Properties

Label 114.2.i.c.55.1
Level $114$
Weight $2$
Character 114.55
Analytic conductor $0.910$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [114,2,Mod(25,114)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(114, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("114.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.i (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.910294583043\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 55.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 114.55
Dual form 114.2.i.c.85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 - 0.984808i) q^{2} +(-0.766044 - 0.642788i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(2.20574 - 0.802823i) q^{5} +(-0.766044 + 0.642788i) q^{6} +(-1.78699 - 3.09516i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(0.173648 + 0.984808i) q^{9} +O(q^{10})\) \(q+(0.173648 - 0.984808i) q^{2} +(-0.766044 - 0.642788i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(2.20574 - 0.802823i) q^{5} +(-0.766044 + 0.642788i) q^{6} +(-1.78699 - 3.09516i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(0.173648 + 0.984808i) q^{9} +(-0.407604 - 2.31164i) q^{10} +(-1.35844 + 2.35289i) q^{11} +(0.500000 + 0.866025i) q^{12} +(4.14543 - 3.47843i) q^{13} +(-3.35844 + 1.22237i) q^{14} +(-2.20574 - 0.802823i) q^{15} +(0.766044 + 0.642788i) q^{16} +(-0.673648 + 3.82045i) q^{17} +1.00000 q^{18} +(1.01114 + 4.24000i) q^{19} -2.34730 q^{20} +(-0.620615 + 3.51968i) q^{21} +(2.08125 + 1.74638i) q^{22} +(7.73783 + 2.81634i) q^{23} +(0.939693 - 0.342020i) q^{24} +(0.390530 - 0.327693i) q^{25} +(-2.70574 - 4.68647i) q^{26} +(0.500000 - 0.866025i) q^{27} +(0.620615 + 3.51968i) q^{28} +(0.613341 + 3.47843i) q^{29} +(-1.17365 + 2.03282i) q^{30} +(-3.26604 - 5.65695i) q^{31} +(0.766044 - 0.642788i) q^{32} +(2.55303 - 0.929228i) q^{33} +(3.64543 + 1.32683i) q^{34} +(-6.42649 - 5.39246i) q^{35} +(0.173648 - 0.984808i) q^{36} +0.389185 q^{37} +(4.35117 - 0.259515i) q^{38} -5.41147 q^{39} +(-0.407604 + 2.31164i) q^{40} +(-1.48886 - 1.24930i) q^{41} +(3.35844 + 1.22237i) q^{42} +(-4.71941 + 1.71772i) q^{43} +(2.08125 - 1.74638i) q^{44} +(1.17365 + 2.03282i) q^{45} +(4.11721 - 7.13122i) q^{46} +(0.518418 + 2.94010i) q^{47} +(-0.173648 - 0.984808i) q^{48} +(-2.88666 + 4.99984i) q^{49} +(-0.254900 - 0.441500i) q^{50} +(2.97178 - 2.49362i) q^{51} +(-5.08512 + 1.85083i) q^{52} +(-7.80453 - 2.84062i) q^{53} +(-0.766044 - 0.642788i) q^{54} +(-1.10741 + 6.28044i) q^{55} +3.57398 q^{56} +(1.95084 - 3.89798i) q^{57} +3.53209 q^{58} +(0.474308 - 2.68993i) q^{59} +(1.79813 + 1.50881i) q^{60} +(-5.91147 - 2.15160i) q^{61} +(-6.13816 + 2.23411i) q^{62} +(2.73783 - 2.29731i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(6.35117 - 11.0005i) q^{65} +(-0.471782 - 2.67561i) q^{66} +(-2.59374 - 14.7098i) q^{67} +(1.93969 - 3.35965i) q^{68} +(-4.11721 - 7.13122i) q^{69} +(-6.42649 + 5.39246i) q^{70} +(-8.47818 + 3.08580i) q^{71} +(-0.939693 - 0.342020i) q^{72} +(7.88326 + 6.61484i) q^{73} +(0.0675813 - 0.383273i) q^{74} -0.509800 q^{75} +(0.500000 - 4.33013i) q^{76} +9.71007 q^{77} +(-0.939693 + 5.32926i) q^{78} +(9.96451 + 8.36121i) q^{79} +(2.20574 + 0.802823i) q^{80} +(-0.939693 + 0.342020i) q^{81} +(-1.48886 + 1.24930i) q^{82} +(4.08512 + 7.07564i) q^{83} +(1.78699 - 3.09516i) q^{84} +(1.58125 + 8.96773i) q^{85} +(0.872111 + 4.94599i) q^{86} +(1.76604 - 3.05888i) q^{87} +(-1.35844 - 2.35289i) q^{88} +(8.98158 - 7.53644i) q^{89} +(2.20574 - 0.802823i) q^{90} +(-18.1741 - 6.61484i) q^{91} +(-6.30793 - 5.29298i) q^{92} +(-1.13429 + 6.43285i) q^{93} +2.98545 q^{94} +(5.63429 + 8.54055i) q^{95} -1.00000 q^{96} +(-1.49407 + 8.47329i) q^{97} +(4.42262 + 3.71102i) q^{98} +(-2.55303 - 0.929228i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} - 3 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{5} - 3 q^{7} - 3 q^{8} - 6 q^{10} + 3 q^{12} + 9 q^{13} - 12 q^{14} - 3 q^{15} - 3 q^{17} + 6 q^{18} - 12 q^{20} - 15 q^{21} + 15 q^{22} + 27 q^{23} - 15 q^{25} - 6 q^{26} + 3 q^{27} + 15 q^{28} - 3 q^{29} - 6 q^{30} - 15 q^{31} + 3 q^{33} + 6 q^{34} + 12 q^{35} - 6 q^{37} - 12 q^{39} - 6 q^{40} - 15 q^{41} + 12 q^{42} + 3 q^{43} + 15 q^{44} + 6 q^{45} - 6 q^{46} + 15 q^{47} - 24 q^{49} - 3 q^{50} + 3 q^{51} - 9 q^{52} + 6 q^{53} + 27 q^{55} + 6 q^{56} + 12 q^{58} - 27 q^{59} - 3 q^{60} - 15 q^{61} - 3 q^{62} - 3 q^{63} - 3 q^{64} + 12 q^{65} + 12 q^{66} - 3 q^{67} + 6 q^{68} + 6 q^{69} + 12 q^{70} + 3 q^{71} + 12 q^{73} + 24 q^{74} - 6 q^{75} + 3 q^{76} - 42 q^{77} + 27 q^{79} + 3 q^{80} - 15 q^{82} + 3 q^{83} + 3 q^{84} + 12 q^{85} - 24 q^{86} + 6 q^{87} + 42 q^{89} + 3 q^{90} - 42 q^{91} - 27 q^{92} + 3 q^{93} - 18 q^{94} + 24 q^{95} - 6 q^{96} + 18 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 0.984808i 0.122788 0.696364i
\(3\) −0.766044 0.642788i −0.442276 0.371114i
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) 2.20574 0.802823i 0.986436 0.359033i 0.202097 0.979366i \(-0.435225\pi\)
0.784339 + 0.620332i \(0.213002\pi\)
\(6\) −0.766044 + 0.642788i −0.312736 + 0.262417i
\(7\) −1.78699 3.09516i −0.675418 1.16986i −0.976346 0.216212i \(-0.930630\pi\)
0.300928 0.953647i \(-0.402704\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 0.173648 + 0.984808i 0.0578827 + 0.328269i
\(10\) −0.407604 2.31164i −0.128896 0.731003i
\(11\) −1.35844 + 2.35289i −0.409585 + 0.709423i −0.994843 0.101425i \(-0.967660\pi\)
0.585258 + 0.810847i \(0.300993\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 4.14543 3.47843i 1.14974 0.964742i 0.150022 0.988683i \(-0.452066\pi\)
0.999713 + 0.0239402i \(0.00762112\pi\)
\(14\) −3.35844 + 1.22237i −0.897581 + 0.326693i
\(15\) −2.20574 0.802823i −0.569519 0.207288i
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) −0.673648 + 3.82045i −0.163384 + 0.926595i 0.787332 + 0.616530i \(0.211462\pi\)
−0.950715 + 0.310065i \(0.899649\pi\)
\(18\) 1.00000 0.235702
\(19\) 1.01114 + 4.24000i 0.231972 + 0.972722i
\(20\) −2.34730 −0.524871
\(21\) −0.620615 + 3.51968i −0.135429 + 0.768057i
\(22\) 2.08125 + 1.74638i 0.443724 + 0.372329i
\(23\) 7.73783 + 2.81634i 1.61345 + 0.587247i 0.982118 0.188267i \(-0.0602870\pi\)
0.631330 + 0.775514i \(0.282509\pi\)
