Newspace parameters
Level: | \( N \) | \(=\) | \( 114 = 2 \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 114.l (of order \(18\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.910294583043\) |
Analytic rank: | \(0\) |
Dimension: | \(18\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{18})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{18} - x^{15} - 18 x^{14} + 36 x^{13} + 10 x^{12} + 18 x^{11} + 90 x^{10} - 567 x^{9} + 270 x^{8} + 162 x^{7} + 270 x^{6} + 2916 x^{5} - 4374 x^{4} - 729 x^{3} + 19683 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{18} - x^{15} - 18 x^{14} + 36 x^{13} + 10 x^{12} + 18 x^{11} + 90 x^{10} - 567 x^{9} + 270 x^{8} + 162 x^{7} + 270 x^{6} + 2916 x^{5} - 4374 x^{4} - 729 x^{3} + 19683 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - \nu^{17} + \nu^{14} + 18 \nu^{13} - 36 \nu^{12} - 10 \nu^{11} - 18 \nu^{10} - 90 \nu^{9} + 567 \nu^{8} - 270 \nu^{7} - 162 \nu^{6} - 270 \nu^{5} - 2916 \nu^{4} + 4374 \nu^{3} + 729 \nu^{2} ) / 6561 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 2 \nu^{17} + 21 \nu^{16} - 81 \nu^{15} + 97 \nu^{14} - 57 \nu^{13} - 198 \nu^{12} + 1568 \nu^{11} - 3075 \nu^{10} + 2313 \nu^{9} - 117 \nu^{8} - 9261 \nu^{7} + 29268 \nu^{6} - 31374 \nu^{5} + \cdots - 65610 ) / 4374 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 5 \nu^{17} + 99 \nu^{16} - 153 \nu^{15} - 22 \nu^{14} + 207 \nu^{13} - 1485 \nu^{12} + 4675 \nu^{11} - 2637 \nu^{10} - 4167 \nu^{9} + 10098 \nu^{8} - 38475 \nu^{7} + 51273 \nu^{6} + \cdots + 334611 ) / 13122 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{17} + 2 \nu^{16} - 27 \nu^{15} + 50 \nu^{14} - 47 \nu^{13} + 9 \nu^{12} + 409 \nu^{11} - 1366 \nu^{10} + 1629 \nu^{9} - 822 \nu^{8} - 1809 \nu^{7} + 11025 \nu^{6} - 19359 \nu^{5} + 12420 \nu^{4} + \cdots - 72171 ) / 1458 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 16 \nu^{17} + 81 \nu^{16} + 36 \nu^{15} - 335 \nu^{14} + 477 \nu^{13} - 1422 \nu^{12} + 1406 \nu^{11} + 6165 \nu^{10} - 12420 \nu^{9} + 12609 \nu^{8} - 20493 \nu^{7} - 25272 \nu^{6} + \cdots + 603612 ) / 13122 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 11 \nu^{17} - 3 \nu^{16} - 6 \nu^{15} + 92 \nu^{14} + 48 \nu^{13} - 255 \nu^{12} - 137 \nu^{11} - 1425 \nu^{10} + 3108 \nu^{9} + 1350 \nu^{8} - 504 \nu^{7} + 3645 \nu^{6} - 36045 \nu^{5} + \cdots - 225261 ) / 4374 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 5 \nu^{17} - 105 \nu^{16} + 90 \nu^{15} + 275 \nu^{14} - 318 \nu^{13} + 1296 \nu^{12} - 4181 \nu^{11} - 2247 \nu^{10} + 12492 \nu^{9} - 11367 \nu^{8} + 36126 \nu^{7} - 25110 \nu^{6} + \cdots - 787320 ) / 13122 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 11 \nu^{17} + 147 \nu^{16} - 216 \nu^{15} - 43 \nu^{14} + 375 \nu^{13} - 2259 \nu^{12} + 6451 \nu^{11} - 3183 \nu^{10} - 6660 \nu^{9} + 15525 \nu^{8} - 