3.37834 + 5.85146i −0.180580 + 0.312774i
\(351\) −14.9035 4.44154i −0.795490 0.237072i
\(352\) −0.496210 + 1.36333i −0.0264481 + 0.0726656i
\(353\) 27.9356 + 16.1286i 1.48686 + 0.858441i 0.999888 0.0149745i \(-0.00476672\pi\)
0.486976 + 0.873416i \(0.338100\pi\)
\(354\) −0.0641289 3.23696i −0.00340841 0.172042i
\(355\) −6.58422 + 1.16098i −0.349454 + 0.0616182i
\(356\) −3.67088 3.08023i −0.194556 0.163252i
\(357\) −2.65707 13.4996i −0.140627 0.714475i
\(358\) 2.69909 15.3073i 0.142651 0.809017i
\(359\) −5.99057 16.4590i −0.316170 0.868671i −0.991377 0.131042i \(-0.958168\pi\)
0.675206 0.737629i \(-0.264055\pi\)
\(360\) 1.35416 0.855072i 0.0713706 0.0450662i
\(361\) 18.9587 1.25252i 0.997825 0.0659220i
\(362\) 20.9656i 1.10193i
\(363\) −15.2227 2.37430i −0.798987 0.124619i
\(364\) −4.22363 0.744740i −0.221378 0.0390350i
\(365\) 5.54538 + 6.60873i 0.290258 + 0.345917i
\(366\) 7.35866 + 19.0358i 0.384644 + 0.995019i
\(367\) 3.59236 + 20.3733i 0.187520 + 1.06348i 0.922675 + 0.385578i \(0.125998\pi\)
−0.735155 + 0.677899i \(0.762891\pi\)
\(368\) 0.534119 0.308374i 0.0278429 0.0160751i
\(369\) 23.7099 0.939823i 1.23429 0.0489252i
\(370\) −3.22000 1.17198i −0.167400 0.0609286i
\(371\) 2.48630 + 0.904938i 0.129082 + 0.0469820i
\(372\) 4.43221 + 7.33724i 0.229800 + 0.380418i
\(373\) 2.46819 1.42501i 0.127798 0.0737843i −0.434738 0.900557i \(-0.643159\pi\)
0.562536 + 0.826773i \(0.309826\pi\)
\(374\) −1.39652 7.92007i −0.0722124 0.409537i
\(375\) 8.37868 3.23894i 0.432673 0.167258i
\(376\) 8.22007 + 9.79630i 0.423918 + 0.505205i
\(377\) −15.6143 2.75323i −0.804179 0.141798i
\(378\) −2.95781 6.83350i −0.152133 0.351477i
\(379\) 15.1648i 0.778963i −0.921034 0.389482i \(-0.872654\pi\)
0.921034 0.389482i \(-0.127346\pi\)
\(380\) 0.0767411 + 2.32571i 0.00393673 + 0.119306i
\(381\) −0.655581 + 1.18930i −0.0335864 + 0.0609296i
\(382\) 0.545173 + 1.49785i 0.0278935 + 0.0766368i
\(383\) 0.366876 2.08066i 0.0187465 0.106317i −0.973999 0.226553i \(-0.927254\pi\)
0.992745 + 0.120237i \(0.0383653\pi\)
\(384\) 1.69944 0.334495i 0.0867244 0.0170696i
\(385\) −0.850223 0.713422i −0.0433314 0.0363594i
\(386\) −4.28991 + 0.756427i −0.218351 + 0.0385011i
\(387\) 8.90635 16.9425i 0.452735 0.861235i
\(388\) −7.18104 4.14597i −0.364562 0.210480i
\(389\) 1.43738 3.94918i 0.0728783 0.200231i −0.897905 0.440189i \(-0.854911\pi\)
0.970783 + 0.239958i \(0.0771336\pi\)
\(390\) 1.82044 + 2.08424i 0.0921813 + 0.105539i
\(391\) −1.70939 + 2.96075i −0.0864475 + 0.149731i
\(392\) 2.47323 + 4.28377i 0.124917 + 0.216363i
\(393\) 18.8798 + 6.45112i 0.952358 + 0.325416i
\(394\) 4.22847 5.03929i 0.213027 0.253876i
\(395\) −3.27179 + 2.74536i −0.164622 + 0.138134i
\(396\) −1.64946 4.02781i −0.0828883 0.202405i
\(397\) 0.284948 0.103713i 0.0143011 0.00520518i −0.334860 0.942268i \(-0.608689\pi\)
0.349161 + 0.937063i \(0.386467\pi\)
\(398\) −10.8985 −0.546291
\(399\) 10.7390 + 1.31385i 0.537620 + 0.0657747i
\(400\) 4.71501 0.235751
\(401\) 11.8640 4.31814i 0.592460 0.215638i −0.0283512 0.999598i \(-0.509026\pi\)
0.620811 + 0.783960i \(0.286803\pi\)