\(24\) 0.939693 0.342020i 0.191814 0.0698146i
\(25\) 0.390530 0.327693i 0.0781059 0.0655386i
\(26\) −2.70574 4.68647i −0.530639 0.919093i
\(27\) 0.500000 0.866025i 0.0962250 0.166667i
\(28\) 0.620615 + 3.51968i 0.117285 + 0.665157i
\(29\) 0.613341 + 3.47843i 0.113895 + 0.645928i 0.987292 + 0.158919i \(0.0508009\pi\)
−0.873397 + 0.487009i \(0.838088\pi\)
\(30\) −1.17365 + 2.03282i −0.214278 + 0.371140i
\(31\) −3.26604 5.65695i −0.586599 1.01602i −0.994674 0.103071i \(-0.967133\pi\)
0.408075 0.912948i \(-0.366200\pi\)
\(32\) 0.766044 0.642788i 0.135419 0.113630i
\(33\) 2.55303 0.929228i 0.444426 0.161758i
\(34\) 3.64543 + 1.32683i 0.625186 + 0.227549i
\(35\) −6.42649 5.39246i −1.08627 0.911493i
\(36\) 0.173648 0.984808i 0.0289414 0.164135i
\(37\) 0.389185 0.0639817 0.0319908 0.999488i \(-0.489815\pi\)
0.0319908 + 0.999488i \(0.489815\pi\)
\(38\) 4.35117 0.259515i 0.705852 0.0420989i
\(39\) −5.41147 −0.866529
\(40\) −0.407604 + 2.31164i −0.0644478 + 0.365502i
\(41\) −1.48886 1.24930i −0.232520 0.195108i 0.519082 0.854725i \(-0.326274\pi\)
−0.751602 + 0.659617i \(0.770718\pi\)
\(42\) 3.35844 + 1.22237i 0.518219 + 0.188616i
\(43\) −4.71941 + 1.71772i −0.719703 + 0.261950i −0.675800 0.737085i \(-0.736202\pi\)
−0.0439033 + 0.999036i \(0.513979\pi\)
\(44\) 2.08125 1.74638i 0.313761 0.263276i
\(45\) 1.17365 + 2.03282i 0.174957 + 0.303035i
\(46\) 4.11721 7.13122i 0.607050 1.05144i
\(47\) 0.518418 + 2.94010i 0.0756191 + 0.428857i 0.998989 + 0.0449466i \(0.0143118\pi\)
−0.923370 + 0.383911i \(0.874577\pi\)
\(48\) −0.173648 0.984808i −0.0250640 0.142145i
\(49\) −2.88666 + 4.99984i −0.412380 + 0.714263i
\(50\) −0.254900 0.441500i −0.0360483 0.0624375i
\(51\) 2.97178 2.49362i 0.416133 0.349177i
\(52\) −5.08512 + 1.85083i −0.705180 + 0.256664i
\(53\) −7.80453 2.84062i −1.07203 0.390189i −0.255097 0.966915i \(-0.582108\pi\)
−0.816937 + 0.576727i \(0.804330\pi\)
\(54\) −0.766044 0.642788i −0.104245 0.0874723i
\(55\) −1.10741 + 6.28044i −0.149323 + 0.846854i
\(56\) 3.57398 0.477593
\(57\) 1.95084 3.89798i 0.258395 0.516300i
\(58\) 3.53209 0.463786
\(59\) 0.474308 2.68993i 0.0617496 0.350199i −0.938241 0.345981i \(-0.887546\pi\)
0.999991 0.00421836i \(-0.00134275\pi\)
\(60\) 1.79813 + 1.50881i 0.232138 + 0.194787i
\(61\) −5.91147 2.15160i −0.756887 0.275484i −0.0653860 0.997860i \(-0.520828\pi\)
−0.691501 + 0.722376i \(0.743050\pi\)
\(62\) −6.13816 + 2.23411i −0.779547 + 0.283732i
\(63\) 2.73783 2.29731i 0.344934 0.289434i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 6.35117 11.0005i 0.787765 1.36445i
\(66\) −0.471782 2.67561i −0.0580723 0.329344i
\(67\) −2.59374 14.7098i −0.316876 1.79709i −0.561503 0.827475i \(-0.689777\pi\)
0.244627 0.969617i \(-0.421335\pi\)
\(68\) 1.93969 3.35965i 0.235222 0.407417i
\(69\) −4.11721 7.13122i −0.495654 0.858498i
\(70\) −6.42649 + 5.39246i −0.768112 + 0.644523i
\(71\) −8.47818 + 3.08580i −1.00617 + 0.366218i −0.791963 0.610570i \(-0.790941\pi\)
−0.214212 + 0.976787i \(0.568718\pi\)
\(72\) −0.939693 0.342020i −0.110744 0.0403075i
\(73\) 7.88326 + 6.61484i 0.922665 + 0.774208i 0.974486 0.224448i \(-0.0720580\pi\)
−0.0518207 + 0.998656i \(0.516502\pi\)
\(74\) 0.0675813 0.383273i 0.00785617 0.0445546i
\(75\) −0.509800 −0.0588667
\(76\) 0.500000 4.33013i 0.0573539 0.496700i
\(77\) 9.71007 1.10657
\(78\) −0.939693 + 5.32926i −0.106399 + 0.603420i
\(79\) 9.96451 + 8.36121i 1.12109 + 0.940710i 0.998659 0.0517663i \(-0.0164851\pi\)
0.122435 + 0.992476i \(0.460930\pi\)
\(80\) 2.20574 + 0.802823i 0.246609 + 0.0897583i
\(81\) −0.939693 + 0.342020i −0.104410 + 0.0380022i
\(82\) −1.48886 + 1.24930i −0.164417 + 0.137962i
\(83\) 4.08512 + 7.07564i 0.448400 + 0.776652i 0.998282 0.0585902i \(-0.0186605\pi\)
−0.549882 + 0.835243i \(0.685327\pi\)
\(84\) 1.78699 3.09516i 0.194976 0.337709i
\(85\) 1.58125 + 8.96773i 0.171511 + 0.972686i
\(86\) 0.872111 + 4.94599i 0.0940422 + 0.533340i
\(87\) 1.76604 3.05888i 0.189340 0.327946i
\(88\) −1.35844 2.35289i −0.144810 0.250819i
\(89\) 8.98158 7.53644i 0.952046 0.798861i −0.0275951 0.999619i \(-0.508785\pi\)
0.979641 + 0.200758i \(0.0643405\pi\)
\(90\) 2.20574 0.802823i 0.232505 0.0846249i
\(91\) −18.1741 6.61484i −1.90516 0.693423i
\(92\) −6.30793 5.29298i −0.657648 0.551832i
\(93\) −1.13429 + 6.43285i −0.117620 + 0.667056i
\(94\) 2.98545 0.307926
\(95\) 5.63429 + 8.54055i 0.578065 + 0.876242i
\(96\) −1.00000 −0.102062
\(97\) −1.49407 + 8.47329i −0.151700 + 0.860333i 0.810041 + 0.586373i \(0.199445\pi\)
−0.961741 + 0.273960i \(0.911666\pi\)
\(98\) 4.42262 + 3.71102i 0.446752 + 0.374869i
\(99\) −2.55303 0.929228i −0.256590 0.0933909i
\(100\) −0.479055 + 0.174362i −0.0479055 + 0.0174362i
\(101\) −0.984985 + 0.826501i −0.0980097 + 0.0822399i −0.690476 0.723355i \(-0.742599\pi\)
0.592466 + 0.805595i \(0.298154\pi\)
\(102\) −1.93969 3.35965i −0.192058 0.332655i
\(103\) −0.368241 + 0.637812i −0.0362839 + 0.0628455i −0.883597 0.468248i \(-0.844885\pi\)
0.847313 + 0.531094i \(0.178219\pi\)
\(104\) 0.939693 + 5.32926i 0.0921444 + 0.522577i
\(105\) 1.45677 + 8.26173i 0.142166 + 0.806263i
\(106\) −4.15270 + 7.19269i −0.403346 + 0.698616i
\(107\) −5.01367 8.68393i −0.484690 0.839507i 0.515155 0.857097i \(-0.327734\pi\)
−0.999845 + 0.0175893i \(0.994401\pi\)
\(108\) −0.766044 + 0.642788i −0.0737127 + 0.0618523i
\(109\) −13.0817 + 4.76136i −1.25300 + 0.456055i −0.881415 0.472343i \(-0.843408\pi\)
−0.371587 + 0.928398i \(0.621186\pi\)
\(110\) 5.99273 + 2.18117i 0.571384 + 0.207967i
\(111\) −0.298133 0.250164i −0.0282976 0.0237445i
\(112\) 0.620615 3.51968i 0.0586426 0.332579i
\(113\) −0.226682 −0.0213244 −0.0106622 0.999943i \(-0.503394\pi\)
−0.0106622 + 0.999943i \(0.503394\pi\)
\(114\) −3.50000 2.59808i −0.327805 0.243332i
\(115\) 19.3286 1.80240
\(116\) 0.613341 3.47843i 0.0569473 0.322964i
\(117\) 4.14543 + 3.47843i 0.383245 + 0.321581i
\(118\) −2.56670 0.934204i −0.236284 0.0860004i
\(119\) 13.0287 4.74205i 1.19434 0.434703i
\(120\) 1.79813 1.50881i 0.164146 0.137735i
\(121\) 1.80928 + 3.13376i 0.164480 + 0.284887i
\(122\) −3.14543 + 5.44804i −0.284774 + 0.493243i
\(123\) 0.337496 + 1.91404i 0.0304310 + 0.172583i
\(124\) 1.13429 + 6.43285i 0.101862 + 0.577687i
\(125\) −5.26991 + 9.12776i −0.471356 + 0.816412i
