Properties

 Label 114.2.i.d.85.1 Level $114$ Weight $2$ Character 114.85 Analytic conductor $0.910$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [114,2,Mod(25,114)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(114, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([0, 14]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("114.25");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$114 = 2 \cdot 3 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 114.i (of order $$9$$, degree $$6$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.910294583043$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

 Embedding label 85.1 Root $$-0.173648 - 0.984808i$$ of defining polynomial Character $$\chi$$ $$=$$ 114.85 Dual form 114.2.i.d.55.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.173648 - 0.984808i) q^{2} +(-0.766044 + 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(3.20574 + 1.16679i) q^{5} +(0.766044 + 0.642788i) q^{6} +(1.43969 - 2.49362i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.173648 - 0.984808i) q^{9} +O(q^{10})$$ $$q+(-0.173648 - 0.984808i) q^{2} +(-0.766044 + 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(3.20574 + 1.16679i) q^{5} +(0.766044 + 0.642788i) q^{6} +(1.43969 - 2.49362i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.173648 - 0.984808i) q^{9} +(0.592396 - 3.35965i) q^{10} +(0.173648 + 0.300767i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-1.26604 - 1.06234i) q^{13} +(-2.70574 - 0.984808i) q^{14} +(-3.20574 + 1.16679i) q^{15} +(0.766044 - 0.642788i) q^{16} +(1.20574 + 6.83807i) q^{17} -1.00000 q^{18} +(-2.82635 - 3.31839i) q^{19} -3.41147 q^{20} +(0.500000 + 2.83564i) q^{21} +(0.266044 - 0.223238i) q^{22} +(-6.39053 + 2.32596i) q^{23} +(-0.939693 - 0.342020i) q^{24} +(5.08512 + 4.26692i) q^{25} +(-0.826352 + 1.43128i) q^{26} +(0.500000 + 0.866025i) q^{27} +(-0.500000 + 2.83564i) q^{28} +(1.10354 - 6.25849i) q^{29} +(1.70574 + 2.95442i) q^{30} +(-0.798133 + 1.38241i) q^{31} +(-0.766044 - 0.642788i) q^{32} +(-0.326352 - 0.118782i) q^{33} +(6.52481 - 2.37484i) q^{34} +(7.52481 - 6.31407i) q^{35} +(0.173648 + 0.984808i) q^{36} -11.2121 q^{37} +(-2.77719 + 3.35965i) q^{38} +1.65270 q^{39} +(0.592396 + 3.35965i) q^{40} +(-2.67365 + 2.24346i) q^{41} +(2.70574 - 0.984808i) q^{42} +(-2.14543 - 0.780873i) q^{43} +(-0.266044 - 0.223238i) q^{44} +(1.70574 - 2.95442i) q^{45} +(3.40033 + 5.88954i) q^{46} +(0.971782 - 5.51125i) q^{47} +(-0.173648 + 0.984808i) q^{48} +(-0.645430 - 1.11792i) q^{49} +(3.31908 - 5.74881i) q^{50} +(-5.31908 - 4.46324i) q^{51} +(1.55303 + 0.565258i) q^{52} +(-1.86097 + 0.677337i) q^{53} +(0.766044 - 0.642788i) q^{54} +(0.205737 + 1.16679i) q^{55} +2.87939 q^{56} +(4.29813 + 0.725293i) q^{57} -6.35504 q^{58} +(0.0773815 + 0.438852i) q^{59} +(2.61334 - 2.19285i) q^{60} +(11.7763 - 4.28623i) q^{61} +(1.50000 + 0.545955i) q^{62} +(-2.20574 - 1.85083i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-2.81908 - 4.88279i) q^{65} +(-0.0603074 + 0.342020i) q^{66} +(-0.187319 + 1.06234i) q^{67} +(-3.47178 - 6.01330i) q^{68} +(3.40033 - 5.88954i) q^{69} +(-7.52481 - 6.31407i) q^{70} +(15.6211 + 5.68561i) q^{71} +(0.939693 - 0.342020i) q^{72} +(9.51367 - 7.98292i) q^{73} +(1.94697 + 11.0418i) q^{74} -6.63816 q^{75} +(3.79086 + 2.15160i) q^{76} +1.00000 q^{77} +(-0.286989 - 1.62760i) q^{78} +(-8.36824 + 7.02179i) q^{79} +(3.20574 - 1.16679i) q^{80} +(-0.939693 - 0.342020i) q^{81} +(2.67365 + 2.24346i) q^{82} +(-5.85844 + 10.1471i) q^{83} +(-1.43969 - 2.49362i) q^{84} +(-4.11334 + 23.3279i) q^{85} +(-0.396459 + 2.24843i) q^{86} +(3.17752 + 5.50362i) q^{87} +(-0.173648 + 0.300767i) q^{88} +(1.37346 + 1.15247i) q^{89} +(-3.20574 - 1.16679i) q^{90} +(-4.47178 + 1.62760i) q^{91} +(5.20961 - 4.37138i) q^{92} +(-0.277189 - 1.57202i) q^{93} -5.59627 q^{94} +(-5.18866 - 13.9357i) q^{95} +1.00000 q^{96} +(0.634285 + 3.59721i) q^{97} +(-0.988856 + 0.829748i) q^{98} +(0.326352 - 0.118782i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 9 q^{5} + 3 q^{7} + 3 q^{8}+O(q^{10})$$ 6 * q + 9 * q^5 + 3 * q^7 + 3 * q^8 $$6 q + 9 q^{5} + 3 q^{7} + 3 q^{8} + 3 q^{12} - 3 q^{13} - 6 q^{14} - 9 q^{15} - 3 q^{17} - 6 q^{18} - 18 q^{19} + 3 q^{21} - 3 q^{22} - 21 q^{23} + 9 q^{25} - 6 q^{26} + 3 q^{27} - 3 q^{28} - 3 q^{29} + 9 q^{31} - 3 q^{33} + 12 q^{34} + 18 q^{35} - 18 q^{37} - 6 q^{38} + 12 q^{39} - 15 q^{41} + 6 q^{42} + 3 q^{43} + 3 q^{44} + 6 q^{46} - 9 q^{47} + 12 q^{49} + 3 q^{50} - 15 q^{51} - 3 q^{52} + 12 q^{53} - 9 q^{55} + 6 q^{56} + 12 q^{57} + 12 q^{58} + 27 q^{59} + 9 q^{60} + 3 q^{61} + 9 q^{62} - 3 q^{63} - 3 q^{64} - 6 q^{66} + 21 q^{67} - 6 q^{68} + 6 q^{69} - 18 q^{70} + 39 q^{71} + 36 q^{73} + 24 q^{74} - 6 q^{75} - 9 q^{76} + 6 q^{77} + 6 q^{78} - 45 q^{79} + 9 q^{80} + 15 q^{82} - 27 q^{83} - 3 q^{84} - 18 q^{85} - 12 q^{86} - 6 q^{87} - 30 q^{89} - 9 q^{90} - 12 q^{91} - 3 q^{92} + 9 q^{93} - 6 q^{94} + 6 q^{96} - 6 q^{97} - 12 q^{98} + 3 q^{99}+O(q^{100})$$ 6 * q + 9 * q^5 + 3 * q^7 + 3 * q^8 + 3 * q^12 - 3 * q^13 - 6 * q^14 - 9 * q^15 - 3 * q^17 - 6 * q^18 - 18 * q^19 + 3 * q^21 - 3 * q^22 - 21 * q^23 + 9 * q^25 - 6 * q^26 + 3 * q^27 - 3 * q^28 - 3 * q^29 + 9 * q^31 - 3 * q^33 + 12 * q^34 + 18 * q^35 - 18 * q^37 - 6 * q^38 + 12 * q^39 - 15 * q^41 + 6 * q^42 + 3 * q^43 + 3 * q^44 + 6 * q^46 - 9 * q^47 + 12 * q^49 + 3 * q^50 - 15 * q^51 - 3 * q^52 + 12 * q^53 - 9 * q^55 + 6 * q^56 + 12 * q^57 + 12 * q^58 + 27 * q^59 + 9 * q^60 + 3 * q^61 + 9 * q^62 - 3 * q^63 - 3 * q^64 - 6 * q^66 + 21 * q^67 - 6 * q^68 + 6 * q^69 - 18 * q^70 + 39 * q^71 + 36 * q^73 + 24 * q^74 - 6 * q^75 - 9 * q^76 + 6 * q^77 + 6 * q^78 - 45 * q^79 + 9 * q^80 + 15 * q^82 - 27 * q^83 - 3 * q^84 - 18 * q^85 - 12 * q^86 - 6 * q^87 - 30 * q^89 - 9 * q^90 - 12 * q^91 - 3 * q^92 + 9 * q^93 - 6 * q^94 + 6 * q^96 - 6 * q^97 - 12 * q^98 + 3 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/114\mathbb{Z}\right)^\times$$.