\(402\) 12.5081 + 10.0802i 0.623850 + 0.502755i
\(403\) −11.3464 + 9.52080i −0.565207 + 0.474265i
\(404\) 2.02464 2.41287i 0.100729 0.120045i
\(405\) −1.28075 + 4.63075i −0.0636410 + 0.230104i
\(406\) −3.79585 6.57461i −0.188385 0.326292i
\(407\) −4.65629 + 8.06493i −0.230804 + 0.399764i
\(408\) −7.23123 + 6.31598i −0.357999 + 0.312688i
\(409\) −6.63505 + 18.2296i −0.328082 + 0.901398i 0.660515 + 0.750813i \(0.270338\pi\)
−0.988597 + 0.150585i \(0.951884\pi\)
\(410\) −3.65673 2.11122i −0.180593 0.104266i
\(411\) −23.4544 + 0.464666i −1.15692 + 0.0229203i
\(412\) −10.0688 + 1.77541i −0.496056 + 0.0874680i
\(413\) 2.05195 + 1.72179i 0.100970 + 0.0847237i
\(414\) −0.563460 + 1.76236i −0.0276926 + 0.0866153i
\(415\) 0.459881 2.60812i 0.0225747 0.128027i
\(416\) 1.02361 + 2.81235i 0.0501867 + 0.137887i
\(417\) −10.9763 6.05052i −0.537513 0.296295i
\(418\) 6.26074 + 0.892161i 0.306223 + 0.0436370i
\(419\) 15.4879i 0.756633i 0.925676 + 0.378316i \(0.123497\pi\)
−0.925676 + 0.378316i \(0.876503\pi\)
\(420\) −0.204197 + 1.30920i −0.00996379 + 0.0638825i
\(421\) 13.7766 + 2.42919i 0.671431 + 0.118391i 0.498962 0.866624i \(-0.333715\pi\)
0.172468 + 0.985015i \(0.444826\pi\)
\(422\) 4.86574 + 5.79876i 0.236861 + 0.282279i
\(423\) −38.0158 5.16026i −1.84839 0.250901i
\(424\) −0.320617 1.81831i −0.0155705 0.0883049i
\(425\) −22.6348 + 13.0682i −1.09795 + 0.633901i
\(426\) 18.5673 11.2160i 0.899588 0.543415i
\(427\) −15.8668 5.77505i −0.767849 0.279474i
\(428\) 10.9187 + 3.97407i 0.527774 + 0.192094i
\(429\) 6.43736 3.88862i 0.310798 0.187744i
\(430\) −2.94974 + 1.70304i −0.142249 + 0.0821277i
\(431\) 4.86245 + 27.5763i 0.234216 + 1.32831i 0.844258 + 0.535936i \(0.180041\pi\)
−0.610042 + 0.792369i \(0.708848\pi\)
\(432\) −3.09772 + 4.17183i −0.149039 + 0.200717i
\(433\) −3.78152 4.50664i −0.181728 0.216575i 0.667488 0.744621i \(-0.267370\pi\)
−0.849216 + 0.528045i \(0.822925\pi\)
\(434\) −6.98433 1.23153i −0.335259 0.0591151i
\(435\) −0.754896 + 4.83999i −0.0361945 + 0.232060i
\(436\) 0.0319160i 0.00152850i
\(437\) −1.79501 2.00128i −0.0858669 0.0957342i
\(438\) −24.5129 13.5123i −1.17127 0.645645i
\(439\) 7.65568 + 21.0338i 0.365386 + 1.00389i 0.977094 + 0.212806i \(0.0682602\pi\)
−0.611709 + 0.791083i \(0.709518\pi\)
\(440\) −0.134493 + 0.762746i −0.00641169 + 0.0363625i
\(441\) −14.1346 4.51909i −0.673074 0.215195i
\(442\) −12.7087 10.6639i −0.604491 0.507228i
\(443\) −14.6859 + 2.58952i −0.697748 + 0.123032i −0.511261 0.859426i \(-0.670821\pi\)
−0.186487 + 0.982457i \(0.559710\pi\)
\(444\) 11.1156 0.220216i 0.527521 0.0104510i
\(445\) −2.21544 1.27909i −0.105022 0.0606345i
\(446\) 3.93825 10.8203i 0.186482 0.512354i
\(447\) −25.7239 + 22.4680i −1.21670 + 1.06270i
\(448\) −0.716507 + 1.24103i −0.0338518 + 0.0586330i
\(449\) 2.44541 + 4.23557i 0.115406 + 0.199889i 0.917942 0.396715i \(-0.129850\pi\)
−0.802536 + 0.596604i \(0.796516\pi\)
\(450\) −10.4671 + 9.51429i −0.493424 + 0.448508i
\(451\) −7.37616 + 8.79056i −0.347330 + 0.413931i
\(452\) 7.92666 6.65126i 0.372839 0.312849i
\(453\) −5.70573 4.59820i −0.268078 0.216042i