\(126\) −1.78699 3.09516i −0.159198 0.275738i
\(127\) 6.66044 5.58878i 0.591019 0.495924i −0.297526 0.954714i \(-0.596161\pi\)
0.888545 + 0.458790i \(0.151717\pi\)
\(128\) −0.939693 + 0.342020i −0.0830579 + 0.0302306i
\(129\) 4.71941 + 1.71772i 0.415521 + 0.151237i
\(130\) −9.73055 8.16490i −0.853426 0.716109i
\(131\) −2.19547 + 12.4511i −0.191819 + 1.08786i 0.725057 + 0.688689i \(0.241813\pi\)
−0.916876 + 0.399172i \(0.869298\pi\)
\(132\) −2.71688 −0.236474
\(133\) 11.3166 10.7065i 0.981269 0.928370i
\(134\) −14.9368 −1.29034
\(135\) 0.407604 2.31164i 0.0350809 0.198954i
\(136\) −2.97178 2.49362i −0.254828 0.213826i
\(137\) −20.4795 7.45394i −1.74968 0.636833i −0.749987 0.661453i \(-0.769940\pi\)
−0.999697 + 0.0246200i \(0.992162\pi\)
\(138\) −7.73783 + 2.81634i −0.658687 + 0.239743i
\(139\) −8.60014 + 7.21637i −0.729454 + 0.612085i −0.929983 0.367603i \(-0.880178\pi\)
0.200529 + 0.979688i \(0.435734\pi\)
\(140\) 4.19459 + 7.26525i 0.354508 + 0.614025i
\(141\) 1.49273 2.58548i 0.125710 0.217736i
\(142\) 1.56670 + 8.88522i 0.131475 + 0.745631i
\(143\) 2.55303 + 14.4790i 0.213495 + 1.21079i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 4.14543 + 7.18009i 0.344259 + 0.596274i
\(146\) 7.88326 6.61484i 0.652423 0.547448i
\(147\) 5.42514 1.97459i 0.447458 0.162862i
\(148\) −0.365715 0.133109i −0.0300616 0.0109415i
\(149\) −16.8366 14.1276i −1.37931 1.15738i −0.969467 0.245222i \(-0.921139\pi\)
−0.409843 0.912156i \(-0.634416\pi\)
\(150\) −0.0885259 + 0.502055i −0.00722811 + 0.0409926i
\(151\) 2.36184 0.192204 0.0961021 0.995371i \(-0.469362\pi\)
0.0961021 + 0.995371i \(0.469362\pi\)
\(152\) −4.17752 1.24432i −0.338841 0.100928i
\(153\) −3.87939 −0.313630
\(154\) 1.68614 9.56256i 0.135873 0.770573i
\(155\) −11.7456 9.85570i −0.943427 0.791629i
\(156\) 5.08512 + 1.85083i 0.407136 + 0.148185i
\(157\) 13.4893 4.90971i 1.07657 0.391838i 0.257937 0.966162i \(-0.416957\pi\)
0.818628 + 0.574324i \(0.194735\pi\)
\(158\) 9.96451 8.36121i 0.792734 0.665183i
\(159\) 4.15270 + 7.19269i 0.329331 + 0.570418i
\(160\) 1.17365 2.03282i 0.0927850 0.160708i
\(161\) −5.11040 28.9825i −0.402756 2.28414i
\(162\) 0.173648 + 0.984808i 0.0136431 + 0.0773738i
\(163\) 8.57057 14.8447i 0.671299 1.16272i −0.306237 0.951955i \(-0.599070\pi\)
0.977536 0.210769i \(-0.0675968\pi\)
\(164\) 0.971782 + 1.68317i 0.0758834 + 0.131434i
\(165\) 4.88532 4.09927i 0.380321 0.319127i
\(166\) 7.67752 2.79439i 0.595891 0.216887i
\(167\) 13.7369 + 4.99984i 1.06300 + 0.386899i 0.813553 0.581490i \(-0.197530\pi\)
0.249444 + 0.968389i \(0.419752\pi\)
\(168\) −2.73783 2.29731i −0.211228 0.177241i
\(169\) 2.82770 16.0367i 0.217515 1.23359i
\(170\) 9.10607 0.698403
\(171\) −4.00000 + 1.73205i −0.305888 + 0.132453i
\(172\) 5.02229 0.382946
\(173\) −3.58899 + 20.3542i −0.272866 + 1.54750i 0.472794 + 0.881173i \(0.343246\pi\)
−0.745660 + 0.666327i \(0.767865\pi\)
\(174\) −2.70574 2.27038i −0.205121 0.172117i
\(175\) −1.71213 0.623166i −0.129425 0.0471069i
\(176\) −2.55303 + 0.929228i −0.192442 + 0.0700432i
\(177\) −2.09240 + 1.75573i −0.157274 + 0.131969i
\(178\) −5.86231 10.1538i −0.439399 0.761061i
\(179\) −2.84730 + 4.93166i −0.212817 + 0.368610i −0.952595 0.304241i \(-0.901597\pi\)
0.739778 + 0.672851i \(0.234930\pi\)
\(180\) −0.407604 2.31164i −0.0303810 0.172299i
\(181\) −3.85844 21.8823i −0.286796 1.62650i −0.698800 0.715317i \(-0.746282\pi\)
0.412004 0.911182i \(-0.364829\pi\)
\(182\) −9.67024 + 16.7494i −0.716806 + 1.24154i
\(183\) 3.14543 + 5.44804i 0.232517 + 0.402731i
\(184\) −6.30793 + 5.29298i −0.465027 + 0.390204i
\(185\) 0.858441 0.312447i 0.0631138 0.0229716i
\(186\) 6.13816 + 2.23411i 0.450071 + 0.163813i
\(187\) −8.07398 6.77487i −0.590428 0.495428i
\(188\) 0.518418 2.94010i 0.0378095 0.214429i
\(189\) −3.57398 −0.259969
\(190\) 9.38919 4.06564i 0.681163 0.294952i
\(191\) 6.04694 0.437541 0.218771 0.975776i \(-0.429795\pi\)
0.218771 + 0.975776i \(0.429795\pi\)
\(192\) −0.173648 + 0.984808i −0.0125320 + 0.0710724i
\(193\) 4.82501 + 4.04866i 0.347312 + 0.291429i 0.799709 0.600387i \(-0.204987\pi\)
−0.452398 + 0.891816i \(0.649431\pi\)
\(194\) 8.08512 + 2.94274i 0.580478 + 0.211277i
\(195\) −11.9363 + 4.34445i −0.854775 + 0.311113i
\(196\) 4.42262 3.71102i 0.315901 0.265073i
\(197\) −9.96838 17.2657i −0.710218 1.23013i −0.964775 0.263075i \(-0.915263\pi\)
0.254558 0.967058i \(-0.418070\pi\)
\(198\) −1.35844 + 2.35289i −0.0965402 + 0.167212i
\(199\) 2.23695 + 12.6864i 0.158573 + 0.899313i 0.955446 + 0.295166i \(0.0953749\pi\)
−0.796873 + 0.604147i \(0.793514\pi\)
\(200\) 0.0885259 + 0.502055i 0.00625972 + 0.0355007i
\(201\) −7.46838 + 12.9356i −0.526779 + 0.912408i
\(202\) 0.642903 + 1.11354i 0.0452345 + 0.0783485i
\(203\) 9.67024 8.11430i 0.678718 0.569512i
\(204\) −3.64543 + 1.32683i −0.255231 + 0.0928965i
\(205\) −4.28699 1.56034i −0.299416 0.108979i
\(206\) 0.564178 + 0.473401i 0.0393081 + 0.0329834i
\(207\) −1.42989 + 8.10932i −0.0993844 + 0.563637i
\(208\) 5.41147 0.375218
\(209\) −11.3498 3.38068i −0.785084 0.233846i
\(210\) 8.38919 0.578909
\(211\) 0.401674 2.27801i 0.0276524 0.156824i −0.967855 0.251509i \(-0.919073\pi\)
0.995507 + 0.0946847i \(0.0301843\pi\)
\(212\) 6.36231 + 5.33861i 0.436965 + 0.366657i
\(213\) 8.47818 + 3.08580i 0.580915 + 0.211436i
\(214\) −9.42262 + 3.42955i −0.644117 + 0.234439i
\(215\) −9.03074 + 7.57769i −0.615892 + 0.516794i
\(216\) 0.500000 + 0.866025i 0.0340207 + 0.0589256i
\(217\) −11.6728 + 20.2178i −0.792399 + 1.37248i
\(218\) 2.41740 + 13.7098i 0.163727 + 0.928543i
\(219\) −1.78699 10.1345i −0.120754 0.684827i
\(220\) 3.18866 5.52293i 0.214980 0.372356i
\(221\) 10.4966 + 18.1806i 0.706077 + 1.22296i
\(222\) −0.298133 + 0.250164i −0.0200094 + 0.0167899i
\(223\) −3.82547 + 1.39236i −0.256173 + 0.0932392i −0.466914 0.884303i \(-0.654634\pi\)
0.210742 + 0.977542i \(0.432412\pi\)
\(224\) −3.35844 1.22237i −0.224395 0.0816732i
\(225\) 0.390530 + 0.327693i 0.0260353 + 0.0218462i
\(226\) −0.0393628 + 0.223238i −0.00261838 + 0.0148496i
\(227\) −0.440570 −0.0292417 −0.0146208 0.999893i \(-0.504654\pi\)
−0.0146208 + 0.999893i \(0.504654\pi\)
\(228\) −3.16637 + 2.99568i −0.209698 + 0.198393i