 $$n$$ $$77$$ $$97$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{4}{9}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.173648 0.984808i −0.122788 0.696364i
$$3$$ −0.766044 + 0.642788i −0.442276 + 0.371114i
$$4$$ −0.939693 + 0.342020i −0.469846 + 0.171010i
$$5$$ 3.20574 + 1.16679i 1.43365 + 0.521806i 0.937975 0.346703i $$-0.112699\pi$$
0.495674 + 0.868509i $$0.334921\pi$$
$$6$$ 0.766044 + 0.642788i 0.312736 + 0.262417i
$$7$$ 1.43969 2.49362i 0.544153 0.942500i −0.454507 0.890743i $$-0.650185\pi$$
0.998660 0.0517569i $$-0.0164821\pi$$
$$8$$ 0.500000 + 0.866025i 0.176777 + 0.306186i
$$9$$ 0.173648 0.984808i 0.0578827 0.328269i
$$10$$ 0.592396 3.35965i 0.187332 1.06241i
$$11$$ 0.173648 + 0.300767i 0.0523569 + 0.0906848i 0.891016 0.453972i $$-0.149993\pi$$
−0.838659 + 0.544657i $$0.816660\pi$$
$$12$$ 0.500000 0.866025i 0.144338 0.250000i
$$13$$ −1.26604 1.06234i −0.351138 0.294639i 0.450109 0.892974i $$-0.351385\pi$$
−0.801247 + 0.598334i $$0.795830\pi$$
$$14$$ −2.70574 0.984808i −0.723139 0.263201i
$$15$$ −3.20574 + 1.16679i −0.827718 + 0.301265i
$$16$$ 0.766044 0.642788i 0.191511 0.160697i
$$17$$ 1.20574 + 6.83807i 0.292434 + 1.65848i 0.677452 + 0.735567i $$0.263084\pi$$
−0.385017 + 0.922909i $$0.625805\pi$$
$$18$$ −1.00000 −0.235702
$$19$$ −2.82635 3.31839i −0.648410 0.761292i
$$20$$ −3.41147 −0.762829
$$21$$ 0.500000 + 2.83564i 0.109109 + 0.618788i
$$22$$ 0.266044 0.223238i 0.0567209 0.0475945i
$$23$$ −6.39053 + 2.32596i −1.33252 + 0.484997i −0.907448 0.420164i $$-0.861973\pi$$
−0.425069 + 0.905161i $$0.639750\pi$$
$$24$$ −0.939693 0.342020i −0.191814 0.0698146i
$$25$$ 5.08512 + 4.26692i 1.01702 + 0.853385i
$$26$$ −0.826352 + 1.43128i −0.162061 + 0.280698i
$$27$$ 0.500000 + 0.866025i 0.0962250 + 0.166667i
$$28$$ −0.500000 + 2.83564i −0.0944911 + 0.535886i
$$29$$ 1.10354 6.25849i 0.204922 1.16217i −0.692640 0.721284i $$-0.743552\pi$$
0.897562 0.440888i $$-0.145337\pi$$
$$30$$ 1.70574 + 2.95442i 0.311424 + 0.539401i
$$31$$ −0.798133 + 1.38241i −0.143349 + 0.248288i −0.928756 0.370692i $$-0.879120\pi$$
0.785407 + 0.618980i $$0.212454\pi$$
$$32$$ −0.766044 0.642788i −0.135419 0.113630i
$$33$$ −0.326352 0.118782i −0.0568106 0.0206774i
$$34$$ 6.52481 2.37484i 1.11900 0.407281i
$$35$$ 7.52481 6.31407i 1.27193 1.06727i
$$36$$ 0.173648 + 0.984808i 0.0289414 + 0.164135i
$$37$$ −11.2121 −1.84326 −0.921632 0.388066i $$-0.873143\pi$$
−0.921632 + 0.388066i $$0.873143\pi$$
$$38$$ −2.77719 + 3.35965i −0.450520 + 0.545007i
$$39$$ 1.65270 0.264644
$$40$$ 0.592396 + 3.35965i 0.0936661 + 0.531207i
$$41$$ −2.67365 + 2.24346i −0.417554 + 0.350369i −0.827232 0.561861i $$-0.810086\pi$$
0.409678 + 0.912230i $$0.365641\pi$$
$$42$$ 2.70574 0.984808i 0.417504 0.151959i
$$43$$ −2.14543 0.780873i −0.327175 0.119082i 0.173210 0.984885i $$-0.444586\pi$$
−0.500385 + 0.865803i $$0.666808\pi$$
$$44$$ −0.266044 0.223238i −0.0401077 0.0336544i
$$45$$ 1.70574 2.95442i 0.254276 0.440419i
$$46$$ 3.40033 + 5.88954i 0.501351 + 0.868366i
$$47$$ 0.971782 5.51125i 0.141749 0.803898i −0.828171 0.560475i $$-0.810619\pi$$
0.969920 0.243423i $$-0.0782703\pi$$
$$48$$ −0.173648 + 0.984808i −0.0250640 + 0.142145i
$$49$$ −0.645430 1.11792i −0.0922042 0.159702i
$$50$$ 3.31908 5.74881i 0.469388 0.813005i
$$51$$ −5.31908 4.46324i −0.744820 0.624978i
$$52$$ 1.55303 + 0.565258i 0.215367 + 0.0783872i
$$53$$ −1.86097 + 0.677337i −0.255623 + 0.0930393i −0.466653 0.884440i $$-0.654540\pi$$
0.211030 + 0.977480i $$0.432318\pi$$
$$54$$ 0.766044 0.642788i 0.104245 0.0874723i
$$55$$ 0.205737 + 1.16679i 0.0277416 + 0.157330i
$$56$$ 2.87939 0.384774
$$57$$ 4.29813 + 0.725293i 0.569302 + 0.0960674i
$$58$$ −6.35504 −0.834457
$$59$$ 0.0773815 + 0.438852i 0.0100742 + 0.0571337i 0.989430 0.145008i $$-0.0463209\pi$$
−0.979356 + 0.202142i $$0.935210\pi$$
$$60$$ 2.61334 2.19285i 0.337381 0.283096i
$$61$$ 11.7763 4.28623i 1.50780 0.548795i 0.549735 0.835339i $$-0.314729\pi$$
0.958067 + 0.286544i $$0.0925064\pi$$
$$62$$ 1.50000 + 0.545955i 0.190500 + 0.0693364i
$$63$$ −2.20574 1.85083i −0.277897 0.233183i
$$64$$ −0.500000 + 0.866025i −0.0625000 + 0.108253i
$$65$$ −2.81908 4.88279i −0.349664 0.605635i
$$66$$ −0.0603074 + 0.342020i −0.00742333 + 0.0420998i
$$67$$ −0.187319 + 1.06234i −0.0228846 + 0.129785i −0.994110 0.108378i $$-0.965434\pi$$
0.971225 + 0.238163i $$0.0765454\pi$$
$$68$$ −3.47178 6.01330i −0.421015 0.729220i
$$69$$ 3.40033 5.88954i 0.409352 0.709018i
$$70$$ −7.52481 6.31407i −0.899387 0.754676i
$$71$$ 15.6211 + 5.68561i 1.85388 + 0.674758i 0.983095 + 0.183096i $$0.0586119\pi$$
0.870786 + 0.491662i $$0.163610\pi$$
$$72$$ 0.939693 0.342020i 0.110744 0.0403075i
$$73$$ 9.51367 7.98292i 1.11349 0.934330i 0.115233 0.993338i $$-0.463238\pi$$
0.998257 + 0.0590086i $$0.0187939\pi$$
$$74$$ 1.94697 + 11.0418i 0.226330 + 1.28358i
$$75$$ −6.63816 −0.766508
$$76$$ 3.79086 + 2.15160i 0.434841 + 0.246806i
$$77$$ 1.00000 0.113961
$$78$$ −0.286989 1.62760i −0.0324951 0.184289i
$$79$$ −8.36824 + 7.02179i −0.941501 + 0.790013i −0.977846 0.209326i $$-0.932873\pi$$
0.0363452 + 0.999339i $$0.488428\pi$$
$$80$$ 3.20574 1.16679i 0.358412 0.130451i
$$81$$ −0.939693 0.342020i −0.104410 0.0380022i
$$82$$ 2.67365 + 2.24346i 0.295255 + 0.247748i
$$83$$ −5.85844 + 10.1471i −0.643047 + 1.11379i 0.341701 + 0.939809i $$0.388997\pi$$
−0.984749 + 0.173982i $$0.944336\pi$$
$$84$$ −1.43969 2.49362i −0.157083 0.272076i
$$85$$ −4.11334 + 23.3279i −0.446154 + 2.53027i
$$86$$ −0.396459 + 2.24843i −0.0427513 + 0.242455i
$$87$$ 3.17752 + 5.50362i 0.340666 + 0.590050i
$$88$$ −0.173648 + 0.300767i −0.0185110 + 0.0320619i
$$89$$ 1.37346 + 1.15247i 0.145586 + 0.122161i 0.712672 0.701497i $$-0.247485\pi$$
−0.567086 + 0.823659i $$0.691929\pi$$
$$90$$ −3.20574 1.16679i −0.337914 0.122991i
$$91$$ −4.47178 + 1.62760i −0.468770 + 0.170618i
$$92$$ 5.20961 4.37138i 0.543139 0.455748i
$$93$$ −0.277189 1.57202i −0.0287431 0.163010i
$$94$$ −5.59627 −0.577211
$$95$$ −5.18866 13.9357i −0.532346 1.42977i
$$96$$ 1.00000 0.102062
$$97$$ 0.634285 + 3.59721i 0.0644019 + 0.365241i 0.999928 + 0.0119843i $$0.00381481\pi$$
−0.935526 + 0.353257i $$0.885074\pi$$
$$98$$ −0.988856 + 0.829748i −0.0998895 + 0.0838172i
$$99$$ 0.326352 0.118782i 0.0327996 0.0119381i
$$100$$ −6.23783 2.27038i −0.623783 0.227038i
$$101$$ −7.58899 6.36792i −0.755133 0.633632i 0.181722 0.983350i $$-0.441833\pi$$
−0.936855 + 0.349718i $$0.886277\pi$$
$$102$$ −3.47178 + 6.01330i −0.343758 + 0.595406i