\(454\) −1.44986 + 0.527706i −0.0680453 + 0.0247665i
\(455\) −2.28954 −0.107335
\(456\) −2.95297 6.94838i −0.138286 0.325388i
\(457\) −30.3578 −1.42008 −0.710039 0.704162i \(-0.751323\pi\)
−0.710039 + 0.704162i \(0.751323\pi\)
\(458\) 7.68043 2.79545i 0.358883 0.130623i
\(459\) 3.30815 28.6129i 0.154411 1.33554i
\(460\) 0.252218 0.211636i 0.0117597 0.00986757i
\(461\) −16.0576 + 19.1367i −0.747879 + 0.891287i −0.997017 0.0771808i \(-0.975408\pi\)
0.249138 + 0.968468i \(0.419853\pi\)
\(462\) 3.40758 + 1.16435i 0.158535 + 0.0541706i
\(463\) −2.94958 5.10883i −0.137079 0.237427i 0.789311 0.613994i \(-0.210438\pi\)
−0.926390 + 0.376566i \(0.877105\pi\)
\(464\) −2.64886 + 4.58796i −0.122970 + 0.212990i
\(465\) 3.01033 + 3.44656i 0.139601 + 0.159830i
\(466\) −2.87121 + 7.88859i −0.133006 + 0.365432i
\(467\) −4.76849 2.75309i −0.220659 0.127398i 0.385596 0.922668i \(-0.373996\pi\)
−0.606256 + 0.795270i \(0.707329\pi\)
\(468\) −7.94733 4.17777i −0.367366 0.193117i
\(469\) −13.0890 + 2.30794i −0.604392 + 0.106571i
\(470\) 5.22969 + 4.38823i 0.241228 + 0.202414i
\(471\) 17.2704 3.39926i 0.795777 0.156630i
\(472\) 0.324588 1.84083i 0.0149404 0.0847310i
\(473\) 3.16596 + 8.69840i 0.145571 + 0.399953i
\(474\) 6.68958 12.1356i 0.307262 0.557409i
\(475\) −4.23442 20.1113i −0.194288 0.922770i
\(476\) 7.94354i 0.364091i
\(477\) 4.38087 + 3.38960i 0.200586 + 0.155199i
\(478\) 8.65196 + 1.52557i 0.395731 + 0.0697781i
\(479\) 21.4896 + 25.6103i 0.981884 + 1.17016i 0.985415 + 0.170170i \(0.0544317\pi\)
−0.00353081 + 0.999994i \(0.501124\pi\)
\(480\) 0.862447 0.333396i 0.0393652 0.0152174i
\(481\) 3.33588 + 18.9187i 0.152103 + 0.862618i
\(482\) 11.6386 6.71954i 0.530123 0.306067i
\(483\) −0.791510 1.31029i −0.0360149 0.0596204i
\(484\) −8.35867 3.04231i −0.379940 0.138287i
\(485\) −4.15965 1.51399i −0.188880 0.0687467i
\(486\) −1.54143 15.5121i −0.0699205 0.703641i
\(487\) 21.9456 12.6703i 0.994448 0.574145i 0.0878470 0.996134i \(-0.472001\pi\)
0.906601 + 0.421989i \(0.138668\pi\)
\(488\) 2.04609 + 11.6039i 0.0926219 + 0.525285i
\(489\) 6.49770 + 16.8086i 0.293836 + 0.760112i
\(490\) 1.69737 + 2.02285i 0.0766794 + 0.0913830i
\(491\) −7.76474 1.36913i −0.350418 0.0617881i −0.00433112 0.999991i \(-0.501379\pi\)
−0.346087 + 0.938202i \(0.612490\pi\)
\(492\) 13.5360 + 2.11122i 0.610249 + 0.0951810i
\(493\) 29.3665i 1.32260i
\(494\) 11.0765 6.89178i 0.498354 0.310076i
\(495\) −1.24056 1.96465i −0.0557589 0.0883044i
\(496\) 1.69268 + 4.65059i 0.0760035 + 0.208818i
\(497\) −3.11645 + 17.6742i −0.139792 + 0.792798i
\(498\) 1.65940 + 8.43079i 0.0743594 + 0.377793i
\(499\) −9.89069 8.29927i −0.442768 0.371526i 0.393976 0.919121i \(-0.371099\pi\)
−0.836744 + 0.547594i \(0.815544\pi\)
\(500\) 5.10751 0.900591i 0.228415 0.0402757i
\(501\) 0.816285 + 41.2026i 0.0364689 + 1.84080i
\(502\) −6.80388 3.92822i −0.303672 0.175325i
\(503\) 2.85952 7.85647i 0.127500 0.350303i −0.859475 0.511178i \(-0.829209\pi\)
0.986975 + 0.160875i \(0.0514316\pi\)
\(504\) −0.913623 4.20084i −0.0406960 0.187120i
\(505\) 0.840744 1.45621i 0.0374126 0.0648006i