\(229\) −3.38919 −0.223964 −0.111982 0.993710i \(-0.535720\pi\)
−0.111982 + 0.993710i \(0.535720\pi\)
\(230\) 3.35638 19.0350i 0.221313 1.25513i
\(231\) −7.43835 6.24152i −0.489407 0.410662i
\(232\) −3.31908 1.20805i −0.217908 0.0793121i
\(233\) −1.98633 + 0.722965i −0.130129 + 0.0473630i −0.406264 0.913756i \(-0.633169\pi\)
0.276135 + 0.961119i \(0.410946\pi\)
\(234\) 4.14543 3.47843i 0.270995 0.227392i
\(235\) 3.50387 + 6.06888i 0.228567 + 0.395890i
\(236\) −1.36571 + 2.36549i −0.0889005 + 0.153980i
\(237\) −2.25877 12.8101i −0.146723 0.832107i
\(238\) −2.40760 13.6542i −0.156062 0.885070i
\(239\) 2.01455 3.48930i 0.130310 0.225704i −0.793486 0.608589i \(-0.791736\pi\)
0.923796 + 0.382885i \(0.125069\pi\)
\(240\) −1.17365 2.03282i −0.0757587 0.131218i
\(241\) −7.79607 + 6.54168i −0.502189 + 0.421387i −0.858371 0.513030i \(-0.828523\pi\)
0.356181 + 0.934417i \(0.384079\pi\)
\(242\) 3.40033 1.23762i 0.218581 0.0795572i
\(243\) 0.939693 + 0.342020i 0.0602813 + 0.0219406i
\(244\) 4.81908 + 4.04369i 0.308510 + 0.258870i
\(245\) −2.35323 + 13.3458i −0.150342 + 0.852632i
\(246\) 1.94356 0.123917
\(247\) 18.9402 + 14.0594i 1.20513 + 0.894580i
\(248\) 6.53209 0.414788
\(249\) 1.41875 8.04612i 0.0899095 0.509902i
\(250\) 8.07398 + 6.77487i 0.510643 + 0.428481i
\(251\) −2.73396 0.995078i −0.172566 0.0628088i 0.254292 0.967127i \(-0.418157\pi\)
−0.426858 + 0.904319i \(0.640380\pi\)
\(252\) −3.35844 + 1.22237i −0.211562 + 0.0770022i
\(253\) −17.1379 + 14.3804i −1.07745 + 0.904089i
\(254\) −4.34730 7.52974i −0.272774 0.472458i
\(255\) 4.55303 7.88609i 0.285122 0.493846i
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) −0.444440 2.52055i −0.0277234 0.157227i 0.967803 0.251708i \(-0.0809922\pi\)
−0.995527 + 0.0944803i \(0.969881\pi\)
\(258\) 2.51114 4.34943i 0.156337 0.270784i
\(259\) −0.695470 1.20459i −0.0432144 0.0748495i
\(260\) −9.73055 + 8.16490i −0.603463 + 0.506366i
\(261\) −3.31908 + 1.20805i −0.205446 + 0.0747761i
\(262\) 11.8807 + 4.32423i 0.733994 + 0.267152i
\(263\) 12.2023 + 10.2390i 0.752428 + 0.631362i 0.936144 0.351617i \(-0.114368\pi\)
−0.183716 + 0.982979i \(0.558813\pi\)
\(264\) −0.471782 + 2.67561i −0.0290361 + 0.164672i
\(265\) −19.4953 −1.19758
\(266\) −8.57873 13.0038i −0.525995 0.797313i
\(267\) −11.7246 −0.717535
\(268\) −2.59374 + 14.7098i −0.158438 + 0.898546i
\(269\) 12.9422 + 10.8598i 0.789101 + 0.662134i 0.945523 0.325556i \(-0.105551\pi\)
−0.156422 + 0.987690i \(0.549996\pi\)
\(270\) −2.20574 0.802823i −0.134237 0.0488582i
\(271\) 0.585122 0.212967i 0.0355436 0.0129368i −0.324187 0.945993i \(-0.605091\pi\)
0.359731 + 0.933056i \(0.382869\pi\)
\(272\) −2.97178 + 2.49362i −0.180191 + 0.151198i
\(273\) 9.67024 + 16.7494i 0.585270 + 1.01372i
\(274\) −10.8969 + 18.8740i −0.658307 + 1.14022i
\(275\) 0.240514 + 1.36402i 0.0145036 + 0.0822538i
\(276\) 1.42989 + 8.10932i 0.0860694 + 0.488124i
\(277\) 13.7383 23.7954i 0.825454 1.42973i −0.0761178 0.997099i \(-0.524253\pi\)
0.901572 0.432629i \(-0.142414\pi\)
\(278\) 5.61334 + 9.72259i 0.336666 + 0.583122i
\(279\) 5.00387 4.19875i 0.299574 0.251372i
\(280\) 7.88326 2.86927i 0.471115 0.171472i
\(281\) 2.33110 + 0.848451i 0.139062 + 0.0506143i 0.410613 0.911810i \(-0.365315\pi\)
−0.271552 + 0.962424i \(0.587537\pi\)
\(282\) −2.28699 1.91901i −0.136188 0.114275i
\(283\) 0.396459 2.24843i 0.0235671 0.133655i −0.970754 0.240076i \(-0.922828\pi\)
0.994321 + 0.106420i \(0.0339389\pi\)
\(284\) 9.02229 0.535374
\(285\) 1.17365 10.1641i 0.0695209 0.602069i
\(286\) 14.7023 0.869367
\(287\) −1.20620 + 6.84072i −0.0712000 + 0.403795i
\(288\) 0.766044 + 0.642788i 0.0451396 + 0.0378766i
\(289\) 1.83275 + 0.667066i 0.107809 + 0.0392392i
\(290\) 7.79086 2.83564i 0.457495 0.166515i
\(291\) 6.59105 5.53055i 0.386374 0.324207i
\(292\) −5.14543 8.91215i −0.301113 0.521544i
\(293\) 1.19800 2.07499i 0.0699877 0.121222i −0.828908 0.559385i \(-0.811037\pi\)
0.898896 + 0.438163i \(0.144371\pi\)
\(294\) −1.00253 5.68561i −0.0584685 0.331591i
\(295\) −1.11334 6.31407i −0.0648212 0.367619i
\(296\) −0.194593 + 0.337044i −0.0113105 + 0.0195903i
\(297\) 1.35844 + 2.35289i 0.0788247 + 0.136528i
\(298\) −16.8366 + 14.1276i −0.975319 + 0.818390i
\(299\) 41.8730 15.2405i 2.42158 0.881383i
\(300\) 0.479055 + 0.174362i 0.0276583 + 0.0100668i
\(301\) 13.7502 + 11.5377i 0.792546 + 0.665025i
\(302\) 0.410130 2.32596i 0.0236003 0.133844i
\(303\) 1.28581 0.0738677
\(304\) −1.95084 + 3.89798i −0.111888 + 0.223564i
\(305\) −14.7665 −0.845528
\(306\) −0.673648 + 3.82045i −0.0385099 + 0.218401i
\(307\) −4.00908 3.36402i −0.228811 0.191995i 0.521174 0.853451i \(-0.325494\pi\)
−0.749984 + 0.661456i \(0.769939\pi\)
\(308\) −9.12449 3.32104i −0.519916 0.189234i
\(309\) 0.692066 0.251892i 0.0393703 0.0143296i
\(310\) −11.7456 + 9.85570i −0.667103 + 0.559766i
\(311\) 5.49660 + 9.52038i 0.311683 + 0.539851i 0.978727 0.205167i \(-0.0657738\pi\)
−0.667044 + 0.745019i \(0.732441\pi\)
\(312\) 2.70574 4.68647i 0.153182 0.265319i
\(313\) −5.28787 29.9890i −0.298888 1.69508i −0.650966 0.759107i \(-0.725636\pi\)
0.352078 0.935971i \(-0.385475\pi\)
\(314\) −2.49273 14.1370i −0.140673 0.797794i
\(315\) 4.19459 7.26525i 0.236339 0.409350i
\(316\) −6.50387 11.2650i −0.365871 0.633708i
\(317\) 8.68660 7.28893i 0.487888 0.409387i −0.365381 0.930858i \(-0.619061\pi\)
0.853269 + 0.521471i \(0.174617\pi\)
\(318\) 7.80453 2.84062i 0.437656 0.159294i
\(319\) −9.01754 3.28212i −0.504885 0.183763i
\(320\) −1.79813 1.50881i −0.100519 0.0843452i
\(321\) −1.74123 + 9.87500i −0.0971860 + 0.551169i
\(322\) −29.4296 −1.64005
\(323\) −16.8799 + 1.00676i −0.939220 + 0.0560175i
\(324\) 1.00000 0.0555556
\(325\) 0.479055 2.71686i 0.0265732 0.150704i
\(326\) −13.1309 11.0181i −0.727252 0.610237i
\(327\) 13.0817 + 4.76136i 0.723421 + 0.263304i
\(328\) 1.82635 0.664738i 0.100843 0.0367040i
\(329\) 8.17365 6.85851i 0.450628 0.378122i
\(330\) −3.18866 5.52293i −0.175530 0.304027i
\(331\) −6.46585 + 11.1992i −0.355395 + 0.615563i −0.987186 0.159577i \(-0.948987\pi\)
0.631790 + 0.775139i \(0.282320\pi\)
\(332\) −1.41875 8.04612i −0.0778639 0.441588i
\(333\) 0.0675813 + 0.383273i 0.00370343 + 0.0210032i
\(334\) 7.30928 12.6600i 0.399946 0.692727i
\(335\) −17.5305 30.3637i −0.957793 1.65895i