$$103$$ −3.92262 6.79417i −0.386507 0.669450i 0.605470 0.795868i $$-0.292985\pi$$
−0.991977 + 0.126418i $$0.959652\pi$$
$$104$$ 0.286989 1.62760i 0.0281416 0.159599i
$$105$$ −1.70574 + 9.67372i −0.166463 + 0.944058i
$$106$$ 0.990200 + 1.71508i 0.0961767 + 0.166583i
$$107$$ 0.0136706 0.0236781i 0.00132158 0.00228905i −0.865364 0.501144i $$-0.832913\pi$$
0.866685 + 0.498855i $$0.166246\pi$$
$$108$$ −0.766044 0.642788i −0.0737127 0.0618523i
$$109$$ 10.1236 + 3.68469i 0.969666 + 0.352929i 0.777814 0.628494i $$-0.216329\pi$$
0.191852 + 0.981424i $$0.438551\pi$$
$$110$$ 1.11334 0.405223i 0.106153 0.0386365i
$$111$$ 8.58899 7.20702i 0.815231 0.684060i
$$112$$ −0.500000 2.83564i −0.0472456 0.267943i
$$113$$ −11.6604 −1.09692 −0.548461 0.836176i $$-0.684786\pi$$
−0.548461 + 0.836176i $$0.684786\pi$$
$$114$$ −0.0320889 4.35878i −0.00300540 0.408237i
$$115$$ −23.2003 −2.16344
$$116$$ 1.10354 + 6.25849i 0.102461 + 0.581086i
$$117$$ −1.26604 + 1.06234i −0.117046 + 0.0982131i
$$118$$ 0.418748 0.152412i 0.0385489 0.0140306i
$$119$$ 18.7875 + 6.83807i 1.72224 + 0.626845i
$$120$$ −2.61334 2.19285i −0.238564 0.200179i
$$121$$ 5.43969 9.42182i 0.494518 0.856529i
$$122$$ −6.26604 10.8531i −0.567301 0.982594i
$$123$$ 0.606067 3.43718i 0.0546472 0.309920i
$$124$$ 0.277189 1.57202i 0.0248923 0.141171i
$$125$$ 2.79426 + 4.83981i 0.249926 + 0.432885i
$$126$$ −1.43969 + 2.49362i −0.128258 + 0.222149i
$$127$$ 12.4192 + 10.4210i 1.10203 + 0.924711i 0.997560 0.0698178i $$-0.0222418\pi$$
0.104467 + 0.994528i $$0.466686\pi$$
$$128$$ 0.939693 + 0.342020i 0.0830579 + 0.0302306i
$$129$$ 2.14543 0.780873i 0.188895 0.0687520i
$$130$$ −4.31908 + 3.62414i −0.378808 + 0.317858i
$$131$$ −0.486329 2.75811i −0.0424908 0.240977i 0.956164 0.292832i $$-0.0945978\pi$$
−0.998655 + 0.0518550i $$0.983487\pi$$
$$132$$ 0.347296 0.0302283
$$133$$ −12.3439 + 2.27038i −1.07035 + 0.196867i
$$134$$ 1.07873 0.0931877
$$135$$ 0.592396 + 3.35965i 0.0509854 + 0.289152i
$$136$$ −5.31908 + 4.46324i −0.456107 + 0.382719i
$$137$$ −15.0680 + 5.48432i −1.28735 + 0.468557i −0.892856 0.450341i $$-0.851302\pi$$
−0.394494 + 0.918899i $$0.629080\pi$$
$$138$$ −6.39053 2.32596i −0.543998 0.197999i
$$139$$ −1.59240 1.33618i −0.135065 0.113333i 0.572752 0.819728i $$-0.305876\pi$$
−0.707818 + 0.706395i $$0.750320\pi$$
$$140$$ −4.91147 + 8.50692i −0.415095 + 0.718966i
$$141$$ 2.79813 + 4.84651i 0.235645 + 0.408150i
$$142$$ 2.88666 16.3711i 0.242243 1.37383i
$$143$$ 0.0996702 0.565258i 0.00833484 0.0472692i
$$144$$ −0.500000 0.866025i −0.0416667 0.0721688i
$$145$$ 10.8400 18.7755i 0.900215 1.55922i
$$146$$ −9.51367 7.98292i −0.787357 0.660671i
$$147$$ 1.21301 + 0.441500i 0.100047 + 0.0364143i
$$148$$ 10.5360 3.83478i 0.866051 0.315217i
$$149$$ −1.27719 + 1.07169i −0.104631 + 0.0877962i −0.693603 0.720358i $$-0.743978\pi$$
0.588971 + 0.808154i $$0.299533\pi$$
$$150$$ 1.15270 + 6.53731i 0.0941179 + 0.533769i
$$151$$ 20.0523 1.63183 0.815917 0.578169i $$-0.196232\pi$$
0.815917 + 0.578169i $$0.196232\pi$$
$$152$$ 1.46064 4.10689i 0.118473 0.333113i
$$153$$ 6.94356 0.561354
$$154$$ −0.173648 0.984808i −0.0139930 0.0793581i
$$155$$ −4.17159 + 3.50038i −0.335070 + 0.281157i
$$156$$ −1.55303 + 0.565258i −0.124342 + 0.0452569i
$$157$$ 3.85117 + 1.40171i 0.307357 + 0.111869i 0.491094 0.871107i $$-0.336597\pi$$
−0.183737 + 0.982975i $$0.558820\pi$$
$$158$$ 8.36824 + 7.02179i 0.665741 + 0.558623i
$$159$$ 0.990200 1.71508i 0.0785280 0.136014i
$$160$$ −1.70574 2.95442i −0.134850 0.233568i
$$161$$ −3.40033 + 19.2842i −0.267984 + 1.51981i
$$162$$ −0.173648 + 0.984808i −0.0136431 + 0.0773738i
$$163$$ 4.06758 + 7.04526i 0.318598 + 0.551827i 0.980196 0.198031i $$-0.0634548\pi$$
−0.661598 + 0.749859i $$0.730121\pi$$
$$164$$ 1.74510 3.02260i 0.136269 0.236026i
$$165$$ −0.907604 0.761570i −0.0706569 0.0592881i
$$166$$ 11.0103 + 4.00741i 0.854562 + 0.311035i
$$167$$ 12.5890 4.58202i 0.974166 0.354567i 0.194596 0.980883i $$-0.437660\pi$$
0.779569 + 0.626316i $$0.215438\pi$$
$$168$$ −2.20574 + 1.85083i −0.170176 + 0.142795i
$$169$$ −1.78312 10.1126i −0.137163 0.777890i
$$170$$ 23.6878 1.81677
$$171$$ −3.75877 + 2.20718i −0.287440 + 0.168787i
$$172$$ 2.28312 0.174086
$$173$$ −0.177519 1.00676i −0.0134965 0.0765424i 0.977316 0.211788i $$-0.0679287\pi$$
−0.990812 + 0.135246i $$0.956818\pi$$
$$174$$ 4.86824 4.08494i 0.369060 0.309678i
$$175$$ 17.9611 6.53731i 1.35773 0.494174i
$$176$$ 0.326352 + 0.118782i 0.0245997 + 0.00895356i
$$177$$ −0.341367 0.286441i −0.0256587 0.0215302i
$$178$$ 0.896459 1.55271i 0.0671925 0.116381i
$$179$$ −1.01754 1.76243i −0.0760546 0.131730i 0.825490 0.564417i $$-0.190899\pi$$
−0.901544 + 0.432687i $$0.857566\pi$$
$$180$$ −0.592396 + 3.35965i −0.0441546 + 0.250413i
$$181$$ 3.87299 21.9648i 0.287877 1.63263i −0.406947 0.913452i $$-0.633407\pi$$
0.694824 0.719180i $$-0.255482\pi$$
$$182$$ 2.37939 + 4.12122i 0.176372 + 0.305485i
$$183$$ −6.26604 + 10.8531i −0.463199 + 0.802285i
$$184$$ −5.20961 4.37138i −0.384057 0.322262i
$$185$$ −35.9432 13.0822i −2.64259 0.961825i
$$186$$ −1.50000 + 0.545955i −0.109985 + 0.0400314i
$$187$$ −1.84730 + 1.55007i −0.135088 + 0.113352i
$$188$$ 0.971782 + 5.51125i 0.0708745 + 0.401949i
$$189$$ 2.87939 0.209444
$$190$$ −12.8229 + 7.52974i −0.930274 + 0.546265i
$$191$$ 10.7861 0.780456 0.390228 0.920718i $$-0.372396\pi$$
0.390228 + 0.920718i $$0.372396\pi$$
$$192$$ −0.173648 0.984808i −0.0125320 0.0710724i
$$193$$ −2.19459 + 1.84148i −0.157970 + 0.132553i −0.718347 0.695685i $$-0.755101\pi$$
0.560377 + 0.828238i $$0.310656\pi$$
$$194$$ 3.43242 1.24930i 0.246433 0.0896944i
$$195$$ 5.29813 + 1.92836i 0.379407 + 0.138093i
$$196$$ 0.988856 + 0.829748i 0.0706325 + 0.0592677i
$$197$$ 4.16772 7.21870i 0.296938 0.514311i −0.678496 0.734604i $$-0.737368\pi$$
0.975434 + 0.220293i $$0.0707013\pi$$
$$198$$ −0.173648 0.300767i −0.0123406 0.0213746i
$$199$$ −0.526874 + 2.98805i −0.0373491 + 0.211817i −0.997771 0.0667324i $$-0.978743\pi$$
0.960422 + 0.278550i $$0.0898537\pi$$
$$200$$ −1.15270 + 6.53731i −0.0815085 + 0.462257i
$$201$$ −0.539363 0.934204i −0.0380437 0.0658937i
$$202$$ −4.95336 + 8.57948i −0.348517 + 0.603650i
$$203$$ −14.0175 11.7621i −0.983839 0.825539i
$$204$$ 6.52481 + 2.37484i 0.456828 + 0.166272i
$$205$$ −11.1887 + 4.07234i −0.781450 + 0.284425i
$$206$$ −6.00980 + 5.04282i −0.418723 + 0.351350i
$$207$$ 1.18092 + 6.69734i 0.0820798 + 0.465497i
$$208$$ −1.65270 −0.114594
$$209$$ 0.507274 1.42631i 0.0350889 0.0986598i
$$210$$ 9.82295 0.677848