52947 \nu^{7} + 64233 \nu^{6} + \cdots + 452709 ) / 13122 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 17 \nu^{17} - 5 \nu^{16} + 99 \nu^{15} - 136 \nu^{14} + 284 \nu^{13} - 405 \nu^{12} - 1655 \nu^{11} + 4369 \nu^{10} - 4167 \nu^{9} + 5472 \nu^{8} + 5508 \nu^{7} - 41229 \nu^{6} + \cdots + 63423 ) / 4374 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 4 \nu^{17} + 17 \nu^{16} - 10 \nu^{15} - 23 \nu^{14} + 82 \nu^{13} - 332 \nu^{12} + 536 \nu^{11} + 197 \nu^{10} - 1234 \nu^{9} + 2619 \nu^{8} - 5760 \nu^{7} + 2430 \nu^{6} + 9666 \nu^{5} + \cdots + 56862 ) / 1458 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 23 \nu^{17} + 10 \nu^{16} + 6 \nu^{15} + 86 \nu^{14} + 161 \nu^{13} - 717 \nu^{12} - 41 \nu^{11} - 908 \nu^{10} + 2814 \nu^{9} + 4716 \nu^{8} - 4941 \nu^{7} - 1377 \nu^{6} - 32373 \nu^{5} + \cdots - 247131 ) / 4374 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 9 \nu^{17} - 4 \nu^{16} + 39 \nu^{15} - 21 \nu^{14} + 94 \nu^{13} - 174 \nu^{12} - 717 \nu^{11} + 1220 \nu^{10} - 393 \nu^{9} + 1797 \nu^{8} + 2520 \nu^{7} - 14598 \nu^{6} + 6345 \nu^{5} + \cdots - 34992 ) / 1458 \)
|
\(\beta_{14}\) | \(=\) |
\( ( - 76 \nu^{17} - 108 \nu^{16} + 459 \nu^{15} - 194 \nu^{14} + 747 \nu^{13} - 522 \nu^{12} - 9724 \nu^{11} + 13104 \nu^{10} - 1521 \nu^{9} + 9774 \nu^{8} + 50193 \nu^{7} - 167832 \nu^{6} + \cdots - 551124 ) / 13122 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 11 \nu^{17} - 17 \nu^{16} - 3 \nu^{15} + 13 \nu^{14} - 145 \nu^{13} + 525 \nu^{12} - 283 \nu^{11} - 413 \nu^{10} + 807 \nu^{9} - 4125 \nu^{8} + 5787 \nu^{7} + 2817 \nu^{6} - 5103 \nu^{5} + \cdots + 10935 ) / 1458 \)
|
\(\beta_{16}\) | \(=\) |
\( ( 103 \nu^{17} - 99 \nu^{16} - 27 \nu^{15} - 157 \nu^{14} - 1026 \nu^{13} + 4140 \nu^{12} - 1265 \nu^{11} + 621 \nu^{10} - 3555 \nu^{9} - 30429 \nu^{8} + 39960 \nu^{7} + 12150 \nu^{6} + \cdots + 669222 ) / 13122 \)
|
\(\beta_{17}\) | \(=\) |
\( ( - 17 \nu^{17} + 10 \nu^{16} + 27 \nu^{15} - 10 \nu^{14} + 188 \nu^{13} - 576 \nu^{12} - 269 \nu^{11} + 874 \nu^{10} - 351 \nu^{9} + 4680 \nu^{8} - 3078 \nu^{7} - 10746 \nu^{6} + 1161 \nu^{5} + \cdots - 78732 ) / 1458 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{16} + \beta_{15} + \beta_{9} - \beta_{8} - 2\beta_{4} \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{15} + \beta_{14} - 4\beta_{7} - 2\beta_{6} + \beta_{5} + \beta_{3} + 2\beta_{2} \)
|
\(\nu^{4}\) | \(=\) |
\( - \beta_{17} + \beta_{13} + \beta_{12} + 2 \beta_{11} + 2 \beta_{10} - 3 \beta_{7} - 3 \beta_{6} + 2 \beta_{5} - 3 \beta_{2} + \beta _1 + 2 \)
|
\(\nu^{5}\) | \(=\) |
\( - 3 \beta_{17} - 2 \beta_{16} + \beta_{15} + 3 \beta_{13} + 3 \beta_{10} - \beta_{9} - 2 \beta_{8} + 3 \beta_{5} + 2 \beta_{4} + \beta_{3} + 6 \beta _1 - 12 \)
|
\(\nu^{6}\) | \(=\) |