\(336\) −2.73783 + 2.29731i −0.149361 + 0.125328i
\(337\) −10.0988 + 3.67566i −0.550116 + 0.200226i −0.602098 0.798422i \(-0.705668\pi\)
0.0519819 + 0.998648i \(0.483446\pi\)
\(338\) −15.3020 5.56947i −0.832319 0.302939i
\(339\) 0.173648 + 0.145708i 0.00943127 + 0.00791378i
\(340\) 1.58125 8.96773i 0.0857554 0.486343i
\(341\) 17.7469 0.961049
\(342\) 1.01114 + 4.24000i 0.0546764 + 0.229273i
\(343\) −4.38413 −0.236721
\(344\) 0.872111 4.94599i 0.0470211 0.266670i
\(345\) −14.8066 12.4242i −0.797160 0.668897i
\(346\) 19.4217 + 7.06894i 1.04412 + 0.380028i
\(347\) −21.4281 + 7.79920i −1.15032 + 0.418683i −0.845631 0.533768i \(-0.820776\pi\)
−0.304692 + 0.952451i \(0.598553\pi\)
\(348\) −2.70574 + 2.27038i −0.145043 + 0.121705i
\(349\) 12.6814 + 21.9648i 0.678819 + 1.17575i 0.975337 + 0.220722i \(0.0708413\pi\)
−0.296518 + 0.955027i \(0.595825\pi\)
\(350\) −0.911007 + 1.57791i −0.0486954 + 0.0843429i
\(351\) −0.939693 5.32926i −0.0501571 0.284455i
\(352\) 0.471782 + 2.67561i 0.0251460 + 0.142610i
\(353\) 6.09627 10.5590i 0.324472 0.562001i −0.656934 0.753948i \(-0.728147\pi\)
0.981405 + 0.191947i \(0.0614802\pi\)
\(354\) 1.36571 + 2.36549i 0.0725869 + 0.125724i
\(355\) −16.2233 + 13.6129i −0.861042 + 0.722500i
\(356\) −11.0175 + 4.01006i −0.583929 + 0.212533i
\(357\) −13.0287 4.74205i −0.689551 0.250976i
\(358\) 4.36231 + 3.66041i 0.230555 + 0.193459i
\(359\) 5.06418 28.7204i 0.267277 1.51580i −0.495195 0.868782i \(-0.664903\pi\)
0.762472 0.647022i \(-0.223986\pi\)
\(360\) −2.34730 −0.123713
\(361\) −16.9552 + 8.57450i −0.892378 + 0.451290i
\(362\) −22.2199 −1.16785
\(363\) 0.628356 3.56358i 0.0329801 0.187040i
\(364\) 14.8157 + 12.4318i 0.776552 + 0.651605i
\(365\) 22.6989 + 8.26173i 1.18812 + 0.432439i
\(366\) 5.91147 2.15160i 0.308998 0.112466i
\(367\) 10.7187 8.99405i 0.559511 0.469486i −0.318635 0.947877i \(-0.603225\pi\)
0.878147 + 0.478392i \(0.158780\pi\)
\(368\) 4.11721 + 7.13122i 0.214624 + 0.371740i
\(369\) 0.971782 1.68317i 0.0505889 0.0876226i
\(370\) −0.158633 0.899655i −0.00824696 0.0467708i
\(371\) 5.15446 + 29.2324i 0.267606 + 1.51767i
\(372\) 3.26604 5.65695i 0.169337 0.293299i
\(373\) 3.41013 + 5.90652i 0.176570 + 0.305828i 0.940703 0.339230i \(-0.110167\pi\)
−0.764134 + 0.645058i \(0.776833\pi\)
\(374\) −8.07398 + 6.77487i −0.417495 + 0.350320i
\(375\) 9.90420 3.60483i 0.511451 0.186153i
\(376\) −2.80541 1.02108i −0.144678 0.0526584i
\(377\) 14.6420 + 12.2861i 0.754103 + 0.632767i
\(378\) −0.620615 + 3.51968i −0.0319210 + 0.181033i
\(379\) 31.9341 1.64034 0.820171 0.572118i \(-0.193878\pi\)
0.820171 + 0.572118i \(0.193878\pi\)
\(380\) −2.37346 9.95253i −0.121756 0.510554i
\(381\) −8.69459 −0.445437
\(382\) 1.05004 5.95507i 0.0537247 0.304688i
\(383\) −28.2049 23.6667i −1.44120 1.20931i −0.938700 0.344734i \(-0.887969\pi\)
−0.502501 0.864577i \(-0.667587\pi\)
\(384\) 0.939693 + 0.342020i 0.0479535 + 0.0174536i
\(385\) 21.4179 7.79547i 1.09156 0.397294i
\(386\) 4.82501 4.04866i 0.245586 0.206071i
\(387\) −2.51114 4.34943i −0.127649 0.221094i
\(388\) 4.30200 7.45129i 0.218401 0.378282i
\(389\) −0.582596 3.30407i −0.0295388 0.167523i 0.966470 0.256780i \(-0.0826617\pi\)
−0.996009 + 0.0892575i \(0.971551\pi\)
\(390\) 2.20574 + 12.5094i 0.111692 + 0.633436i
\(391\) −15.9722 + 27.6647i −0.807751 + 1.39907i
\(392\) −2.88666 4.99984i −0.145798 0.252530i
\(393\) 9.68526 8.12690i 0.488557 0.409948i
\(394\) −18.7344 + 6.81877i −0.943827 + 0.343525i
\(395\) 28.6917 + 10.4429i 1.44363 + 0.525440i
\(396\) 2.08125 + 1.74638i 0.104587 + 0.0877588i
\(397\) 1.19547 6.77985i 0.0599989 0.340271i −0.940001 0.341173i \(-0.889176\pi\)
1.00000 0.000901796i \(0.000287051\pi\)
\(398\) 12.8821 0.645720
\(399\) −15.5510 + 0.927500i −0.778522 + 0.0464331i
\(400\) 0.509800 0.0254900
\(401\) −0.873455 + 4.95361i −0.0436183 + 0.247372i −0.998819 0.0485874i \(-0.984528\pi\)
0.955201 + 0.295959i \(0.0956392\pi\)
\(402\) 11.4422 + 9.60116i 0.570686 + 0.478862i
\(403\) −33.2165 12.0898i −1.65463 0.602236i
\(404\) 1.20826 0.439772i 0.0601133 0.0218795i
\(405\) −1.79813 + 1.50881i −0.0893500 + 0.0749735i
\(406\) −6.31180 10.9324i −0.313250 0.542564i
\(407\) −0.528685 + 0.915710i −0.0262060 + 0.0453901i
\(408\) 0.673648 + 3.82045i 0.0333506 + 0.189140i
\(409\) −1.80747 10.2507i −0.0893735 0.506862i −0.996327 0.0856312i \(-0.972709\pi\)
0.906953 0.421231i \(-0.138402\pi\)
\(410\) −2.28106 + 3.95091i −0.112653 + 0.195122i
\(411\) 10.8969 + 18.8740i 0.537506 + 0.930987i
\(412\) 0.564178 0.473401i 0.0277950 0.0233228i
\(413\) −9.17334 + 3.33882i −0.451391 + 0.164293i
\(414\) 7.73783 + 2.81634i 0.380293 + 0.138415i
\(415\) 14.6912 + 12.3274i 0.721162 + 0.605127i
\(416\) 0.939693 5.32926i 0.0460722 0.261289i
\(417\) 11.2267 0.549773
\(418\) −5.30019 + 10.5903i −0.259241 + 0.517991i
\(419\) −6.22256 −0.303992 −0.151996 0.988381i \(-0.548570\pi\)
−0.151996 + 0.988381i \(0.548570\pi\)
\(420\) 1.45677 8.26173i 0.0710829 0.403131i
\(421\) −20.3917 17.1107i −0.993831 0.833923i −0.00771335 0.999970i \(-0.502455\pi\)
−0.986118 + 0.166047i \(0.946900\pi\)
\(422\) −2.17365 0.791143i −0.105812 0.0385123i
\(423\) −2.80541 + 1.02108i −0.136404 + 0.0496468i
\(424\) 6.36231 5.33861i 0.308981 0.259266i
\(425\) 0.988856 + 1.71275i 0.0479665 + 0.0830805i
\(426\) 4.51114 7.81353i 0.218566 0.378567i
\(427\) 3.90420 + 22.1418i 0.188937 + 1.07152i
\(428\) 1.74123 + 9.87500i 0.0841655 + 0.477326i
\(429\) 7.35117 12.7326i 0.354918 0.614735i
\(430\) 5.89440 + 10.2094i 0.284253 + 0.492341i
\(431\) −10.5196 + 8.82699i −0.506711 + 0.425181i −0.859970 0.510344i \(-0.829518\pi\)
0.353259 + 0.935526i \(0.385074\pi\)
\(432\) 0.939693 0.342020i 0.0452110 0.0164555i
\(433\) 23.2053 + 8.44605i 1.11518 + 0.405891i 0.832890 0.553439i \(-0.186685\pi\)
0.282287 + 0.959330i \(0.408907\pi\)
\(434\) 17.8837 + 15.0062i 0.858446 + 0.720322i
\(435\) 1.43969 8.16490i 0.0690280 0.391477i
\(436\) 13.9213 0.666708
\(437\) −4.11721 + 35.6561i −0.196953 + 1.70566i
\(438\) −10.2909 −0.491716
\(439\) 3.15018 17.8655i 0.150350 0.852676i −0.812565 0.582870i \(-0.801930\pi\)
0.962915 0.269805i \(-0.0869594\pi\)
\(440\) −4.88532 4.09927i −0.232898 0.195425i
\(441\) −5.42514 1.97459i −0.258340 0.0940282i