$$211$$ −2.88919 16.3854i −0.198900 1.12802i −0.906755 0.421659i $$-0.861448\pi$$
0.707855 0.706358i $$-0.249663\pi$$
$$212$$ 1.51707 1.27298i 0.104193 0.0874284i
$$213$$ −15.6211 + 5.68561i −1.07034 + 0.389571i
$$214$$ −0.0256923 0.00935122i −0.00175629 0.000639236i
$$215$$ −5.96657 5.00654i −0.406916 0.341443i
$$216$$ −0.500000 + 0.866025i −0.0340207 + 0.0589256i
$$217$$ 2.29813 + 3.98048i 0.156007 + 0.270213i
$$218$$ 1.87077 10.6096i 0.126704 0.718576i
$$219$$ −2.15657 + 12.2305i −0.145728 + 0.826463i
$$220$$ −0.592396 1.02606i −0.0399393 0.0691770i
$$221$$ 5.73783 9.93821i 0.385968 0.668516i
$$222$$ −8.58899 7.20702i −0.576455 0.483704i
$$223$$ 7.67752 + 2.79439i 0.514125 + 0.187126i 0.586036 0.810285i $$-0.300688\pi$$
−0.0719114 + 0.997411i $$0.522910\pi$$
$$224$$ −2.70574 + 0.984808i −0.180785 + 0.0658002i
$$225$$ 5.08512 4.26692i 0.339008 0.284462i
$$226$$ 2.02481 + 11.4833i 0.134689 + 0.763857i
$$227$$ 1.80066 0.119514 0.0597570 0.998213i $$-0.480967\pi$$
0.0597570 + 0.998213i $$0.480967\pi$$
$$228$$ −4.28699 + 0.788496i −0.283913 + 0.0522194i
$$229$$ −18.7392 −1.23832 −0.619160 0.785265i $$-0.712527\pi$$
−0.619160 + 0.785265i $$0.712527\pi$$
$$230$$ 4.02869 + 22.8478i 0.265644 + 1.50654i
$$231$$ −0.766044 + 0.642788i −0.0504020 + 0.0422923i
$$232$$ 5.97178 2.17355i 0.392067 0.142701i
$$233$$ 3.85117 + 1.40171i 0.252298 + 0.0918291i 0.465073 0.885272i $$-0.346028\pi$$
−0.212775 + 0.977101i $$0.568250\pi$$
$$234$$ 1.26604 + 1.06234i 0.0827639 + 0.0694472i
$$235$$ 9.54576 16.5337i 0.622697 1.07854i
$$236$$ −0.222811 0.385920i −0.0145038 0.0251213i
$$237$$ 1.89693 10.7580i 0.123219 0.698807i
$$238$$ 3.47178 19.6895i 0.225042 1.27628i
$$239$$ 14.1138 + 24.4458i 0.912946 + 1.58127i 0.809881 + 0.586595i $$0.199532\pi$$
0.103066 + 0.994675i $$0.467135\pi$$
$$240$$ −1.70574 + 2.95442i −0.110105 + 0.190707i
$$241$$ 5.02687 + 4.21805i 0.323809 + 0.271708i 0.790172 0.612885i $$-0.209991\pi$$
−0.466362 + 0.884594i $$0.654436\pi$$
$$242$$ −10.2233 3.72097i −0.657177 0.239193i
$$243$$ 0.939693 0.342020i 0.0602813 0.0219406i
$$244$$ −9.60014 + 8.05547i −0.614586 + 0.515699i
$$245$$ −0.764700 4.33683i −0.0488549 0.277070i
$$246$$ −3.49020 −0.222527
$$247$$ 0.0530334 + 7.20377i 0.00337444 + 0.458365i
$$248$$ −1.59627 −0.101363
$$249$$ −2.03462 11.5389i −0.128938 0.731247i
$$250$$ 4.28106 3.59224i 0.270758 0.227193i
$$251$$ −8.35756 + 3.04190i −0.527525 + 0.192003i −0.592033 0.805914i $$-0.701674\pi$$
0.0645080 + 0.997917i $$0.479452\pi$$
$$252$$ 2.70574 + 0.984808i 0.170445 + 0.0620371i
$$253$$ −1.80928 1.51816i −0.113748 0.0954462i
$$254$$ 8.10607 14.0401i 0.508620 0.880955i
$$255$$ −11.8439 20.5142i −0.741693 1.28465i
$$256$$ 0.173648 0.984808i 0.0108530 0.0615505i
$$257$$ −2.33837 + 13.2616i −0.145864 + 0.827234i 0.820806 + 0.571207i $$0.193525\pi$$
−0.966670 + 0.256027i $$0.917586\pi$$
$$258$$ −1.14156 1.97724i −0.0710704 0.123098i
$$259$$ −16.1420 + 27.9588i −1.00302 + 1.73728i
$$260$$ 4.31908 + 3.62414i 0.267858 + 0.224759i
$$261$$ −5.97178 2.17355i −0.369644 0.134539i
$$262$$ −2.63176 + 0.957882i −0.162591 + 0.0591781i
$$263$$ −12.8327 + 10.7680i −0.791301 + 0.663981i −0.946067 0.323971i $$-0.894982\pi$$
0.154766 + 0.987951i $$0.450538\pi$$
$$264$$ −0.0603074 0.342020i −0.00371166 0.0210499i
$$265$$ −6.75608 −0.415023
$$266$$ 4.37939 + 11.7621i 0.268517 + 0.721181i
$$267$$ −1.79292 −0.109725
$$268$$ −0.187319 1.06234i −0.0114423 0.0648926i
$$269$$ 2.74969 2.30726i 0.167651 0.140676i −0.555102 0.831782i $$-0.687321\pi$$
0.722753 + 0.691106i $$0.242876\pi$$
$$270$$ 3.20574 1.16679i 0.195095 0.0710088i
$$271$$ −22.5141 8.19448i −1.36764 0.497779i −0.449230 0.893416i $$-0.648301\pi$$
−0.918407 + 0.395637i $$0.870524\pi$$
$$272$$ 5.31908 + 4.46324i 0.322516 + 0.270623i
$$273$$ 2.37939 4.12122i 0.144007 0.249427i
$$274$$ 8.01754 + 13.8868i 0.484357 + 0.838932i
$$275$$ −0.400330 + 2.27038i −0.0241408 + 0.136909i
$$276$$ −1.18092 + 6.69734i −0.0710832 + 0.403133i
$$277$$ 9.36097 + 16.2137i 0.562446 + 0.974185i 0.997282 + 0.0736755i $$0.0234729\pi$$
−0.434836 + 0.900510i $$0.643194\pi$$
$$278$$ −1.03936 + 1.80023i −0.0623368 + 0.107971i
$$279$$ 1.22281 + 1.02606i 0.0732078 + 0.0614286i
$$280$$ 9.23055 + 3.35965i 0.551631 + 0.200777i
$$281$$ 9.99660 3.63846i 0.596347 0.217053i −0.0261718 0.999657i $$-0.508332\pi$$
0.622519 + 0.782605i $$0.286109\pi$$
$$282$$ 4.28699 3.59721i 0.255286 0.214211i
$$283$$ −2.43330 13.7999i −0.144644 0.820319i −0.967652 0.252289i $$-0.918817\pi$$
0.823008 0.568030i $$-0.192294\pi$$
$$284$$ −16.6236 −0.986430
$$285$$ 12.9324 + 7.34013i 0.766050 + 0.434792i
$$286$$ −0.573978 −0.0339400
$$287$$ 1.74510 + 9.89695i 0.103010 + 0.584199i
$$288$$ −0.766044 + 0.642788i −0.0451396 + 0.0378766i
$$289$$ −29.3307 + 10.6755i −1.72533 + 0.627970i
$$290$$ −20.3726 7.41501i −1.19632 0.435424i
$$291$$ −2.79813 2.34791i −0.164029 0.137637i
$$292$$ −6.20961 + 10.7554i −0.363390 + 0.629410i
$$293$$ 5.76011 + 9.97681i 0.336509 + 0.582852i 0.983774 0.179414i $$-0.0574202\pi$$
−0.647264 + 0.762266i $$0.724087\pi$$
$$294$$ 0.224155 1.27125i 0.0130730 0.0741407i
$$295$$ −0.263985 + 1.49713i −0.0153698 + 0.0871665i
$$296$$ −5.60607 9.70999i −0.325846 0.564382i
$$297$$ −0.173648 + 0.300767i −0.0100761 + 0.0174523i
$$298$$ 1.27719 + 1.07169i 0.0739856 + 0.0620813i
$$299$$ 10.5617 + 3.84413i 0.610796 + 0.222312i
$$300$$ 6.23783 2.27038i 0.360141 0.131081i
$$301$$ −5.03596 + 4.22567i −0.290268 + 0.243564i
$$302$$ −3.48205 19.7477i −0.200369 1.13635i
$$303$$ 9.90673 0.569127
$$304$$ −4.29813 0.725293i −0.246515 0.0415984i
$$305$$ 42.7529 2.44802
$$306$$ −1.20574 6.83807i −0.0689274 0.390907i
$$307$$ 3.29220 2.76249i 0.187896 0.157663i −0.543987 0.839093i $$-0.683086\pi$$
0.731883 + 0.681430i $$0.238642\pi$$
$$308$$ −0.939693 + 0.342020i −0.0535440 + 0.0194884i
$$309$$ 7.37211 + 2.68323i 0.419385 + 0.152644i
$$310$$ 4.17159 + 3.50038i 0.236930 + 0.198808i
$$311$$ 11.4966 19.9127i 0.651912 1.12915i −0.330746 0.943720i $$-0.607300\pi$$
0.982658 0.185425i $$-0.0593663\pi$$
$$312$$ 0.826352 + 1.43128i 0.0467830 + 0.0810305i
$$313$$ −1.59926 + 9.06985i −0.0903955 + 0.512658i 0.905666 + 0.423992i $$0.139372\pi$$
−0.996061 + 0.0886663i $$0.971740\pi$$
$$314$$ 0.711667 4.03606i 0.0401617 0.227768i
$$315$$ −4.91147 8.50692i −0.276730 0.479311i
$$316$$ 5.46198 9.46043i 0.307260 0.532191i
$$317$$ 2.57011 + 2.15658i 0.144352 + 0.121125i 0.712104 0.702074i $$-0.247742\pi$$
−0.567752 + 0.823199i $$0.692187\pi$$