\(506\) −0.447396 0.774912i −0.0198892 0.0344490i
\(507\) −2.26420 + 6.62637i −0.100556 + 0.294287i
\(508\) −0.503979 + 0.600619i −0.0223605 + 0.0266482i
\(509\) 5.11088 4.28853i 0.226536 0.190086i −0.522454 0.852667i \(-0.674984\pi\)
0.748990 + 0.662581i \(0.230539\pi\)
\(510\) −3.21620 + 3.99087i −0.142416 + 0.176719i
\(511\) 21.7614 7.92049i 0.962666 0.350382i
\(512\) 1.00000 0.0441942
\(513\) 20.5764 + 9.46635i 0.908470 + 0.417950i
\(514\) 12.2853 0.541884
\(515\) −5.12894 + 1.86678i −0.226008 + 0.0822603i
\(516\) 6.93435 8.60457i 0.305268 0.378795i
\(517\) 14.2127 11.9259i 0.625073 0.524499i
\(518\) −5.91254 + 7.04629i −0.259782 + 0.309596i
\(519\) 14.0315 41.0645i 0.615915 1.80253i
\(520\) 0.798855 + 1.38366i 0.0350321 + 0.0606774i
\(521\) 7.75609 13.4339i 0.339800 0.588552i −0.644595 0.764525i \(-0.722974\pi\)
0.984395 + 0.175973i \(0.0563071\pi\)
\(522\) −3.37757 15.5301i −0.147832 0.679734i
\(523\) −7.60779 + 20.9022i −0.332666 + 0.913991i 0.654750 + 0.755845i \(0.272774\pi\)
−0.987416 + 0.158146i \(0.949448\pi\)
\(524\) 9.97575 + 5.75950i 0.435793 + 0.251605i
\(525\) −0.231806 11.7006i −0.0101169 0.510657i
\(526\) 23.4707 4.13852i 1.02337 0.180448i
\(527\) −21.0155 17.6341i −0.915450 0.768154i
\(528\) −0.485293 2.46559i −0.0211197 0.107301i
\(529\) 3.92786 22.2760i 0.170776 0.968521i
\(530\) −0.337118 0.926225i −0.0146435 0.0402326i
\(531\) 2.99399 + 4.74153i 0.129928 + 0.205765i
\(532\) 5.93693 + 1.94165i 0.257398 + 0.0841810i
\(533\) 23.6718i 1.02534i
\(534\) 8.20082 + 1.27909i 0.354884 + 0.0553515i
\(535\) 6.10871 + 1.07713i 0.264103 + 0.0465684i
\(536\) 5.96171 + 7.10489i 0.257507 + 0.306884i
\(537\) 9.70718 + 25.1111i 0.418896 + 1.08362i
\(538\) −3.30229 18.7282i −0.142372 0.807431i
\(539\) 6.21498 3.58822i 0.267698 0.154556i
\(540\) −1.24184 + 2.48043i −0.0534404 + 0.106741i
\(541\) 7.24376 + 2.63651i 0.311433 + 0.113352i 0.493008 0.870025i \(-0.335897\pi\)
−0.181575 + 0.983377i \(0.558119\pi\)
\(542\) −5.07299 1.84642i −0.217904 0.0793104i
\(543\) −18.7761 31.0825i −0.805758 1.33388i
\(544\) −4.80058 + 2.77162i −0.205823 + 0.118832i
\(545\) 0.00295864 + 0.0167793i 0.000126734 + 0.000718746i
\(546\) 6.92871 2.67843i 0.296521 0.114626i
\(547\) 18.1301 + 21.6066i 0.775188 + 0.923833i 0.998705 0.0508673i \(-0.0161986\pi\)
−0.223518 + 0.974700i \(0.571754\pi\)
\(548\) −13.3383 2.35190i −0.569784 0.100468i
\(549\) −27.9575 21.6314i −1.19320 0.923207i
\(550\) 6.84064i 0.291686i
\(551\) 21.9482 + 7.17807i 0.935026 + 0.305796i
\(552\) −0.515690 + 0.935520i −0.0219492 + 0.0398184i
\(553\) 3.92121 + 10.7734i 0.166747 + 0.458133i
\(554\) −0.0162172 + 0.0919724i −0.000689003 + 0.00390753i
\(555\) 5.82341 1.14620i 0.247190 0.0486534i
\(556\) −5.54326 4.65135i −0.235087 0.197261i
\(557\) 30.7949 5.42997i 1.30482 0.230075i 0.522333 0.852741i \(-0.325062\pi\)
0.782487 + 0.622666i \(0.213951\pi\)
\(558\) −13.1420 6.90849i −0.556344 0.292460i
\(559\) 16.5369 + 9.54757i 0.699435 + 0.403819i
\(560\) −0.261648 + 0.718871i −0.0110566 + 0.0303778i
\(561\) 9.16337 + 10.4912i 0.386878 + 0.442940i