\(442\) 19.7271 7.18009i 0.938325 0.341522i
\(443\) −9.85323 + 8.26784i −0.468141 + 0.392817i −0.846116 0.532999i \(-0.821065\pi\)
0.377975 + 0.925816i \(0.376621\pi\)
\(444\) 0.194593 + 0.337044i 0.00923496 + 0.0159954i
\(445\) 13.7606 23.8340i 0.652314 1.12984i
\(446\) 0.706919 + 4.00914i 0.0334736 + 0.189838i
\(447\) 3.81655 + 21.6447i 0.180517 + 1.02376i
\(448\) −1.78699 + 3.09516i −0.0844273 + 0.146232i
\(449\) 10.9659 + 18.9934i 0.517511 + 0.896355i 0.999793 + 0.0203389i \(0.00647451\pi\)
−0.482283 + 0.876016i \(0.660192\pi\)
\(450\) 0.390530 0.327693i 0.0184097 0.0154476i
\(451\) 4.96198 1.80601i 0.233651 0.0850419i
\(452\) 0.213011 + 0.0775297i 0.0100192 + 0.00364669i
\(453\) −1.80928 1.51816i −0.0850073 0.0713296i
\(454\) −0.0765042 + 0.433877i −0.00359052 + 0.0203628i
\(455\) −45.3979 −2.12828
\(456\) 2.40033 + 3.63846i 0.112406 + 0.170387i
\(457\) 30.8452 1.44288 0.721440 0.692477i \(-0.243481\pi\)
0.721440 + 0.692477i \(0.243481\pi\)
\(458\) −0.588526 + 3.33770i −0.0275000 + 0.155960i
\(459\) 2.97178 + 2.49362i 0.138711 + 0.116392i
\(460\) −18.1630 6.61078i −0.846853 0.308229i
\(461\) 11.5770 4.21367i 0.539193 0.196250i −0.0580453 0.998314i \(-0.518487\pi\)
0.597239 + 0.802064i \(0.296265\pi\)
\(462\) −7.43835 + 6.24152i −0.346063 + 0.290382i
\(463\) −6.10472 10.5737i −0.283711 0.491401i 0.688585 0.725156i \(-0.258232\pi\)
−0.972296 + 0.233754i \(0.924899\pi\)
\(464\) −1.76604 + 3.05888i −0.0819866 + 0.142005i
\(465\) 2.66250 + 15.0998i 0.123471 + 0.700237i
\(466\) 0.367059 + 2.08169i 0.0170037 + 0.0964326i
\(467\) 13.3701 23.1576i 0.618692 1.07161i −0.371032 0.928620i \(-0.620996\pi\)
0.989725 0.142986i \(-0.0456705\pi\)
\(468\) −2.70574 4.68647i −0.125073 0.216632i
\(469\) −40.8942 + 34.3143i −1.88832 + 1.58449i
\(470\) 6.58512 2.39679i 0.303749 0.110556i
\(471\) −13.4893 4.90971i −0.621555 0.226228i
\(472\) 2.09240 + 1.75573i 0.0963103 + 0.0808140i
\(473\) 2.36942 13.4377i 0.108946 0.617865i
\(474\) −13.0077 −0.597465
\(475\) 1.78430 + 1.32450i 0.0818693 + 0.0607722i
\(476\) −13.8648 −0.635494
\(477\) 1.44222 8.17923i 0.0660347 0.374501i
\(478\) −3.08647 2.58985i −0.141172 0.118457i
\(479\) −7.26991 2.64603i −0.332171 0.120900i 0.170550 0.985349i \(-0.445445\pi\)
−0.502721 + 0.864449i \(0.667668\pi\)
\(480\) −2.20574 + 0.802823i −0.100678 + 0.0366437i
\(481\) 1.61334 1.35375i 0.0735620 0.0617259i
\(482\) 5.08853 + 8.81359i 0.231776 + 0.401448i
\(483\) −14.7148 + 25.4868i −0.669548 + 1.15969i
\(484\) −0.628356 3.56358i −0.0285616 0.161981i
\(485\) 3.50703 + 19.8893i 0.159246 + 0.903128i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −6.69594 11.5977i −0.303422 0.525542i 0.673487 0.739199i \(-0.264796\pi\)
−0.976909 + 0.213657i \(0.931462\pi\)
\(488\) 4.81908 4.04369i 0.218149 0.183049i
\(489\) −16.1074 + 5.86262i −0.728402 + 0.265117i
\(490\) 12.7344 + 4.63495i 0.575283 + 0.209386i
\(491\) −15.5103 13.0147i −0.699969 0.587343i 0.221796 0.975093i \(-0.428808\pi\)
−0.921765 + 0.387750i \(0.873252\pi\)
\(492\) 0.337496 1.91404i 0.0152155 0.0862914i
\(493\) −13.7023 −0.617122
\(494\) 17.1348 16.2110i 0.770929 0.729368i
\(495\) −6.37733 −0.286639
\(496\) 1.13429 6.43285i 0.0509309 0.288844i
\(497\) 24.7015 + 20.7270i 1.10801 + 0.929732i
\(498\) −7.67752 2.79439i −0.344038 0.125220i
\(499\) 4.45171 1.62029i 0.199286 0.0725342i −0.240449 0.970662i \(-0.577295\pi\)
0.439735 + 0.898128i \(0.355072\pi\)
\(500\) 8.07398 6.77487i 0.361079 0.302981i
\(501\) −7.30928 12.6600i −0.326554 0.565609i
\(502\) −1.45471 + 2.51963i −0.0649268 + 0.112456i
\(503\) 1.49319 + 8.46832i 0.0665782 + 0.377584i 0.999831 + 0.0183643i \(0.00584588\pi\)
−0.933253 + 0.359219i \(0.883043\pi\)
\(504\) 0.620615 + 3.51968i 0.0276444 + 0.156779i
\(505\) −1.50908 + 2.61381i −0.0671534 + 0.116313i
\(506\) 11.1860 + 19.3747i 0.497277 + 0.861309i
\(507\) −12.4743 + 10.4672i −0.554003 + 0.464864i
\(508\) −8.17024 + 2.97373i −0.362496 + 0.131938i
\(509\) −5.03936 1.83418i −0.223366 0.0812985i 0.227913 0.973681i \(-0.426810\pi\)
−0.451279 + 0.892383i \(0.649032\pi\)
\(510\) −6.97565 5.85327i −0.308887 0.259187i
\(511\) 6.38666 36.2205i 0.282529 1.60230i
\(512\) 1.00000 0.0441942
\(513\) 4.17752 + 1.24432i 0.184442 + 0.0549382i
\(514\) −2.55943 −0.112892
\(515\) −0.300193 + 1.70248i −0.0132281 + 0.0750201i
\(516\) −3.84730 3.22826i −0.169368 0.142116i
\(517\) −7.62196 2.77417i −0.335213 0.122008i
\(518\) −1.30706 + 0.475730i −0.0574288 + 0.0209024i
\(519\) 15.8327 13.2853i 0.694981 0.583158i
\(520\) 6.35117 + 11.0005i 0.278517 + 0.482406i
\(521\) 11.8576 20.5379i 0.519489 0.899782i −0.480254 0.877129i \(-0.659456\pi\)
0.999743 0.0226524i \(-0.00721111\pi\)
\(522\) 0.613341 + 3.47843i 0.0268452 + 0.152247i
\(523\) −5.43794 30.8401i −0.237784 1.34854i −0.836670 0.547708i \(-0.815501\pi\)
0.598885 0.800835i \(-0.295611\pi\)
\(524\) 6.32160 10.9493i 0.276161 0.478324i
\(525\) 0.911007 + 1.57791i 0.0397596 + 0.0688657i
\(526\) 12.2023 10.2390i 0.532047 0.446440i
\(527\) 23.8123 8.66696i 1.03728 0.377539i
\(528\) 2.55303 + 0.929228i 0.111107 + 0.0404395i
\(529\) 34.3232 + 28.8006i 1.49231 + 1.25220i
\(530\) −3.38532 + 19.1991i −0.147049 + 0.833955i
\(531\) 2.73143 0.118534
\(532\) −14.2959 + 6.19031i −0.619806 + 0.268384i
\(533\) −10.5175 −0.455565
\(534\) −2.03596 + 11.5465i −0.0881046 + 0.499666i
\(535\) −18.0305 15.1294i −0.779526 0.654100i
\(536\) 14.0360 + 5.10867i 0.606261 + 0.220661i
\(537\) 5.35117 1.94767i 0.230920 0.0840480i
\(538\) 12.9422 10.8598i 0.557979 0.468200i
\(539\) −7.84271 13.5840i −0.337809 0.585103i
\(540\) −1.17365 + 2.03282i −0.0505058 + 0.0874786i
\(541\) 1.66519 + 9.44377i 0.0715922 + 0.406020i 0.999452 + 0.0330912i \(0.0105352\pi\)
−0.927860 + 0.372928i \(0.878354\pi\)
\(542\) −0.108126 0.613214i −0.00464442 0.0263398i
\(543\) −11.1099 + 19.2430i −0.476773 + 0.825795i
\(544\) 1.93969 + 3.35965i 0.0831636 + 0.144044i
\(545\) −25.0323 + 21.0046i −1.07227 + 0.899738i
\(546\) 18.1741 6.61484i 0.777780 0.283089i
\(547\) −9.65570 3.51439i −0.412848 0.150264i 0.127242 0.991872i \(-0.459388\pi\)
−0.540090 + 0.841607i \(0.681610\pi\)
\(548\) 16.6951 + 14.0088i 0.713178 + 0.598427i
\(549\) 1.09240 6.19529i 0.0466223 0.264408i
\(550\) 1.38507 0.0590594