$$318$$ −1.86097 0.677337i −0.104358 0.0379831i
$$319$$ 2.07398 0.754866i 0.116120 0.0422644i
$$320$$ −2.61334 + 2.19285i −0.146090 + 0.122584i
$$321$$ 0.00474774 + 0.0269258i 0.000264993 + 0.00150285i
$$322$$ 19.5817 1.09125
$$323$$ 19.2836 23.3279i 1.07297 1.29800i
$$324$$ 1.00000 0.0555556
$$325$$ −1.90508 10.8042i −0.105675 0.599311i
$$326$$ 6.23190 5.22918i 0.345153 0.289618i
$$327$$ −10.1236 + 3.68469i −0.559837 + 0.203764i
$$328$$ −3.27972 1.19372i −0.181092 0.0659121i
$$329$$ −12.3439 10.3578i −0.680541 0.571042i
$$330$$ −0.592396 + 1.02606i −0.0326103 + 0.0564828i
$$331$$ 11.0371 + 19.1169i 0.606656 + 1.05076i 0.991787 + 0.127897i $$0.0408228\pi$$
−0.385131 + 0.922862i $$0.625844\pi$$
$$332$$ 2.03462 11.5389i 0.111664 0.633278i
$$333$$ −1.94697 + 11.0418i −0.106693 + 0.605087i
$$334$$ −6.69846 11.6021i −0.366524 0.634837i
$$335$$ −1.84002 + 3.18701i −0.100531 + 0.174125i
$$336$$ 2.20574 + 1.85083i 0.120333 + 0.100971i
$$337$$ 12.3255 + 4.48611i 0.671411 + 0.244374i 0.655155 0.755494i $$-0.272603\pi$$
0.0162559 + 0.999868i $$0.494825\pi$$
$$338$$ −9.64930 + 3.51206i −0.524853 + 0.191031i
$$339$$ 8.93242 7.49519i 0.485142 0.407083i
$$340$$ −4.11334 23.3279i −0.223077 1.26513i
$$341$$ −0.554378 −0.0300212
$$342$$ 2.82635 + 3.31839i 0.152832 + 0.179438i
$$343$$ 16.4388 0.887613
$$344$$ −0.396459 2.24843i −0.0213757 0.121227i
$$345$$ 17.7724 14.9128i 0.956836 0.802881i
$$346$$ −0.960637 + 0.349643i −0.0516442 + 0.0187969i
$$347$$ −8.23055 2.99568i −0.441839 0.160816i 0.111514 0.993763i $$-0.464430\pi$$
−0.553354 + 0.832947i $$0.686652\pi$$
$$348$$ −4.86824 4.08494i −0.260965 0.218976i
$$349$$ −1.63176 + 2.82629i −0.0873461 + 0.151288i −0.906389 0.422445i $$-0.861172\pi$$
0.819042 + 0.573733i $$0.194505\pi$$
$$350$$ −9.55690 16.5530i −0.510838 0.884797i
$$351$$ 0.286989 1.62760i 0.0153183 0.0868746i
$$352$$ 0.0603074 0.342020i 0.00321439 0.0182297i
$$353$$ −14.5419 25.1873i −0.773987 1.34058i −0.935362 0.353691i $$-0.884926\pi$$
0.161376 0.986893i $$-0.448407\pi$$
$$354$$ −0.222811 + 0.385920i −0.0118423 + 0.0205114i
$$355$$ 43.4432 + 36.4531i 2.30572 + 1.93473i
$$356$$ −1.68479 0.613214i −0.0892938 0.0325003i
$$357$$ −18.7875 + 6.83807i −0.994338 + 0.361909i
$$358$$ −1.55896 + 1.30813i −0.0823938 + 0.0691366i
$$359$$ 1.14796 + 6.51038i 0.0605868 + 0.343605i 1.00000 0.000817017i $$0.000260065\pi$$
−0.939413 + 0.342788i $$0.888629\pi$$
$$360$$ 3.41147 0.179800
$$361$$ −3.02347 + 18.7579i −0.159130 + 0.987258i
$$362$$ −22.3037 −1.17225
$$363$$ 1.88919 + 10.7141i 0.0991565 + 0.562345i
$$364$$ 3.64543 3.05888i 0.191072 0.160329i
$$365$$ 39.8127 14.4907i 2.08389 0.758475i
$$366$$ 11.7763 + 4.28623i 0.615558 + 0.224045i
$$367$$ −4.43969 3.72534i −0.231750 0.194461i 0.519516 0.854461i $$-0.326112\pi$$
−0.751266 + 0.659999i $$0.770557\pi$$
$$368$$ −3.40033 + 5.88954i −0.177254 + 0.307014i
$$369$$ 1.74510 + 3.02260i 0.0908463 + 0.157350i
$$370$$ −6.64203 + 37.6688i −0.345302 + 1.95831i
$$371$$ −0.990200 + 5.61570i −0.0514086 + 0.291553i
$$372$$ 0.798133 + 1.38241i 0.0413813 + 0.0716745i
$$373$$ 12.9449 22.4212i 0.670262 1.16093i −0.307568 0.951526i $$-0.599515\pi$$
0.977830 0.209401i $$-0.0671516\pi$$
$$374$$ 1.84730 + 1.55007i 0.0955214 + 0.0801520i
$$375$$ −5.25150 1.91139i −0.271186 0.0987037i
$$376$$ 5.25877 1.91404i 0.271200 0.0987089i
$$377$$ −8.04576 + 6.75119i −0.414378 + 0.347704i
$$378$$ −0.500000 2.83564i −0.0257172 0.145850i
$$379$$ −19.1557 −0.983962 −0.491981 0.870606i $$-0.663727\pi$$
−0.491981 + 0.870606i $$0.663727\pi$$
$$380$$ 9.64203 + 11.3206i 0.494626 + 0.580735i
$$381$$ −16.2121 −0.830573
$$382$$ −1.87299 10.6222i −0.0958304 0.543481i
$$383$$ −7.42649 + 6.23156i −0.379476 + 0.318418i −0.812497 0.582966i $$-0.801892\pi$$
0.433021 + 0.901384i $$0.357448\pi$$
$$384$$ −0.939693 + 0.342020i −0.0479535 + 0.0174536i
$$385$$ 3.20574 + 1.16679i 0.163379 + 0.0594653i
$$386$$ 2.19459 + 1.84148i 0.111702 + 0.0937290i
$$387$$ −1.14156 + 1.97724i −0.0580287 + 0.100509i
$$388$$ −1.82635 3.16333i −0.0927190 0.160594i
$$389$$ −0.142026 + 0.805470i −0.00720101 + 0.0408390i −0.988197 0.153191i $$-0.951045\pi$$
0.980996 + 0.194030i $$0.0621560\pi$$
$$390$$ 0.979055 5.55250i 0.0495764 0.281162i
$$391$$ −23.6104 40.8944i −1.19403 2.06812i
$$392$$ 0.645430 1.11792i 0.0325991 0.0564633i
$$393$$ 2.14543 + 1.80023i 0.108223 + 0.0908096i
$$394$$ −7.83275 2.85089i −0.394608 0.143626i
$$395$$ −35.0194 + 12.7460i −1.76201 + 0.641321i
$$396$$ −0.266044 + 0.223238i −0.0133692 + 0.0112181i
$$397$$ −0.642026 3.64111i −0.0322224 0.182742i 0.964449 0.264270i $$-0.0851311\pi$$
−0.996671 + 0.0815281i $$0.974020\pi$$
$$398$$ 3.03415 0.152088
$$399$$ 7.99660 9.67372i 0.400331 0.484292i
$$400$$ 6.63816 0.331908
$$401$$ −3.77513 21.4098i −0.188521 1.06916i −0.921347 0.388740i $$-0.872910\pi$$
0.732827 0.680416i $$-0.238201\pi$$
$$402$$ −0.826352 + 0.693392i −0.0412147 + 0.0345832i
$$403$$ 2.47906 0.902302i 0.123491 0.0449469i
$$404$$ 9.30928 + 3.38830i 0.463154 + 0.168574i
$$405$$ −2.61334 2.19285i −0.129858 0.108964i
$$406$$ −9.14930 + 15.8471i −0.454072 + 0.786476i
$$407$$ −1.94697 3.37225i −0.0965076 0.167156i
$$408$$ 1.20574 6.83807i 0.0596929 0.338535i
$$409$$ −0.704088 + 3.99308i −0.0348149 + 0.197445i −0.997254 0.0740509i $$-0.976407\pi$$
0.962440 + 0.271496i $$0.0875184\pi$$
$$410$$ 5.95336 + 10.3115i 0.294016 + 0.509250i
$$411$$ 8.01754 13.8868i 0.395476 0.684985i
$$412$$ 6.00980 + 5.04282i 0.296082 + 0.248442i
$$413$$ 1.20574 + 0.438852i 0.0593304 + 0.0215945i
$$414$$ 6.39053 2.32596i 0.314077 0.114315i
$$415$$ −30.6202 + 25.6934i −1.50309 + 1.26124i
$$416$$ 0.286989 + 1.62760i 0.0140708 + 0.0797994i
$$417$$ 2.07873 0.101796
$$418$$ −1.49273 0.251892i −0.0730116 0.0123204i
$$419$$ 23.4989 1.14800 0.573998 0.818857i $$-0.305392\pi$$
0.573998 + 0.818857i $$0.305392\pi$$
$$420$$ −1.70574 9.67372i −0.0832314 0.472029i
$$421$$ −17.6748 + 14.8309i −0.861419 + 0.722816i −0.962273 0.272085i $$-0.912287\pi$$
0.100855 + 0.994901i $$0.467842\pi$$
$$422$$ −15.6348 + 5.69058i −0.761088 + 0.277013i
$$423$$ −5.25877 1.91404i −0.255690 0.0930636i
$$424$$ −1.51707 1.27298i −0.0736756 0.0618212i
$$425$$ −23.0462 + 39.9172i −1.11791 + 1.93627i
$$426$$ 8.31180 + 14.3965i 0.402708 + 0.697511i
$$427$$ 6.26604 35.5365i 0.303235 1.71973i
$$428$$ −0.00474774 + 0.0269258i −0.000229491 + 0.00130151i
$$429$$ 0.286989 + 0.497079i 0.0138560 + 0.0239992i
$$430$$ −3.89440 + 6.74530i −0.187805 + 0.325287i