\(562\) −5.10091 + 8.83503i −0.215169 + 0.372683i
\(563\) −4.37942 7.58538i −0.184571 0.319686i 0.758861 0.651252i \(-0.225756\pi\)
−0.943432 + 0.331567i \(0.892423\pi\)
\(564\) −20.9599 7.16190i −0.882572 0.301570i
\(565\) 3.55073 4.23160i 0.149380 0.178025i
\(566\) −14.8149 + 12.4312i −0.622716 + 0.522521i
\(567\) 10.5050 + 7.48210i 0.441167 + 0.314219i
\(568\) 11.7686 4.28342i 0.493799 0.179728i
\(569\) −39.4950 −1.65572 −0.827859 0.560936i \(-0.810441\pi\)
−0.827859 + 0.560936i \(0.810441\pi\)
\(570\) −2.19660 3.37925i −0.0920054 0.141541i
\(571\) −1.49689 −0.0626431 −0.0313215 0.999509i \(-0.509972\pi\)
−0.0313215 + 0.999509i \(0.509972\pi\)
\(572\) 4.08022 1.48508i 0.170603 0.0620942i
\(573\) −2.14967 1.73240i −0.0898039 0.0723722i
\(574\) −8.68267 + 7.28562i −0.362408 + 0.304096i
\(575\) −1.86921 + 2.22764i −0.0779514 + 0.0928988i
\(576\) −2.21995 + 2.01787i −0.0924980 + 0.0840780i
\(577\) −5.32793 9.22825i −0.221805 0.384177i 0.733551 0.679634i \(-0.237861\pi\)
−0.955356 + 0.295457i \(0.904528\pi\)
\(578\) 6.86373 11.8883i 0.285493 0.494489i
\(579\) 5.68259 4.96335i 0.236160 0.206270i
\(580\) −0.967285 + 2.65759i −0.0401643 + 0.110351i
\(581\) −6.15662 3.55453i −0.255420 0.147467i
\(582\) 14.3593 0.284478i 0.595210 0.0117920i
\(583\) −2.63804 + 0.465158i −0.109257 + 0.0192649i
\(584\) −12.3795 10.3876i −0.512268 0.429844i
\(585\) −4.56546 1.45967i −0.188759 0.0603497i
\(586\) −2.81056 + 15.9395i −0.116103 + 0.658454i
\(587\) 0.0214414 + 0.0589098i 0.000884983 + 0.00243147i 0.940134 0.340804i \(-0.110699\pi\)
−0.939249 + 0.343236i \(0.888477\pi\)
\(588\) −7.50310 4.13596i −0.309423 0.170564i
\(589\) 18.3164 11.3965i 0.754714 0.469584i
\(590\) 0.997875i 0.0410818i
\(591\) −1.75590 + 11.2579i −0.0722280 + 0.463087i
\(592\) 6.32132 + 1.11462i 0.259804 + 0.0458105i
\(593\) 10.0616 + 11.9910i 0.413181 + 0.492409i 0.931992 0.362479i \(-0.118070\pi\)
−0.518811 + 0.854889i \(0.673625\pi\)
\(594\) 6.05258 + 4.49424i 0.248340 + 0.184401i
\(595\) −0.736374 4.17618i −0.0301884 0.171207i
\(596\) −17.0772 + 9.85955i −0.699511 + 0.403863i
\(597\) 16.1576 9.76032i 0.661285 0.399463i
\(598\) −1.73451 0.631310i −0.0709294 0.0258162i
\(599\) −2.10138 0.764839i −0.0858600 0.0312505i 0.298733 0.954337i \(-0.403436\pi\)
−0.384593 + 0.923086i \(0.625658\pi\)
\(600\) −6.99025 + 4.22261i −0.285376 + 0.172387i
\(601\) −16.1749 + 9.33861i −0.659790 + 0.380930i −0.792197 0.610266i \(-0.791063\pi\)
0.132407 + 0.991195i \(0.457729\pi\)
\(602\) 1.58767 + 9.00413i 0.0647086 + 0.366981i
\(603\) −27.5715 3.74254i −1.12280 0.152408i
\(604\) −2.71950 3.24097i −0.110655 0.131873i
\(605\) −4.67646 0.824586i −0.190125 0.0335242i
\(606\) −0.840744 + 5.39040i −0.0341529 + 0.218970i
\(607\) 43.2872i 1.75697i −0.477766 0.878487i \(-0.658553\pi\)
0.477766 0.878487i \(-0.341447\pi\)
\(608\) −0.898071 4.26538i −0.0364216 0.172984i
\(609\) 11.5155 + 6.34776i 0.466634 + 0.257224i
\(610\) 2.15139 + 5.91090i 0.0871073 + 0.239325i
\(611\) 6.64602 37.6915i 0.268869 1.52483i
\(612\) 5.06429 15.8398i 0.204712 0.640287i
\(613\) −6.84929 5.74724i −0.276640 0.232129i 0.493902 0.869518i \(-0.335570\pi\)