\(551\) −14.1284 + 6.11776i −0.601888 + 0.260625i
\(552\) 8.23442 0.350480
\(553\) 8.07280 45.7831i 0.343290 1.94690i
\(554\) −21.0483 17.6616i −0.894256 0.750370i
\(555\) −0.858441 0.312447i −0.0364388 0.0132626i
\(556\) 10.5496 3.83975i 0.447404 0.162842i
\(557\) −12.7756 + 10.7200i −0.541319 + 0.454221i −0.871989 0.489526i \(-0.837170\pi\)
0.330669 + 0.943747i \(0.392725\pi\)
\(558\) −3.26604 5.65695i −0.138263 0.239478i
\(559\) −13.5890 + 23.5368i −0.574753 + 0.995502i
\(560\) −1.45677 8.26173i −0.0615596 0.349122i
\(561\) 1.83022 + 10.3797i 0.0772720 + 0.438232i
\(562\) 1.24035 2.14835i 0.0523211 0.0906228i
\(563\) −1.71554 2.97140i −0.0723013 0.125229i 0.827608 0.561306i \(-0.189701\pi\)
−0.899910 + 0.436077i \(0.856368\pi\)
\(564\) −2.28699 + 1.91901i −0.0962996 + 0.0808050i
\(565\) −0.500000 + 0.181985i −0.0210352 + 0.00765617i
\(566\) −2.14543 0.780873i −0.0901791 0.0328225i
\(567\) 2.73783 + 2.29731i 0.114978 + 0.0964779i
\(568\) 1.56670 8.88522i 0.0657374 0.372816i
\(569\) −43.5681 −1.82647 −0.913235 0.407433i \(-0.866424\pi\)
−0.913235 + 0.407433i \(0.866424\pi\)
\(570\) −9.80587 2.92079i −0.410723 0.122339i
\(571\) −8.14115 −0.340696 −0.170348 0.985384i \(-0.554489\pi\)
−0.170348 + 0.985384i \(0.554489\pi\)
\(572\) 2.55303 14.4790i 0.106748 0.605396i
\(573\) −4.63223 3.88690i −0.193514 0.162378i
\(574\) 6.52734 + 2.37576i 0.272446 + 0.0991622i
\(575\) 3.94475 1.43577i 0.164507 0.0598757i
\(576\) 0.766044 0.642788i 0.0319185 0.0267828i
\(577\) −17.5248 30.3539i −0.729568 1.26365i −0.957066 0.289870i \(-0.906388\pi\)
0.227499 0.973778i \(-0.426945\pi\)
\(578\) 0.975185 1.68907i 0.0405624 0.0702561i
\(579\) −1.09374 6.20291i −0.0454543 0.257784i
\(580\) −1.43969 8.16490i −0.0597800 0.339029i
\(581\) 14.6001 25.2882i 0.605716 1.04913i
\(582\) −4.30200 7.45129i −0.178324 0.308866i
\(583\) 17.2856 14.5044i 0.715898 0.600710i
\(584\) −9.67024 + 3.51968i −0.400158 + 0.145645i
\(585\) 11.9363 + 4.34445i 0.493505 + 0.179621i
\(586\) −1.83544 1.54011i −0.0758212 0.0636215i
\(587\) 1.69594 9.61814i 0.0699988 0.396983i −0.929598 0.368576i \(-0.879845\pi\)
0.999596 0.0284070i \(-0.00904344\pi\)
\(588\) −5.77332 −0.238088
\(589\) 20.6830 19.5680i 0.852230 0.806286i
\(590\) −6.41147 −0.263956
\(591\) −3.46198 + 19.6339i −0.142407 + 0.807630i
\(592\) 0.298133 + 0.250164i 0.0122532 + 0.0102817i
\(593\) 30.7254 + 11.1831i 1.26174 + 0.459236i 0.884353 0.466819i \(-0.154600\pi\)
0.377388 + 0.926055i \(0.376822\pi\)
\(594\) 2.55303 0.929228i 0.104752 0.0381267i
\(595\) 24.9308 20.9194i 1.02206 0.857614i
\(596\) 10.9893 + 19.0341i 0.450140 + 0.779666i
\(597\) 6.44104 11.1562i 0.263614 0.456593i
\(598\) −7.73783 43.8834i −0.316423 1.79453i
\(599\) −1.53580 8.70994i −0.0627510 0.355878i −0.999974 0.00714909i \(-0.997724\pi\)
0.937223 0.348729i \(-0.113387\pi\)
\(600\) 0.254900 0.441500i 0.0104063 0.0180242i
\(601\) 10.9076 + 18.8925i 0.444930 + 0.770642i 0.998047 0.0624615i \(-0.0198951\pi\)
−0.553117 + 0.833104i \(0.686562\pi\)
\(602\) 13.7502 11.5377i 0.560414 0.470243i
\(603\) 14.0360 5.10867i 0.571588 0.208041i
\(604\) −2.21941 0.807798i −0.0903064 0.0328688i
\(605\) 6.50665 + 5.45972i 0.264533 + 0.221969i
\(606\) 0.223278 1.26627i 0.00907005 0.0514388i
\(607\) −26.5963 −1.07951 −0.539755 0.841822i \(-0.681483\pi\)
−0.539755 + 0.841822i \(0.681483\pi\)
\(608\) 3.50000 + 2.59808i 0.141944 + 0.105366i
\(609\) −12.6236 −0.511534
\(610\) −2.56418 + 14.5422i −0.103821 + 0.588795i
\(611\) 12.3760 + 10.3847i 0.500679 + 0.420119i
\(612\) 3.64543 + 1.32683i 0.147358 + 0.0536338i
\(613\) 14.2280 5.17858i 0.574665 0.209161i −0.0383067 0.999266i \(-0.512196\pi\)
0.612971 + 0.790105i \(0.289974\pi\)
\(614\) −4.00908 + 3.36402i −0.161794 + 0.135761i
\(615\) 2.28106 + 3.95091i 0.0919812 + 0.159316i
\(616\) −4.85504 + 8.40917i −0.195615 + 0.338815i
\(617\) −5.10338 28.9427i −0.205454 1.16519i −0.896723 0.442592i \(-0.854059\pi\)
0.691269 0.722598i \(-0.257052\pi\)
\(618\) −0.127889 0.725293i −0.00514444 0.0291756i
\(619\) −15.7219 + 27.2312i −0.631918 + 1.09451i 0.355241 + 0.934775i \(0.384399\pi\)
−0.987159 + 0.159739i \(0.948935\pi\)
\(620\) 7.66637 + 13.2785i 0.307889 + 0.533279i
\(621\) 6.30793 5.29298i 0.253129 0.212400i
\(622\) 10.3302 3.75989i 0.414204 0.150758i
\(623\) −39.3764 14.3319i −1.57758 0.574194i
\(624\) −4.14543 3.47843i −0.165950 0.139249i
\(625\) −4.73870 + 26.8745i −0.189548 + 1.07498i
\(626\) −30.4516 −1.21709
\(627\) 6.52141 + 9.88527i 0.260440 + 0.394780i
\(628\) −14.3550 −0.572828
\(629\) −0.262174 + 1.48686i −0.0104536 + 0.0592851i
\(630\) −6.42649 5.39246i −0.256037 0.214841i
\(631\) 28.0736 + 10.2179i 1.11759 + 0.406770i 0.833773 0.552108i \(-0.186176\pi\)
0.283819 + 0.958878i \(0.408399\pi\)
\(632\) −12.2233 + 4.44891i −0.486216 + 0.176968i
\(633\) −1.77197 + 1.48686i −0.0704297 + 0.0590975i
\(634\) −5.66978 9.82034i −0.225176 0.390016i
\(635\) 10.2044 17.6745i 0.404949 0.701392i
\(636\) −1.44222 8.17923i −0.0571877 0.324328i
\(637\) 5.42514 + 30.7675i 0.214952 + 1.21905i
\(638\) −4.79813 + 8.31061i −0.189960 + 0.329020i
\(639\) −4.51114 7.81353i −0.178458 0.309099i
\(640\) −1.79813 + 1.50881i −0.0710775 + 0.0596411i
\(641\) −6.75150 + 2.45734i −0.266668 + 0.0970592i −0.471894 0.881655i \(-0.656429\pi\)
0.205226 + 0.978715i \(0.434207\pi\)
\(642\) 9.42262 + 3.42955i 0.371881 + 0.135354i
\(643\) 6.95858 + 5.83894i 0.274420 + 0.230265i 0.769602 0.638523i \(-0.220454\pi\)
−0.495183 + 0.868789i \(0.664899\pi\)
\(644\) −5.11040 + 28.9825i −0.201378 + 1.14207i
\(645\) 11.7888 0.464184
\(646\) −1.93969 + 16.7982i −0.0763162 + 0.660918i
\(647\) 37.5749 1.47722 0.738611 0.674132i \(-0.235482\pi\)
0.738611 + 0.674132i \(0.235482\pi\)
\(648\) 0.173648 0.984808i 0.00682154 0.0386869i
\(649\) 5.68479 + 4.77011i 0.223148 + 0.187243i
\(650\) −2.59240 0.943555i −0.101682 0.0370093i
\(651\) 21.9376 7.98465i 0.859804 0.312943i
\(652\) −13.1309 + 11.0181i −0.514245 + 0.431503i
\(653\) −0.870767 1.50821i −0.0340758 0.0590209i 0.848485 0.529220i \(-0.177515\pi\)
−0.882560 + 0.470199i \(0.844182\pi\)
\(654\) 6.96064 12.0562i 0.272182 0.471434i
\(655\) 5.15342 + 29.2265i 0.201361 + 1.14197i
\(656\) −0.337496 1.91404i −0.0131770 0.0747305i