$$431$$ −2.69253 2.25930i −0.129695 0.108827i 0.575633 0.817708i $$-0.304756\pi$$
−0.705328 + 0.708881i $$0.749200\pi$$
$$432$$ 0.939693 + 0.342020i 0.0452110 + 0.0164555i
$$433$$ 32.0574 11.6679i 1.54058 0.560725i 0.574395 0.818578i $$-0.305237\pi$$
0.966184 + 0.257853i $$0.0830152\pi$$
$$434$$ 3.52094 2.95442i 0.169011 0.141817i
$$435$$ 3.76470 + 21.3507i 0.180504 + 1.02369i
$$436$$ −10.7733 −0.515948
$$437$$ 25.7803 + 14.6323i 1.23324 + 0.699958i
$$438$$ 12.4192 0.593413
$$439$$ 1.68463 + 9.55401i 0.0804030 + 0.455988i 0.998254 + 0.0590636i $$0.0188115\pi$$
−0.917851 + 0.396925i $$0.870077\pi$$
$$440$$ −0.907604 + 0.761570i −0.0432683 + 0.0363064i
$$441$$ −1.21301 + 0.441500i −0.0577624 + 0.0210238i
$$442$$ −10.7836 3.92490i −0.512923 0.186689i
$$443$$ 11.6302 + 9.75887i 0.552566 + 0.463658i 0.875809 0.482658i $$-0.160329\pi$$
−0.323243 + 0.946316i $$0.604773\pi$$
$$444$$ −5.60607 + 9.70999i −0.266052 + 0.460816i
$$445$$ 3.05825 + 5.29704i 0.144975 + 0.251104i
$$446$$ 1.41875 8.04612i 0.0671797 0.380995i
$$447$$ 0.289515 1.64192i 0.0136936 0.0776603i
$$448$$ 1.43969 + 2.49362i 0.0680191 + 0.117813i
$$449$$ −17.4192 + 30.1710i −0.822064 + 1.42386i 0.0820794 + 0.996626i $$0.473844\pi$$
−0.904143 + 0.427230i $$0.859489\pi$$
$$450$$ −5.08512 4.26692i −0.239715 0.201145i
$$451$$ −1.13903 0.414574i −0.0536350 0.0195215i
$$452$$ 10.9572 3.98811i 0.515385 0.187585i
$$453$$ −15.3610 + 12.8894i −0.721721 + 0.605596i
$$454$$ −0.312681 1.77330i −0.0146749 0.0832253i
$$455$$ −16.2344 −0.761081
$$456$$ 1.52094 + 4.08494i 0.0712248 + 0.191295i
$$457$$ −31.8749 −1.49105 −0.745523 0.666479i $$-0.767800\pi$$
−0.745523 + 0.666479i $$0.767800\pi$$
$$458$$ 3.25402 + 18.4545i 0.152050 + 0.862321i
$$459$$ −5.31908 + 4.46324i −0.248273 + 0.208326i
$$460$$ 21.8011 7.93496i 1.01648 0.369969i
$$461$$ 10.0449 + 3.65604i 0.467837 + 0.170279i 0.565172 0.824973i $$-0.308810\pi$$
−0.0973354 + 0.995252i $$0.531032\pi$$
$$462$$ 0.766044 + 0.642788i 0.0356396 + 0.0299052i
$$463$$ −7.65910 + 13.2660i −0.355949 + 0.616521i −0.987280 0.158992i $$-0.949176\pi$$
0.631331 + 0.775513i $$0.282509\pi$$
$$464$$ −3.17752 5.50362i −0.147513 0.255499i
$$465$$ 0.945622 5.36289i 0.0438522 0.248698i
$$466$$ 0.711667 4.03606i 0.0329673 0.186967i
$$467$$ −14.2562 24.6925i −0.659700 1.14263i −0.980693 0.195553i $$-0.937350\pi$$
0.320993 0.947082i $$-0.395983\pi$$
$$468$$ 0.826352 1.43128i 0.0381981 0.0661611i
$$469$$ 2.37939 + 1.99654i 0.109870 + 0.0921917i
$$470$$ −17.9402 6.52968i −0.827518 0.301192i
$$471$$ −3.85117 + 1.40171i −0.177452 + 0.0645874i
$$472$$ −0.341367 + 0.286441i −0.0157127 + 0.0131845i
$$473$$ −0.137689 0.780873i −0.00633094 0.0359046i
$$474$$ −10.9240 −0.501754
$$475$$ −0.213011 28.9343i −0.00977362 1.32760i
$$476$$ −19.9932 −0.916386
$$477$$ 0.343893 + 1.95031i 0.0157458 + 0.0892987i
$$478$$ 21.6236 18.1444i 0.989041 0.829904i
$$479$$ −7.56583 + 2.75374i −0.345691 + 0.125821i −0.509030 0.860749i $$-0.669996\pi$$
0.163339 + 0.986570i $$0.447774\pi$$
$$480$$ 3.20574 + 1.16679i 0.146321 + 0.0532566i
$$481$$ 14.1951 + 11.9111i 0.647239 + 0.543098i
$$482$$ 3.28106 5.68296i 0.149448 0.258852i
$$483$$ −9.79086 16.9583i −0.445500 0.771628i
$$484$$ −1.88919 + 10.7141i −0.0858721 + 0.487005i
$$485$$ −2.16385 + 12.2718i −0.0982553 + 0.557233i
$$486$$ −0.500000 0.866025i −0.0226805 0.0392837i
$$487$$ −3.05778 + 5.29623i −0.138561 + 0.239995i −0.926952 0.375179i $$-0.877581\pi$$
0.788391 + 0.615175i $$0.210914\pi$$
$$488$$ 9.60014 + 8.05547i 0.434578 + 0.364654i
$$489$$ −7.64455 2.78239i −0.345699 0.125824i
$$490$$ −4.13816 + 1.50617i −0.186943 + 0.0680416i
$$491$$ −17.3778 + 14.5817i −0.784249 + 0.658063i −0.944315 0.329043i $$-0.893274\pi$$
0.160066 + 0.987106i $$0.448829\pi$$
$$492$$ 0.606067 + 3.43718i 0.0273236 + 0.154960i
$$493$$ 44.1266 1.98736
$$494$$ 7.08512 1.30315i 0.318775 0.0586315i
$$495$$ 1.18479 0.0532525
$$496$$ 0.277189 + 1.57202i 0.0124461 + 0.0705856i
$$497$$ 36.6673 30.7675i 1.64475 1.38011i
$$498$$ −11.0103 + 4.00741i −0.493382 + 0.179576i
$$499$$ −23.3567 8.50114i −1.04559 0.380563i −0.238593 0.971120i $$-0.576686\pi$$
−0.806996 + 0.590557i $$0.798908\pi$$
$$500$$ −4.28106 3.59224i −0.191455 0.160650i
$$501$$ −6.69846 + 11.6021i −0.299265 + 0.518343i
$$502$$ 4.44697 + 7.70237i 0.198478 + 0.343774i
$$503$$ 4.34524 24.6431i 0.193745 1.09878i −0.720451 0.693506i $$-0.756065\pi$$
0.914195 0.405274i $$-0.132824\pi$$
$$504$$ 0.500000 2.83564i 0.0222718 0.126309i
$$505$$ −16.8983 29.2687i −0.751963 1.30244i
$$506$$ −1.18092 + 2.04542i −0.0524984 + 0.0909299i
$$507$$ 7.86618 + 6.60051i 0.349349 + 0.293139i
$$508$$ −15.2344 5.54488i −0.675918 0.246014i
$$509$$ −0.845075 + 0.307582i −0.0374573 + 0.0136333i −0.360681 0.932689i $$-0.617456\pi$$
0.323224 + 0.946323i $$0.395233\pi$$
$$510$$ −18.1459 + 15.2262i −0.803514 + 0.674228i
$$511$$ −6.20961 35.2164i −0.274697 1.55788i
$$512$$ −1.00000 −0.0441942
$$513$$ 1.46064 4.10689i 0.0644887 0.181324i
$$514$$ 13.4662 0.593967
$$515$$ −4.64749 26.3572i −0.204793 1.16144i
$$516$$ −1.74897 + 1.46756i −0.0769941 + 0.0646057i
$$517$$ 1.82635 0.664738i 0.0803229 0.0292351i
$$518$$ 30.3371 + 11.0418i 1.33294 + 0.485149i
$$519$$ 0.783119 + 0.657115i 0.0343751 + 0.0288441i
$$520$$ 2.81908 4.88279i 0.123625 0.214124i
$$521$$ 3.31773 + 5.74648i 0.145353 + 0.251758i 0.929504 0.368811i $$-0.120235\pi$$
−0.784152 + 0.620569i $$0.786902\pi$$
$$522$$ −1.10354 + 6.25849i −0.0483007 + 0.273927i
$$523$$ 6.59034 37.3757i 0.288175 1.63432i −0.405542 0.914076i $$-0.632917\pi$$
0.693718 0.720247i $$-0.255972\pi$$
$$524$$ 1.40033 + 2.42544i 0.0611737 + 0.105956i
$$525$$ −9.55690 + 16.5530i −0.417097 + 0.722434i
$$526$$ 12.8327 + 10.7680i 0.559534 + 0.469505i
$$527$$ −10.4153 3.79088i −0.453700 0.165133i
$$528$$ −0.326352 + 0.118782i −0.0142026 + 0.00516934i
$$529$$ 17.8097 14.9442i 0.774337 0.649746i
$$530$$ 1.17318 + 6.65344i 0.0509597 + 0.289007i
$$531$$ 0.445622 0.0193384
$$532$$ 10.8229 6.35532i 0.469234 0.275538i
$$533$$ 5.76827 0.249851
$$534$$ 0.311337 + 1.76568i 0.0134729 + 0.0764085i
$$535$$ 0.0714517 0.0599551i 0.00308913 0.00259209i
$$536$$ −1.01367 + 0.368946i −0.0437839 + 0.0159360i
$$537$$ 1.91235 + 0.696039i 0.0825241 + 0.0300363i
$$538$$ −2.74969 2.30726i −0.118547 0.0994730i
$$539$$ 0.224155 0.388249i 0.00965506 0.0167230i
$$540$$ −1.70574 2.95442i −0.0734032 0.127138i
$$541$$ 2.62742 14.9009i 0.112962 0.640638i −0.874778 0.484525i $$-0.838993\pi$$
0.987739 0.156113i $$-0.0498963\pi$$