−0.770542 + 0.637389i \(0.780015\pi\)
\(614\) −17.5661 + 3.09738i −0.708911 + 0.125000i
\(615\) 7.31203 0.144862i 0.294850 0.00584140i
\(616\) 1.80051 + 1.03952i 0.0725446 + 0.0418836i
\(617\) 8.89796 24.4469i 0.358218 0.984197i −0.621429 0.783470i \(-0.713448\pi\)
0.979647 0.200726i \(-0.0643302\pi\)
\(618\) 13.3376 11.6494i 0.536516 0.468610i
\(619\) −9.72654 + 16.8469i −0.390943 + 0.677133i −0.992574 0.121641i \(-0.961184\pi\)
0.601631 + 0.798774i \(0.294518\pi\)
\(620\) 1.32101 + 2.28806i 0.0530531 + 0.0918907i
\(621\) −0.742952 3.11741i −0.0298136 0.125097i
\(622\) −21.0416 + 25.0764i −0.843692 + 1.00547i
\(623\) −5.26042 + 4.41402i −0.210754 + 0.176844i
\(624\) −4.03620 3.25274i −0.161577 0.130214i
\(625\) −19.5516 + 7.11620i −0.782064 + 0.284648i
\(626\) 26.4219 1.05603
\(627\) −10.0809 + 4.28423i −0.402591 + 0.171096i
\(628\) 10.1624 0.405522
\(629\) −33.4353 + 12.1695i −1.33315 + 0.485228i
\(630\) −0.869744 2.12383i −0.0346514 0.0846154i
\(631\) −11.6007 + 9.73414i −0.461816 + 0.387510i −0.843799 0.536660i \(-0.819686\pi\)
0.381982 + 0.924170i \(0.375241\pi\)
\(632\) 5.14263 6.12874i 0.204563 0.243788i
\(633\) −12.4069 4.23937i −0.493130 0.168500i
\(634\) 6.70437 + 11.6123i 0.266265 + 0.461184i
\(635\) −0.209281 + 0.362485i −0.00830506 + 0.0143848i
\(636\) 2.10375 + 2.40860i 0.0834191 + 0.0955074i
\(637\) 5.06326 13.9112i 0.200614 0.551182i
\(638\) 6.65631 + 3.84302i 0.263526 + 0.152147i
\(639\) −17.4823 + 33.2565i −0.691590 + 1.31561i
\(640\) 0.525734 0.0927010i 0.0207814 0.00366433i
\(641\) 28.6682 + 24.0555i 1.13233 + 0.950135i 0.999161 0.0409586i \(-0.0130412\pi\)
0.133166 + 0.991094i \(0.457486\pi\)
\(642\) −19.7465 + 3.88663i −0.779334 + 0.153393i
\(643\) 1.81700 10.3047i 0.0716554 0.406378i −0.927791 0.373101i \(-0.878295\pi\)
0.999446 0.0332769i \(-0.0105943\pi\)
\(644\) −0.302280 0.830508i −0.0119115 0.0327266i
\(645\) 2.84797 5.16653i 0.112139 0.203432i
\(646\) 16.1333 + 17.9872i 0.634755 + 0.707697i
\(647\) 15.2706i 0.600348i 0.953884 + 0.300174i \(0.0970448\pi\)
−0.953884 + 0.300174i \(0.902955\pi\)
\(648\) 0.856379 8.95916i 0.0336418 0.351949i
\(649\) −2.67071 0.470919i −0.104835 0.0184852i
\(650\) −9.07055 10.8099i −0.355776 0.423998i
\(651\) 11.4575 4.42913i 0.449057 0.173591i
\(652\) 1.80669 + 10.2463i 0.0707555 + 0.401275i
\(653\) 2.32583 1.34282i 0.0910168 0.0525486i −0.453801 0.891103i \(-0.649932\pi\)
0.544818 + 0.838555i \(0.316599\pi\)
\(654\) −0.0285829 0.0473171i −0.00111768 0.00185024i
\(655\) 5.77850 + 2.10320i 0.225785 + 0.0821789i
\(656\) 7.43249 + 2.70521i 0.290190 + 0.105621i
\(657\) 48.4429 1.92020i 1.88994 0.0749142i
\(658\) 15.8705 9.16281i 0.618695 0.357203i
\(659\) −5.97002 33.8577i −0.232559 1.31891i −0.847694 0.530486i \(-0.822009\pi\)
0.615134 0.788422i \(-0.289102\pi\)
\(660\) −0.483698 1.25126i −0.0188279 0.0487051i
\(661\) 11.2236 + 13.3757i 0.436546 + 0.520256i 0.938799 0.344465i \(-0.111940\pi\)
−0.502253 + 0.864721i \(0.667495\pi\)
\(662\) −24.6137 4.34007i −0.956640 0.168682i
\(663\) 28.3915 + 4.42824i 1.10263 + 0.171979i