\( - 9 \beta_{16} + 10 \beta_{15} + 2 \beta_{14} - \beta_{13} - 3 \beta_{12} + 3 \beta_{11} + 3 \beta_{10} - 2 \beta_{7} + 2 \beta_{6} + 5 \beta_{3} + \beta_{2} - 9 \beta _1 - 6 \)
|
\(\nu^{7}\) | \(=\) |
\( - 4 \beta_{17} + 9 \beta_{16} - 9 \beta_{15} + 15 \beta_{14} - 7 \beta_{13} + 2 \beta_{12} + 4 \beta_{11} + \beta_{10} - 9 \beta_{9} + 18 \beta_{8} - 12 \beta_{7} + 7 \beta_{5} + 36 \beta_{4} + 15 \beta_{2} - 3 \beta _1 - 2 \)
|
\(\nu^{8}\) | \(=\) |
\( - 18 \beta_{17} - \beta_{16} + 15 \beta_{15} - 9 \beta_{14} + 21 \beta_{12} + 24 \beta_{11} + 21 \beta_{10} - 11 \beta_{9} + 5 \beta_{8} + 36 \beta_{7} + 18 \beta_{6} + 3 \beta_{5} + 7 \beta_{4} - 14 \beta_{3} - 18 \beta_{2} + 9 \beta_1 \)
|
\(\nu^{9}\) | \(=\) |
\( - 27 \beta_{17} - 27 \beta_{16} + 11 \beta_{15} + \beta_{14} - 4 \beta_{13} + 3 \beta_{12} - 30 \beta_{11} + 6 \beta_{10} - 27 \beta_{9} - 36 \beta_{8} + 74 \beta_{7} + 76 \beta_{6} - 7 \beta_{5} + 13 \beta_{3} + 44 \beta_{2} + 27 \beta _1 - 30 \)
|
\(\nu^{10}\) | \(=\) |
\( 33 \beta_{17} - 54 \beta_{16} + 63 \beta_{15} + 24 \beta_{14} - 89 \beta_{13} + \beta_{12} + 2 \beta_{11} - 10 \beta_{10} - 27 \beta_{9} + 18 \beta_{8} + 9 \beta_{7} + 66 \beta_{6} - 76 \beta_{5} - 18 \beta_{4} + 63 \beta_{3} + 9 \beta_{2} - 67 \beta _1 + 140 \)
|
\(\nu^{11}\) | \(=\) |
\( - 15 \beta_{17} + 100 \beta_{16} - 103 \beta_{15} + 126 \beta_{14} - 129 \beta_{13} + 102 \beta_{12} - 30 \beta_{11} - 63 \beta_{10} - \beta_{9} - 2 \beta_{8} - 18 \beta_{7} + 18 \beta_{6} - 9 \beta_{5} + 68 \beta_{4} - 51 \beta_{3} + 63 \beta_{2} + \cdots + 120 \)
|
\(\nu^{12}\) | \(=\) |
\( - 90 \beta_{17} - 81 \beta_{16} + 136 \beta_{15} - 154 \beta_{14} + 33 \beta_{13} + 249 \beta_{12} + 129 \beta_{11} + 111 \beta_{10} + 36 \beta_{9} - 342 \beta_{8} + 148 \beta_{7} + 2 \beta_{6} - 34 \beta_{5} - 612 \beta_{4} + 17 \beta_{3} + \cdots - 51 \)
|
\(\nu^{13}\) | \(=\) |
\( - 62 \beta_{17} - 171 \beta_{16} - 189 \beta_{15} + 153 \beta_{14} - 19 \beta_{13} - 100 \beta_{12} - 362 \beta_{11} - 101 \beta_{10} - 99 \beta_{9} - 648 \beta_{8} - 96 \beta_{7} - 6 \beta_{6} - 29 \beta_{5} - 486 \beta_{4} + 432 \beta_{3} + \cdots - 2 \)
|
\(\nu^{14}\) | \(=\) |
\( 372 \beta_{17} - 106 \beta_{16} + 206 \beta_{15} + 243 \beta_{14} - 426 \beta_{13} + 9 \beta_{12} + 450 \beta_{11} - 39 \beta_{10} - 80 \beta_{9} + 380 \beta_{8} - 1026 \beta_{7} - 756 \beta_{6} - 525 \beta_{5} - 29 \beta_{4} + 710 \beta_{3} + \cdots + 354 \)
|
\(\nu^{15}\) | \(=\) |
\( - 351 \beta_{17} + 765 \beta_{16} - 802 \beta_{15} + 916 \beta_{14} + 46 \beta_{13} + 327 \beta_{12} + 402 \beta_{11} - 624 \beta_{10} + 351 \beta_{9} - 378 \beta_{8} - 376 \beta_{7} - 974 \beta_{6} + 522 \beta_{5} + 270 \beta_{4} + \cdots - 2208 \)
|
\(\nu^{16}\) | \(=\) |
\( - 878 \beta_{17} - 630 \beta_{16} + 927 \beta_{15} - 1554 \beta_{14} + 1726 \beta_{13} + 430 \beta_{12} + 2318 \beta_{11} + 998 \beta_{10} - 423 \beta_{9} - 558 \beta_{8} + 390 \beta_{7} - 351 \beta_{6} + 326 \beta_{5} + \cdots - 4210 \)