$$542$$ −4.16044 + 23.5951i −0.178706 + 1.01349i
$$543$$ 11.1518 + 19.3155i 0.478571 + 0.828909i
$$544$$ 3.47178 6.01330i 0.148851 0.257818i
$$545$$ 28.1544 + 23.6243i 1.20600 + 1.01195i
$$546$$ −4.47178 1.62760i −0.191375 0.0696547i
$$547$$ −30.6215 + 11.1453i −1.30928 + 0.476540i −0.900009 0.435872i $$-0.856440\pi$$
−0.409274 + 0.912412i $$0.634218\pi$$
$$548$$ 12.2836 10.3072i 0.524729 0.440300i
$$549$$ −2.17617 12.3417i −0.0928769 0.526731i
$$550$$ 2.30541 0.0983029
$$551$$ −23.8871 + 14.0267i −1.01763 + 0.597558i
$$552$$ 6.80066 0.289455
$$553$$ 5.46198 + 30.9764i 0.232267 + 1.31725i
$$554$$ 14.3418 12.0342i 0.609326 0.511285i
$$555$$ 35.9432 13.0822i 1.52570 0.555310i
$$556$$ 1.95336 + 0.710966i 0.0828411 + 0.0301517i
$$557$$ −15.2777 12.8195i −0.647335 0.543179i 0.258926 0.965897i $$-0.416631\pi$$
−0.906261 + 0.422719i $$0.861076\pi$$
$$558$$ 0.798133 1.38241i 0.0337877 0.0585220i
$$559$$ 1.88666 + 3.26779i 0.0797972 + 0.138213i
$$560$$ 1.70574 9.67372i 0.0720805 0.408789i
$$561$$ 0.418748 2.37484i 0.0176796 0.100266i
$$562$$ −5.31908 9.21291i −0.224372 0.388623i
$$563$$ −1.98411 + 3.43658i −0.0836202 + 0.144834i −0.904802 0.425832i $$-0.859982\pi$$
0.821182 + 0.570666i $$0.193315\pi$$
$$564$$ −4.28699 3.59721i −0.180515 0.151470i
$$565$$ −37.3803 13.6053i −1.57260 0.572380i
$$566$$ −13.1677 + 4.79266i −0.553480 + 0.201450i
$$567$$ −2.20574 + 1.85083i −0.0926322 + 0.0777277i
$$568$$ 2.88666 + 16.3711i 0.121122 + 0.686914i
$$569$$ 14.8135 0.621012 0.310506 0.950571i $$-0.399501\pi$$
0.310506 + 0.950571i $$0.399501\pi$$
$$570$$ 4.98293 14.0105i 0.208712 0.586837i
$$571$$ 21.0615 0.881396 0.440698 0.897655i $$-0.354731\pi$$
0.440698 + 0.897655i $$0.354731\pi$$
$$572$$ 0.0996702 + 0.565258i 0.00416742 + 0.0236346i
$$573$$ −8.26264 + 6.93318i −0.345177 + 0.289638i
$$574$$ 9.44356 3.43718i 0.394167 0.143465i
$$575$$ −42.4213 15.4401i −1.76909 0.643897i
$$576$$ 0.766044 + 0.642788i 0.0319185 + 0.0267828i
$$577$$ 22.1211 38.3148i 0.920913 1.59507i 0.122907 0.992418i $$-0.460778\pi$$
0.798006 0.602649i $$-0.205888\pi$$
$$578$$ 15.6065 + 27.0313i 0.649146 + 1.12435i
$$579$$ 0.497474 2.82131i 0.0206743 0.117250i
$$580$$ −3.76470 + 21.3507i −0.156321 + 0.886539i
$$581$$ 16.8687 + 29.2175i 0.699832 + 1.21214i
$$582$$ −1.82635 + 3.16333i −0.0757047 + 0.131124i
$$583$$ −0.526874 0.442100i −0.0218209 0.0183099i
$$584$$ 11.6702 + 4.24762i 0.482918 + 0.175768i
$$585$$ −5.29813 + 1.92836i −0.219051 + 0.0797280i
$$586$$ 8.82501 7.40506i 0.364558 0.305900i
$$587$$ 1.73689 + 9.85041i 0.0716892 + 0.406570i 0.999443 + 0.0333765i $$0.0106260\pi$$
−0.927754 + 0.373193i $$0.878263\pi$$
$$588$$ −1.29086 −0.0532341
$$589$$ 6.84318 1.25865i 0.281968 0.0518617i
$$590$$ 1.52023 0.0625869
$$591$$ 1.44743 + 8.20880i 0.0595395 + 0.337665i
$$592$$ −8.58899 + 7.20702i −0.353005 + 0.296207i
$$593$$ 10.7981 3.93020i 0.443426 0.161394i −0.110651 0.993859i $$-0.535294\pi$$
0.554077 + 0.832465i $$0.313071\pi$$
$$594$$ 0.326352 + 0.118782i 0.0133904 + 0.00487370i
$$595$$ 52.2490 + 43.8421i 2.14200 + 1.79735i
$$596$$ 0.833626 1.44388i 0.0341466 0.0591437i
$$597$$ −1.51707 2.62765i −0.0620897 0.107543i
$$598$$ 1.95171 11.0687i 0.0798115 0.452634i
$$599$$ 1.11422 6.31905i 0.0455257 0.258189i −0.953547 0.301244i $$-0.902598\pi$$
0.999073 + 0.0430552i $$0.0137091\pi$$
$$600$$ −3.31908 5.74881i −0.135501 0.234694i
$$601$$ −15.7579 + 27.2935i −0.642778 + 1.11332i 0.342032 + 0.939688i $$0.388885\pi$$
−0.984810 + 0.173636i $$0.944448\pi$$
$$602$$ 5.03596 + 4.22567i 0.205250 + 0.172226i
$$603$$ 1.01367 + 0.368946i 0.0412799 + 0.0150246i
$$604$$ −18.8430 + 6.85830i −0.766711 + 0.279060i
$$605$$ 28.4315 23.8569i 1.15591 0.969921i
$$606$$ −1.72028 9.75622i −0.0698818 0.396319i
$$607$$ 0.748341 0.0303742 0.0151871 0.999885i $$-0.495166\pi$$
0.0151871 + 0.999885i $$0.495166\pi$$
$$608$$ 0.0320889 + 4.35878i 0.00130138 + 0.176772i
$$609$$ 18.2986 0.741497
$$610$$ −7.42396 42.1034i −0.300587 1.70472i
$$611$$ −7.08512 + 5.94512i −0.286633 + 0.240514i
$$612$$ −6.52481 + 2.37484i −0.263750 + 0.0959972i
$$613$$ 28.8371 + 10.4958i 1.16472 + 0.423923i 0.850781 0.525520i $$-0.176129\pi$$
0.313938 + 0.949443i $$0.398352\pi$$
$$614$$ −3.29220 2.76249i −0.132863 0.111485i
$$615$$ 5.95336 10.3115i 0.240063 0.415801i
$$616$$ 0.500000 + 0.866025i 0.0201456 + 0.0348932i
$$617$$ −4.73917 + 26.8772i −0.190792 + 1.08203i 0.727493 + 0.686115i $$0.240685\pi$$
−0.918285 + 0.395919i $$0.870426\pi$$
$$618$$ 1.36231 7.72605i 0.0548002 0.310787i
$$619$$ 6.61856 + 11.4637i 0.266022 + 0.460764i 0.967831 0.251601i $$-0.0809572\pi$$
−0.701809 + 0.712365i $$0.747624\pi$$
$$620$$ 2.72281 4.71605i 0.109351 0.189401i
$$621$$ −5.20961 4.37138i −0.209054 0.175417i
$$622$$ −21.6065 7.86414i −0.866343 0.315323i
$$623$$ 4.85117 1.76568i 0.194358 0.0707405i
$$624$$ 1.26604 1.06234i 0.0506823 0.0425275i
$$625$$ −2.45290 13.9111i −0.0981159 0.556443i
$$626$$ 9.20977 0.368096
$$627$$ 0.528218 + 1.41868i 0.0210950 + 0.0566568i
$$628$$ −4.09833 −0.163541
$$629$$ −13.5189 76.6694i −0.539033 3.05701i
$$630$$ −7.52481 + 6.31407i −0.299796 + 0.251559i
$$631$$ 11.5013 4.18615i 0.457861 0.166648i −0.102784 0.994704i $$-0.532775\pi$$
0.560646 + 0.828056i $$0.310553\pi$$
$$632$$ −10.2652 3.73622i −0.408326 0.148619i
$$633$$ 12.7456 + 10.6948i 0.506591 + 0.425080i
$$634$$ 1.67752 2.90555i 0.0666228 0.115394i
$$635$$ 27.6536 + 47.8975i 1.09740 + 1.90075i
$$636$$ −0.343893 + 1.95031i −0.0136362 + 0.0773349i
$$637$$ −0.370462 + 2.10100i −0.0146783 + 0.0832445i
$$638$$ −1.10354 1.91139i −0.0436896 0.0756726i
$$639$$ 8.31180 14.3965i 0.328810 0.569515i
$$640$$ 2.61334 + 2.19285i 0.103301 + 0.0866801i
$$641$$ −8.41370 3.06233i −0.332321 0.120955i 0.170470 0.985363i $$-0.445471\pi$$
−0.502791 + 0.864408i $$0.667694\pi$$
$$642$$ 0.0256923 0.00935122i 0.00101399 0.000369063i
$$643$$ −24.0305 + 20.1640i −0.947670 + 0.795190i −0.978904 0.204322i $$-0.934501\pi$$
0.0312334 + 0.999512i $$0.490056\pi$$
$$644$$ −3.40033 19.2842i −0.133992 0.759905i
$$645$$ 7.78880 0.306684
$$646$$ −26.3221 14.9398i −1.03563 0.587798i
$$647$$ −5.54933 −0.218166 −0.109083 0.994033i $$-0.534792\pi$$
−0.109083 + 0.994033i $$0.534792\pi$$
$$648$$ −0.173648 0.984808i −0.00682154 0.0386869i
$$649$$ −0.118555 + 0.0994798i −0.00465371 + 0.00390492i
$$650$$ −10.3093 + 3.75227i −0.404363 + 0.147176i
$$651$$ −4.31908 1.57202i −0.169278 0.0616122i
$$652$$ −6.23190 5.22918i −0.244060 0.204791i