\(664\) 4.96091i 0.192521i
\(665\) 3.30123 + 0.470429i 0.128016 + 0.0182425i
\(666\) −16.2822 + 10.2812i −0.630922 + 0.398389i
\(667\) −1.11750 3.07031i −0.0432698 0.118883i
\(668\) −4.13162 + 23.4316i −0.159857 + 0.906594i
\(669\) 3.85160 + 19.5686i 0.148912 + 0.756565i
\(670\) 3.79290 + 3.18262i 0.146533 + 0.122955i
\(671\) 16.8352 2.96851i 0.649917 0.114598i
\(672\) −0.0491635 2.48157i −0.00189652 0.0957285i
\(673\) −38.2505 22.0839i −1.47445 0.851273i −0.474863 0.880060i \(-0.657502\pi\)
−0.999586 + 0.0287864i \(0.990836\pi\)
\(674\) −5.70262 + 15.6678i −0.219657 + 0.603502i
\(675\) 6.99733 23.4794i 0.269328 0.903723i
\(676\) −2.02145 + 3.50126i −0.0777483 + 0.134664i
\(677\) 9.28464 + 16.0815i 0.356838 + 0.618061i 0.987431 0.158053i \(-0.0505216\pi\)
−0.630593 + 0.776114i \(0.717188\pi\)
\(678\) −5.79504 + 16.9597i −0.222557 + 0.651333i
\(679\) −7.63791 + 9.10251i −0.293116 + 0.349322i
\(680\) −2.26690 + 1.90215i −0.0869315 + 0.0729442i
\(681\) 1.67690 2.08080i 0.0642589 0.0797364i
\(682\) 6.74718 2.45577i 0.258363 0.0940364i
\(683\) 18.9873 0.726527 0.363264 0.931686i \(-0.381662\pi\)
0.363264 + 0.931686i \(0.381662\pi\)
\(684\) 10.6007 + 7.65675i 0.405327 + 0.292763i
\(685\) −7.23041 −0.276260
\(686\) 16.0870 5.85520i 0.614206 0.223553i
\(687\) −8.88312 + 11.0227i −0.338912 + 0.420544i
\(688\) 4.88757 4.10116i 0.186337 0.156355i
\(689\) −3.55195 + 4.23305i −0.135319 + 0.161266i
\(690\) −0.184392 + 0.539639i −0.00701968 + 0.0205437i
\(691\) 7.53839 + 13.0569i 0.286774 + 0.496707i 0.973038 0.230646i \(-0.0740839\pi\)
−0.686264 + 0.727352i \(0.740751\pi\)
\(692\) 12.5272 21.6978i 0.476213 0.824826i
\(693\) −6.09467 + 1.32550i −0.231518 + 0.0503517i
\(694\) −12.2473 + 33.6493i −0.464903 + 1.27731i
\(695\) −3.34547 1.93151i −0.126901 0.0732662i
\(696\) −0.181753 9.17411i −0.00688931 0.347744i
\(697\) −43.1781 + 7.61346i −1.63549 + 0.288380i
\(698\) −14.9823 12.5717i −0.567089 0.475844i
\(699\) −2.80804 14.2666i −0.106210 0.539613i
\(700\) 1.17329 6.65403i 0.0443460 0.251499i
\(701\) −4.16179 11.4344i −0.157189 0.431872i 0.835951 0.548804i \(-0.184917\pi\)
−0.993140 + 0.116931i \(0.962694\pi\)
\(702\) 15.5238 0.923615i 0.585908 0.0348596i
\(703\) −0.922720 27.9638i −0.0348010 1.05468i
\(704\) 1.45082i 0.0546799i
\(705\) −11.6832 1.82224i −0.440017 0.0686297i
\(706\) −31.7672 5.60142i −1.19558 0.210812i
\(707\) −2.90133 3.45768i −0.109116 0.130039i
\(708\) 1.16737 + 3.01981i 0.0438723 + 0.113492i
\(709\) −6.71310 38.0719i −0.252116 1.42982i −0.803369 0.595481i \(-0.796961\pi\)
0.551253 0.834338i \(-0.314150\pi\)
\(710\) 5.79007 3.34290i 0.217297 0.125457i
\(711\) 0.950637 + 23.9827i 0.0356517 + 0.899421i
\(712\) 4.50300 + 1.63896i 0.168757 + 0.0614225i
\(713\) −2.86824 1.04395i −0.107417 0.0390964i
\(714\) 7.11397 + 11.7767i 0.266234 + 0.440732i
\(715\) 2.00744 1.15900i 0.0750740 0.0433440i
\(716\) 2.69909 + 15.3073i 0.100870 + 0.572061i
\(717\) −14.1932 + 5.48666i −0.530056 + 0.204903i
\(718\) 11.2586 + 13.4175i 0.420167 + 0.500736i
\(719\) 26.0696 + 4.59678i 0.972233 + 0.171431i 0.637135 0.770752i \(-0.280119\pi\)