|
\(\nu^{17}\) | \(=\) |
\( - 918 \beta_{17} + 406 \beta_{16} - 3786 \beta_{15} + 1656 \beta_{14} - 378 \beta_{13} - 3126 \beta_{12} - 1536 \beta_{11} - 1074 \beta_{10} - 3040 \beta_{9} + 1750 \beta_{8} + 504 \beta_{7} + 738 \beta_{6} - 192 \beta_{5} + \cdots + 54 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).
\(n\) | \(77\) | \(97\) |
\(\chi(n)\) | \(-1\) | \(-\beta_{4} - \beta_{8}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 |
|
−0.173648 | − | 0.984808i | −0.716422 | + | 1.57694i | −0.939693 | + | 0.342020i | −1.14133 | + | 3.13578i | 1.67739 | + | 0.431705i | −1.07356 | + | 1.85947i | 0.500000 | + | 0.866025i | −1.97348 | − | 2.25951i | 3.28633 | + | 0.579469i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
29.2 | −0.173648 | − | 0.984808i | −0.0553136 | − | 1.73117i | −0.939693 | + | 0.342020i | 0.882820 | − | 2.42553i | −1.69526 | + | 0.355087i | −1.58376 | + | 2.74316i | 0.500000 | + | 0.866025i | −2.99388 | + | 0.191514i | −2.54198 | − | 0.448219i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
29.3 | −0.173648 | − | 0.984808i | 1.53778 | + | 0.797015i | −0.939693 | + | 0.342020i | 0.258510 | − | 0.710252i | 0.517874 | − | 1.65282i | 0.777943 | − | 1.34744i | 0.500000 | + | 0.866025i | 1.72953 | + | 2.45127i | −0.744351 | − | 0.131249i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
41.1 | −0.766044 | − | 0.642788i | −1.67151 | + | 0.453924i | 0.173648 | + | 0.984808i | 1.96615 | + | 0.346685i | 1.57223 | + | 0.726702i | 0.910931 | + | 1.57778i | 0.500000 | − | 0.866025i | 2.58791 | − | 1.51748i | −1.28331 | − | 1.52939i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
41.2 | −0.766044 | − | 0.642788i | −0.845418 | − | 1.51171i | 0.173648 | + | 0.984808i | −2.22841 | − | 0.392929i | −0.324081 | + | 1.70146i | −1.16829 | − | 2.02354i | 0.500000 | − | 0.866025i | −1.57054 | + | 2.55605i | 1.45449 | + | 1.73339i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
41.3 | −0.766044 | − | 0.642788i | 1.57724 | + | 0.715766i | 0.173648 | + | 0.984808i | 0.262261 | + | 0.0462437i | −0.748148 | − | 1.56214i | 0.604656 | + | 1.04730i | 0.500000 | − | 0.866025i | 1.97536 | + | 2.25787i | −0.171179 | − | 0.204003i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
53.1 | 0.939693 | + | 0.342020i | −1.64823 | − | 0.532290i | 0.766044 | + | 0.642788i | 2.20556 | + | 2.62849i | −1.36678 | − | 1.06392i | 1.68651 | − | 2.92113i | 0.500000 | + | 0.866025i | 2.43333 | + | 1.75467i | 1.17355 | + | 3.22432i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
53.2 | 0.939693 | + | 0.342020i | 0.560041 | − | 1.63901i | 0.766044 | + | 0.642788i | −0.343148 | − | 0.408948i | 1.08684 | − | 1.34862i | −0.716507 | + | 1.24103i | 0.500000 | + | 0.866025i | −2.37271 | − | 1.83583i | −0.182585 | − | 0.501649i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