$$653$$ −19.4552 + 33.6974i −0.761340 + 1.31868i 0.180820 + 0.983516i $$0.442125\pi$$
−0.942160 + 0.335163i $$0.891209\pi$$
$$654$$ 5.38666 + 9.32997i 0.210635 + 0.364831i
$$655$$ 1.65910 9.40923i 0.0648264 0.367649i
$$656$$ −0.606067 + 3.43718i −0.0236629 + 0.134199i
$$657$$ −6.20961 10.7554i −0.242260 0.419606i
$$658$$ −8.05690 + 13.9550i −0.314091 + 0.544021i
$$659$$ −30.2708 25.4003i −1.17918 0.989454i −0.999984 0.00564104i $$-0.998204\pi$$
−0.179201 0.983813i $$-0.557351\pi$$
$$660$$ 1.11334 + 0.405223i 0.0433367 + 0.0157733i
$$661$$ 0.0859997 0.0313013i 0.00334500 0.00121748i −0.340347 0.940300i $$-0.610545\pi$$
0.343692 + 0.939082i $$0.388322\pi$$
$$662$$ 16.9099 14.1891i 0.657221 0.551474i
$$663$$ 1.99273 + 11.3013i 0.0773911 + 0.438907i
$$664$$ −11.7169 −0.454703
$$665$$ −42.2203 7.12452i −1.63723 0.276277i
$$666$$ 11.2121 0.434461
$$667$$ 7.50480 + 42.5619i 0.290587 + 1.64800i
$$668$$ −10.2626 + 8.61138i −0.397073 + 0.333184i
$$669$$ −7.67752 + 2.79439i −0.296830 + 0.108037i
$$670$$ 3.45811 + 1.25865i 0.133598 + 0.0486259i
$$671$$ 3.33409 + 2.79764i 0.128711 + 0.108002i
$$672$$ 1.43969 2.49362i 0.0555373 0.0961935i
$$673$$ 19.9281 + 34.5165i 0.768173 + 1.33052i 0.938552 + 0.345137i $$0.112167\pi$$
−0.170379 + 0.985379i $$0.554499\pi$$
$$674$$ 2.27766 12.9172i 0.0877320 0.497553i
$$675$$ −1.15270 + 6.53731i −0.0443676 + 0.251621i
$$676$$ 5.13429 + 8.89284i 0.197473 + 0.342032i
$$677$$ −14.6912 + 25.4459i −0.564628 + 0.977965i 0.432456 + 0.901655i $$0.357647\pi$$
−0.997084 + 0.0763098i $$0.975686\pi$$
$$678$$ −8.93242 7.49519i −0.343047 0.287851i
$$679$$ 9.88326 + 3.59721i 0.379285 + 0.138048i
$$680$$ −22.2592 + 8.10170i −0.853603 + 0.310686i
$$681$$ −1.37939 + 1.15744i −0.0528582 + 0.0443533i
$$682$$ 0.0962667 + 0.545955i 0.00368624 + 0.0209057i
$$683$$ −21.0933 −0.807112 −0.403556 0.914955i $$-0.632226\pi$$
−0.403556 + 0.914955i $$0.632226\pi$$
$$684$$ 2.77719 3.35965i 0.106188 0.128459i
$$685$$ −54.7033 −2.09010
$$686$$ −2.85457 16.1891i −0.108988 0.618102i
$$687$$ 14.3550 12.0453i 0.547679 0.459557i
$$688$$ −2.14543 + 0.780873i −0.0817937 + 0.0297705i
$$689$$ 3.07563 + 1.11944i 0.117172 + 0.0426471i
$$690$$ −17.7724 14.9128i −0.676585 0.567722i
$$691$$ 8.08172 13.9979i 0.307443 0.532507i −0.670359 0.742037i $$-0.733860\pi$$
0.977802 + 0.209530i $$0.0671933\pi$$
$$692$$ 0.511144 + 0.885328i 0.0194308 + 0.0336551i
$$693$$ 0.173648 0.984808i 0.00659635 0.0374098i
$$694$$ −1.52094 + 8.62571i −0.0577343 + 0.327427i
$$695$$ −3.54576 6.14144i −0.134498 0.232958i
$$696$$ −3.17752 + 5.50362i −0.120444 + 0.208614i
$$697$$ −18.5646 15.5776i −0.703186 0.590043i
$$698$$ 3.06670 + 1.11619i 0.116076 + 0.0422484i
$$699$$ −3.85117 + 1.40171i −0.145665 + 0.0530175i
$$700$$ −14.6420 + 12.2861i −0.553417 + 0.464372i
$$701$$ −3.48561 19.7679i −0.131650 0.746623i −0.977134 0.212623i $$-0.931799\pi$$
0.845484 0.534000i $$-0.179312\pi$$
$$702$$ −1.65270 −0.0623773
$$703$$ 31.6894 + 37.2063i 1.19519 + 1.40326i
$$704$$ −0.347296 −0.0130892
$$705$$ 3.31521 + 18.8015i 0.124858 + 0.708105i
$$706$$ −22.2795 + 18.6947i −0.838499 + 0.703584i
$$707$$ −26.8050 + 9.75622i −1.00811 + 0.366920i
$$708$$ 0.418748 + 0.152412i 0.0157375 + 0.00572799i
$$709$$ −29.7998 25.0050i −1.11915 0.939082i −0.120593 0.992702i $$-0.538480\pi$$
−0.998561 + 0.0536201i $$0.982924\pi$$
$$710$$ 28.3555 49.1132i 1.06416 1.84318i
$$711$$ 5.46198 + 9.46043i 0.204840 + 0.354794i
$$712$$ −0.311337 + 1.76568i −0.0116679 + 0.0661717i
$$713$$ 1.88507 10.6907i 0.0705963 0.400372i
$$714$$ 9.99660 + 17.3146i 0.374113 + 0.647983i
$$715$$ 0.979055 1.69577i 0.0366146 0.0634183i
$$716$$ 1.55896 + 1.30813i 0.0582612 + 0.0488869i
$$717$$ −26.5253 9.65441i −0.990605 0.360551i
$$718$$ 6.21213 2.26103i 0.231835 0.0843810i
$$719$$ 2.34549 1.96810i 0.0874718 0.0733976i −0.598003 0.801494i $$-0.704039\pi$$
0.685475 + 0.728096i $$0.259595\pi$$
$$720$$ −0.592396 3.35965i −0.0220773 0.125207i
$$721$$ −22.5895 −0.841275
$$722$$ 18.9979 0.279737i 0.707030 0.0104107i
$$723$$ −6.56212 −0.244048
$$724$$ 3.87299 + 21.9648i 0.143938 + 0.816316i
$$725$$ 32.3161 27.1165i 1.20019 1.00708i
$$726$$ 10.2233 3.72097i 0.379421 0.138098i
$$727$$ 16.4226 + 5.97734i 0.609081 + 0.221687i 0.628101 0.778132i $$-0.283832\pi$$
−0.0190200 + 0.999819i $$0.506055\pi$$
$$728$$ −3.64543 3.05888i −0.135109 0.113370i
$$729$$ −0.500000 + 0.866025i −0.0185185 + 0.0320750i
$$730$$ −21.1839 36.6916i −0.784052 1.35802i
$$731$$ 2.75284 15.6121i 0.101817 0.577436i
$$732$$ 2.17617 12.3417i 0.0804337 0.456162i
$$733$$ 20.7087 + 35.8686i 0.764894 + 1.32484i 0.940302 + 0.340340i $$0.110542\pi$$
−0.175408 + 0.984496i $$0.556124\pi$$
$$734$$ −2.89780 + 5.01914i −0.106960 + 0.185260i
$$735$$ 3.37346 + 2.83067i 0.124432 + 0.104411i
$$736$$ 6.39053 + 2.32596i 0.235558 + 0.0857361i
$$737$$ −0.352044 + 0.128134i −0.0129677 + 0.00471986i
$$738$$ 2.67365 2.24346i 0.0984183 0.0825828i
$$739$$ 4.59358 + 26.0515i 0.168978 + 0.958319i 0.944868 + 0.327451i $$0.106190\pi$$
−0.775890 + 0.630868i $$0.782699\pi$$
$$740$$ 38.2499 1.40609
$$741$$ −4.67112 5.48432i −0.171598 0.201472i
$$742$$ 5.70233 0.209339
$$743$$ −2.61793 14.8470i −0.0960424 0.544684i −0.994423 0.105466i $$-0.966367\pi$$
0.898381 0.439218i $$-0.144744\pi$$
$$744$$ 1.22281 1.02606i 0.0448304 0.0376172i
$$745$$ −5.34477 + 1.94534i −0.195817 + 0.0712716i
$$746$$ −24.3285 8.85484i −0.890728 0.324199i
$$747$$ 8.97565 + 7.53147i 0.328402 + 0.275562i
$$748$$ 1.20574 2.08840i 0.0440861 0.0763594i
$$749$$ −0.0393628 0.0681784i −0.00143829 0.00249119i
$$750$$ −0.970437 + 5.50362i −0.0354354 + 0.200964i
$$751$$ −0.921274 + 5.22481i −0.0336178 + 0.190656i −0.996992 0.0775048i $$-0.975305\pi$$
0.963374 + 0.268161i $$0.0864158\pi$$
$$752$$ −2.79813 4.84651i −0.102037 0.176734i
$$753$$ 4.44697 7.70237i 0.162056 0.280690i
$$754$$ 8.04576 + 6.75119i 0.293009 + 0.245864i
$$755$$ 64.2825 + 23.3969i 2.33948 + 0.851500i
$$756$$ −2.70574 + 0.984808i −0.0984067 + 0.0358171i
$$757$$ 6.23442 5.23130i 0.226594 0.190135i −0.522422 0.852687i $$-0.674971\pi$$
0.749016 + 0.662552i $$0.230527\pi$$
$$758$$ 3.32635 + 18.8647i 0.120819 + 0.685196i
$$759$$ 2.36184 0.0857295
$$760$$ 9.47431 11.4613i 0.343669 0.415747i
$$761$$ −46.2113 −1.67516 −0.837579 0.546316i $$-0.816030\pi$$
−0.837579 + 0.546316i $$0.816030\pi$$
$$762$$ 2.81521 + 15.9658i 0.101984 + 0.578381i
$$763$$ 23.7631 19.9396i 0.860282 0.721863i
$$764$$ −10.1356 + 3.68907i −0.366694 + 0.133466i
$$765$$ 22.2592 + 8.10170i 0.804784 + 0.292918i