\(657\) −5.14543 + 8.91215i −0.200742 + 0.347696i
\(658\) −5.33497 9.24044i −0.207979 0.360230i
\(659\) −3.98680 + 3.34532i −0.155304 + 0.130315i −0.717128 0.696941i \(-0.754544\pi\)
0.561825 + 0.827256i \(0.310099\pi\)
\(660\) −5.99273 + 2.18117i −0.233267 + 0.0849021i
\(661\) 23.3427 + 8.49605i 0.907926 + 0.330458i 0.753425 0.657534i \(-0.228401\pi\)
0.154502 + 0.987993i \(0.450623\pi\)
\(662\) 9.90626 + 8.31234i 0.385018 + 0.323068i
\(663\) 3.64543 20.6743i 0.141577 0.802922i
\(664\) −8.17024 −0.317067
\(665\) 16.3659 32.7009i 0.634644 1.26809i
\(666\) 0.389185 0.0150806
\(667\) −5.05051 + 28.6428i −0.195556 + 1.10906i
\(668\) −11.1985 9.39663i −0.433282 0.363566i
\(669\) 3.82547 + 1.39236i 0.147901 + 0.0538317i
\(670\) −32.9466 + 11.9916i −1.27284 + 0.463275i
\(671\) 13.0929 10.9862i 0.505444 0.424118i
\(672\) 1.78699 + 3.09516i 0.0689346 + 0.119398i
\(673\) −4.49613 + 7.78752i −0.173313 + 0.300187i −0.939576 0.342340i \(-0.888781\pi\)
0.766263 + 0.642527i \(0.222114\pi\)
\(674\) 1.86618 + 10.5836i 0.0718826 + 0.407667i
\(675\) −0.0885259 0.502055i −0.00340736 0.0193241i
\(676\) −8.14203 + 14.1024i −0.313155 + 0.542400i
\(677\) −3.20780 5.55607i −0.123286 0.213537i 0.797776 0.602954i \(-0.206010\pi\)
−0.921062 + 0.389417i \(0.872676\pi\)
\(678\) 0.173648 0.145708i 0.00666892 0.00559589i
\(679\) 28.8960 10.5173i 1.10893 0.403617i
\(680\) −8.55690 3.11446i −0.328142 0.119434i
\(681\) 0.337496 + 0.283193i 0.0129329 + 0.0108520i
\(682\) 3.08172 17.4773i 0.118005 0.669240i
\(683\) −26.0000 −0.994862 −0.497431 0.867503i \(-0.665723\pi\)
−0.497431 + 0.867503i \(0.665723\pi\)
\(684\) 4.35117 0.259515i 0.166371 0.00992280i
\(685\) −51.1566 −1.95459
\(686\) −0.761297 + 4.31753i −0.0290664 + 0.164844i
\(687\) 2.59627 + 2.17853i 0.0990538 + 0.0831160i
\(688\) −4.71941 1.71772i −0.179926 0.0654876i
\(689\) −42.2340 + 15.3719i −1.60899 + 0.585624i
\(690\) −14.8066 + 12.4242i −0.563677 + 0.472981i
\(691\) 22.1509 + 38.3666i 0.842662 + 1.45953i 0.887636 + 0.460545i \(0.152346\pi\)
−0.0449746 + 0.998988i \(0.514321\pi\)
\(692\) 10.3341 17.8992i 0.392843 0.680424i
\(693\) 1.68614 + 9.56256i 0.0640510 + 0.363251i
\(694\) 3.95976 + 22.4569i 0.150310 + 0.852453i
\(695\) −13.1762 + 22.8218i −0.499801 + 0.865680i
\(696\) 1.76604 + 3.05888i 0.0669417 + 0.115946i
\(697\) 5.77584 4.84651i 0.218776 0.183575i
\(698\) 23.8332 8.67458i 0.902101 0.328338i
\(699\) 1.98633 + 0.722965i 0.0751299 + 0.0273450i
\(700\) 1.39574 + 1.17117i 0.0527542 + 0.0442660i
\(701\) −8.11334 + 46.0130i −0.306437 + 1.73789i 0.310228 + 0.950662i \(0.399595\pi\)
−0.616664 + 0.787226i \(0.711516\pi\)
\(702\) −5.41147 −0.204243
\(703\) 0.393523 + 1.65015i 0.0148420 + 0.0622364i
\(704\) 2.71688 0.102396
\(705\) 1.21688 6.90128i 0.0458304 0.259917i
\(706\) −9.34002 7.83721i −0.351516 0.294957i
\(707\) 4.31831 + 1.57173i 0.162407 + 0.0591112i
\(708\) 2.56670 0.934204i 0.0964626 0.0351095i
\(709\) −11.6400 + 9.76709i −0.437148 + 0.366811i −0.834641 0.550794i \(-0.814325\pi\)
0.397493 + 0.917605i \(0.369880\pi\)
\(710\) 10.5890 + 18.3407i 0.397398 + 0.688313i
\(711\) −6.50387 + 11.2650i −0.243914 + 0.422472i
\(712\) 2.03596 + 11.5465i 0.0763008 + 0.432723i
\(713\) −9.34018 52.9708i −0.349793 1.98377i
\(714\) −6.93242 + 12.0073i −0.259439 + 0.449362i
\(715\) 17.2554 + 29.8872i 0.645314 + 1.11772i
\(716\) 4.36231 3.66041i 0.163027 0.136796i
\(717\) −3.78611 + 1.37803i −0.141395 + 0.0514635i
\(718\) −27.4047 9.97448i −1.02273 0.372244i
\(719\) 17.9231 + 15.0393i 0.668418 + 0.560870i 0.912597 0.408861i \(-0.134074\pi\)
−0.244178 + 0.969730i \(0.578518\pi\)
\(720\) −0.407604 + 2.31164i −0.0151905 + 0.0861496i
\(721\) 2.63217 0.0980271
\(722\) 5.50000 + 18.1865i 0.204689 + 0.676833i
\(723\) 10.1771 0.378489
\(724\) −3.85844 + 21.8823i −0.143398 + 0.813249i
\(725\) 1.37939 + 1.15744i 0.0512291 + 0.0429863i
\(726\) −3.40033 1.23762i −0.126198 0.0459323i
\(727\) −32.0266 + 11.6567i −1.18780 + 0.432325i −0.858951 0.512057i \(-0.828883\pi\)
−0.328851 + 0.944382i \(0.606661\pi\)
\(728\) 14.8157 12.4318i 0.549105 0.460754i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) 12.0778 20.9194i 0.447021 0.774263i
\(731\) −3.38326 19.1874i −0.125134 0.709671i
\(732\) −1.09240 6.19529i −0.0403761 0.228984i
\(733\) 15.0064 25.9918i 0.554274 0.960031i −0.443686 0.896182i \(-0.646329\pi\)
0.997960 0.0638481i \(-0.0203373\pi\)
\(734\) −6.99613 12.1177i −0.258232 0.447271i
\(735\) 10.3812 8.71086i 0.382916 0.321305i
\(736\) 7.73783 2.81634i 0.285220 0.103812i
\(737\) 38.1340 + 13.8797i 1.40469 + 0.511264i
\(738\) −1.48886 1.24930i −0.0548055 0.0459873i
\(739\) 4.14022 23.4803i 0.152300 0.863738i −0.808912 0.587929i \(-0.799943\pi\)
0.961213 0.275808i \(-0.0889456\pi\)
\(740\) −0.913534 −0.0335822
\(741\) −5.47178 22.9446i −0.201011 0.842892i
\(742\) 29.6833 1.08971
\(743\) 5.38207 30.5233i 0.197449 1.11979i −0.711438 0.702748i \(-0.751956\pi\)
0.908888 0.417041i \(-0.136933\pi\)
\(744\) −5.00387 4.19875i −0.183451 0.153933i
\(745\) −48.4791 17.6450i −1.77614 0.646461i
\(746\) 6.40895 2.33267i 0.234648 0.0854050i
\(747\) −6.25877 + 5.25173i −0.228996 + 0.192151i
\(748\) 5.26991 + 9.12776i 0.192687 + 0.333744i
\(749\) −17.9187 + 31.0362i −0.654737 + 1.13404i
\(750\) −1.83022 10.3797i −0.0668303 0.379013i
\(751\) 3.82800 + 21.7097i 0.139686 + 0.792197i 0.971482 + 0.237115i \(0.0762019\pi\)
−0.831796 + 0.555082i \(0.812687\pi\)
\(752\) −1.49273 + 2.58548i −0.0544341 + 0.0942827i
\(753\) 1.45471 + 2.51963i 0.0530125 + 0.0918203i
\(754\) 14.6420 12.2861i 0.533231 0.447434i
\(755\) 5.20961 1.89614i 0.189597 0.0690077i
\(756\) 3.35844 + 1.22237i 0.122145 + 0.0444573i
\(757\) −10.9736 9.20794i −0.398842 0.334668i 0.421204 0.906966i \(-0.361608\pi\)
−0.820046 + 0.572298i \(0.806052\pi\)
\(758\) 5.54529 31.4489i 0.201414 1.14228i
\(759\) 22.3719 0.812050
\(760\) −10.2135 + 0.609158i −0.370482 + 0.0220965i
\(761\) 17.2635 0.625802 0.312901 0.949786i \(-0.398699\pi\)
0.312901 + 0.949786i \(0.398699\pi\)
\(762\) −1.50980 + 8.56250i −0.0546943 + 0.310187i
\(763\) 38.1140 + 31.9815i 1.37982 + 1.15781i
\(764\) −5.68227 2.06818i −0.205577 0.0748240i
\(765\) −8.55690 + 3.11446i −0.309376 + 0.112603i
\(766\) −28.2049 + 23.6667i −1.01908 + 0.855112i