53.3 | 0.939693 | + | 0.342020i | 1.26184 | + | 1.18649i | 0.766044 | + | 0.642788i | −1.86241 | − | 2.21954i | 0.779936 | + | 1.54651i | 0.562083 | − | 0.973556i | 0.500000 | + | 0.866025i | 0.184473 | + | 2.99432i | −0.990970 | − | 2.72267i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
59.1 | −0.173648 | + | 0.984808i | −0.716422 | − | 1.57694i | −0.939693 | − | 0.342020i | −1.14133 | − | 3.13578i | 1.67739 | − | 0.431705i | −1.07356 | − | 1.85947i | 0.500000 | − | 0.866025i | −1.97348 | + | 2.25951i | 3.28633 | − | 0.579469i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
59.2 | −0.173648 | + | 0.984808i | −0.0553136 | + | 1.73117i | −0.939693 | − | 0.342020i | 0.882820 | + | 2.42553i | −1.69526 | − | 0.355087i | −1.58376 | − | 2.74316i | 0.500000 | − | 0.866025i | −2.99388 | − | 0.191514i | −2.54198 | + | 0.448219i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
59.3 | −0.173648 | + | 0.984808i | 1.53778 | − | 0.797015i | −0.939693 | − | 0.342020i | 0.258510 | + | 0.710252i | 0.517874 | + | 1.65282i | 0.777943 | + | 1.34744i | 0.500000 | − | 0.866025i | 1.72953 | − | 2.45127i | −0.744351 | + | 0.131249i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
71.1 | 0.939693 | − | 0.342020i | −1.64823 | + | 0.532290i | 0.766044 | − | 0.642788i | 2.20556 | − | 2.62849i | −1.36678 | + | 1.06392i | 1.68651 | + | 2.92113i | 0.500000 | − | 0.866025i | 2.43333 | − | 1.75467i | 1.17355 | − | 3.22432i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
71.2 | 0.939693 | − | 0.342020i | 0.560041 | + | 1.63901i | 0.766044 | − | 0.642788i | −0.343148 | + | 0.408948i | 1.08684 | + | 1.34862i | −0.716507 | − | 1.24103i | 0.500000 | − | 0.866025i | −2.37271 | + | 1.83583i | −0.182585 | + | 0.501649i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
71.3 | 0.939693 | − | 0.342020i | 1.26184 | − | 1.18649i | 0.766044 | − | 0.642788i | −1.86241 | + | 2.21954i | 0.779936 | − | 1.54651i | 0.562083 | + | 0.973556i | 0.500000 | − | 0.866025i | 0.184473 | − | 2.99432i | −0.990970 | + | 2.72267i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
89.1 | −0.766044 | + | 0.642788i | −1.67151 | − | 0.453924i | 0.173648 | − | 0.984808i | 1.96615 | − | 0.346685i | 1.57223 | − | 0.726702i | 0.910931 | − | 1.57778i | 0.500000 | + | 0.866025i | 2.58791 | + | 1.51748i | −1.28331 | + | 1.52939i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
89.2 | −0.766044 | + | 0.642788i | −0.845418 | + | 1.51171i | 0.173648 | − | 0.984808i | −2.22841 | + | 0.392929i | −0.324081 | − | 1.70146i | −1.16829 | + | 2.02354i | 0.500000 | + | 0.866025i | −1.57054 | − | 2.55605i | 1.45449 | − | 1.73339i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