0.335098 + 0.942183i \(0.391231\pi\)
\(720\) −0.980045 + 1.26666i −0.0365241 + 0.0472055i
\(721\) 14.6514i 0.545646i
\(722\) −17.3869 + 7.66123i −0.647075 + 0.285121i
\(723\) −11.2370 + 20.3852i −0.417909 + 0.758134i
\(724\) −7.17064 19.7012i −0.266495 0.732188i
\(725\) 4.33752 24.5993i 0.161091 0.913595i
\(726\) 15.1168 2.97537i 0.561036 0.110426i
\(727\) 23.0429 + 19.3353i 0.854614 + 0.717107i 0.960801 0.277240i \(-0.0894196\pi\)
−0.106187 + 0.994346i \(0.533864\pi\)
\(728\) 4.22363 0.744740i 0.156538 0.0276019i
\(729\) 16.1773 + 21.6170i 0.599160 + 0.800629i
\(730\) −7.47127 4.31354i −0.276524 0.159651i
\(731\) −12.0964 + 33.2345i −0.447400 + 1.22922i
\(732\) −13.4255 15.3710i −0.496221 0.568129i
\(733\) 4.85445 8.40816i 0.179303 0.310563i −0.762339 0.647178i \(-0.775949\pi\)
0.941642 + 0.336616i \(0.109282\pi\)
\(734\) −10.3438 17.9160i −0.381796 0.661291i
\(735\) −4.32804 1.47887i −0.159642 0.0545489i
\(736\) −0.396438 + 0.472456i −0.0146129 + 0.0174150i
\(737\) 10.3079 8.64938i 0.379697 0.318604i
\(738\) −21.9585 + 8.99239i −0.808305 + 0.331015i
\(739\) −46.3353 + 16.8647i −1.70447 + 0.620377i −0.996322 0.0856846i \(-0.972692\pi\)
−0.708150 + 0.706062i \(0.750470\pi\)
\(740\) 3.42665 0.125966
\(741\) −10.2494 + 20.1371i −0.376520 + 0.739756i
\(742\) −2.64586 −0.0971326
\(743\) −6.36036 + 2.31498i −0.233339 + 0.0849285i −0.456043 0.889958i \(-0.650734\pi\)
0.222704 + 0.974886i \(0.428512\pi\)
\(744\) −6.67440 5.37884i −0.244695 0.197198i
\(745\) −8.06409 + 6.76658i −0.295445 + 0.247908i
\(746\) −1.83196 + 2.18324i −0.0670728 + 0.0799342i
\(747\) −10.0105 11.0130i −0.366264 0.402944i
\(748\) 4.02112 + 6.96479i 0.147027 + 0.254658i
\(749\) 8.32539 14.4200i 0.304203 0.526895i
\(750\) −6.76560 + 5.90929i −0.247045 + 0.215777i
\(751\) 7.71871 21.2070i 0.281660 0.773853i −0.715505 0.698607i \(-0.753804\pi\)
0.997165 0.0752462i \(-0.0239743\pi\)
\(752\) −11.0749 6.39408i −0.403859 0.233168i
\(753\) 13.6051 0.269537i 0.495797 0.00982247i
\(754\) 15.6143 2.75323i 0.568641 0.100267i
\(755\) −1.73017 1.45179i −0.0629675 0.0528360i
\(756\) 5.11663 + 5.40976i 0.186090 + 0.196751i
\(757\) −9.07767 + 51.4820i −0.329933 + 1.87115i 0.142523 + 0.989791i \(0.454478\pi\)
−0.472457 + 0.881354i \(0.656633\pi\)
\(758\) 5.18667 + 14.2502i 0.188388 + 0.517592i
\(759\) 1.35727 + 0.748174i 0.0492659 + 0.0271570i
\(760\) −0.867551 2.15920i −0.0314694 0.0783225i
\(761\) 16.8329i 0.610193i −0.952321 0.305097i \(-0.901311\pi\)
0.952321 0.305097i \(-0.0986888\pi\)
\(762\) 0.209281 1.34180i 0.00758145 0.0486082i
\(763\) 0.0450412 + 0.00794198i 0.00163060 + 0.000287519i
\(764\) −1.02459 1.22106i −0.0370684 0.0441764i
\(765\) 1.19410 8.79699i 0.0431728 0.318056i
\(766\) 0.366876 + 2.08066i 0.0132558 + 0.0751772i
\(767\) −4.84480 + 2.79715i −0.174936 + 0.100999i
\(768\) −1.48255 + 0.895567i −0.0534970 + 0.0323160i
\(769\) 2.83204 + 1.03078i 0.102126 + 0.0371708i 0.392578 0.919719i \(-0.371583\pi\)
−0.290452 + 0.956890i \(0.593806\pi\)
\(770\) 1.04295 + 0.379604i 0.0375854 + 0.0136800i
\(771\) −18.2137 + 11.0024i −0.655949