89.3 | −0.766044 | + | 0.642788i | 1.57724 | − | 0.715766i | 0.173648 | − | 0.984808i | 0.262261 | − | 0.0462437i | −0.748148 | + | 1.56214i | 0.604656 | − | 1.04730i | 0.500000 | + | 0.866025i | 1.97536 | − | 2.25787i | −0.171179 | + | 0.204003i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
57.j | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 114.2.l.a | ✓ | 18 |
3.b | odd | 2 | 1 | 114.2.l.b | yes | 18 | |
4.b | odd | 2 | 1 | 912.2.cc.d | 18 | ||
12.b | even | 2 | 1 | 912.2.cc.c | 18 | ||
19.f | odd | 18 | 1 | 114.2.l.b | yes | 18 | |
57.j | even | 18 | 1 | inner | 114.2.l.a | ✓ | 18 |
76.k | even | 18 | 1 | 912.2.cc.c | 18 | ||
228.u | odd | 18 | 1 | 912.2.cc.d | 18 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
114.2.l.a | ✓ | 18 | 1.a | even | 1 | 1 | trivial |
114.2.l.a | ✓ | 18 | 57.j | even | 18 | 1 | inner |
114.2.l.b | yes | 18 | 3.b | odd | 2 | 1 | |
114.2.l.b | yes | 18 | 19.f | odd | 18 | 1 | |
912.2.cc.c | 18 | 12.b | even | 2 | 1 | ||
912.2.cc.c | 18 | 76.k | even | 18 | 1 | ||
912.2.cc.d | 18 | 4.b | odd | 2 | 1 | ||
912.2.cc.d | 18 | 228.u | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{18} + 9 T_{5}^{16} + 108 T_{5}^{14} + 162 T_{5}^{13} + 46 T_{5}^{12} - 324 T_{5}^{11} - 1458 T_{5}^{10} + 1458 T_{5}^{9} - 30258 T_{5}^{8} - 5202 T_{5}^{7} + 141193 T_{5}^{6} - 60552 T_{5}^{5} + 70344 T_{5}^{4} + \cdots + 1728 \)
acting on \(S_{2}^{\mathrm{new}}(114, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{6} - T^{3} + 1)^{3} \)
$3$
\( T^{18} + T^{15} + 18 T^{13} + 10 T^{12} + \cdots + 19683 \)
$5$
\( T^{18} + 9 T^{16} + 108 T^{14} + \cdots + 1728 \)
$7$
\( T^{18} + 21 T^{16} - 4 T^{15} + \cdots + 87616 \)
$11$
\( T^{18} - 51 T^{16} + 1884 T^{14} + \cdots + 35769627 \)
$13$
\( T^{18} + 12 T^{17} + 27 T^{16} + \cdots + 2365632 \)
$17$
\( T^{18} + 6 T^{17} + 21 T^{16} + \cdots + 3878307 \)
$19$
\( T^{18} + 6 T^{17} + \cdots + 322687697779 \)
$23$
\( T^{18} - 105 T^{16} + \cdots + 123187392 \)
$29$
\( T^{18} - 6 T^{17} + \cdots + 52719833664 \)
$31$
\( T^{18} - 165 T^{16} + \cdots + 6231379854528 \)
$37$
\( T^{18} + 342 T^{16} + \cdots + 7868768303808 \)
$41$
\( T^{18} + 3 T^{17} + \cdots + 1846709769969 \)
$43$
\( T^{18} + 6 T^{17} + \cdots + 390621250009 \)
$47$
\( T^{18} + 30 T^{17} + \cdots + 3499077312 \)
$53$
\( T^{18} - 60 T^{17} + \cdots + 3426463296 \)
$59$
\( T^{18} + 3 T^{17} + \cdots + 38983402581561 \)
$61$
\( T^{18} - 54 T^{17} + \cdots + 65033160256 \)
$67$
\( T^{18} + 15 T^{17} + \cdots + 56\!\cdots\!23 \)
$71$
\( T^{18} + 36 T^{17} + \cdots + 404099233344 \)
$73$
\( T^{18} + 42 T^{17} + \cdots + 192753487369 \)
$79$
\( T^{18} + 6 T^{17} + \cdots + 21259626441408 \)
$83$
\( T^{18} + \cdots + 176145902499843 \)
$89$
\( T^{18} + \cdots + 381874169643201 \)
$97$
\( T^{18} - 9 T^{17} + \cdots + 17447631785307 \)
show more
show less