Newspace parameters
Level: | \( N \) | \(=\) | \( 114 = 2 \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 114.i (of order \(9\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.910294583043\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | \(\Q(\zeta_{18})\) |
Defining polynomial: |
\( x^{6} - x^{3} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).
\(n\) | \(77\) | \(97\) |
\(\chi(n)\) | \(1\) | \(\zeta_{18}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
0.766044 | − | 0.642788i | 0.939693 | + | 0.342020i | 0.173648 | − | 0.984808i | −0.613341 | − | 3.47843i | 0.939693 | − | 0.342020i | −1.85844 | + | 3.21891i | −0.500000 | − | 0.866025i | 0.766044 | + | 0.642788i | −2.70574 | − | 2.27038i | ||||||||||||||||||
43.1 | −0.939693 | + | 0.342020i | −0.173648 | + | 0.984808i | 0.766044 | − | 0.642788i | −0.0923963 | − | 0.0775297i | −0.173648 | − | 0.984808i | 2.14543 | + | 3.71599i | −0.500000 | + | 0.866025i | −0.939693 | − | 0.342020i | 0.113341 | + | 0.0412527i | |||||||||||||||||||
55.1 | 0.173648 | − | 0.984808i | −0.766044 | − | 0.642788i | −0.939693 | − | 0.342020i | 2.20574 | − | 0.802823i | −0.766044 | + | 0.642788i | −1.78699 | − | 3.09516i | −0.500000 | + | 0.866025i | 0.173648 | + | 0.984808i | −0.407604 | − | 2.31164i | |||||||||||||||||||
61.1 | −0.939693 | − | 0.342020i | −0.173648 | − | 0.984808i | 0.766044 | + | 0.642788i | −0.0923963 | + | 0.0775297i | −0.173648 | + | 0.984808i | 2.14543 | − | 3.71599i | −0.500000 | − | 0.866025i | −0.939693 | + | 0.342020i | 0.113341 | − | 0.0412527i | |||||||||||||||||||
73.1 | 0.766044 | + | 0.642788i | 0.939693 | − | 0.342020i | 0.173648 | + | 0.984808i | −0.613341 | + | 3.47843i | 0.939693 | + | 0.342020i | −1.85844 | − | 3.21891i | −0.500000 | + | 0.866025i | 0.766044 | − | 0.642788i | −2.70574 | + | 2.27038i | |||||||||||||||||||
85.1 | 0.173648 | + | 0.984808i | −0.766044 | + | 0.642788i | −0.939693 | + | 0.342020i | 2.20574 | + | 0.802823i | −0.766044 | − | 0.642788i | −1.78699 | + | 3.09516i | −0.500000 | − | 0.866025i | 0.173648 | − | 0.984808i | −0.407604 | + | 2.31164i | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 114.2.i.c | ✓ | 6 |
3.b | odd | 2 | 1 | 342.2.u.b | 6 | ||
4.b | odd | 2 | 1 | 912.2.bo.d | 6 | ||
19.e | even | 9 | 1 | inner | 114.2.i.c | ✓ | 6 |
19.e | even | 9 | 1 | 2166.2.a.r | 3 | ||
19.f | odd | 18 | 1 | 2166.2.a.p | 3 | ||
57.j | even | 18 | 1 | 6498.2.a.bu | 3 | ||
57.l | odd | 18 | 1 | 342.2.u.b | 6 | ||
57.l | odd | 18 | 1 | 6498.2.a.bp | 3 | ||
76.l | odd | 18 | 1 | 912.2.bo.d | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
114.2.i.c | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
114.2.i.c | ✓ | 6 | 19.e | even | 9 | 1 | inner |
342.2.u.b | 6 | 3.b | odd | 2 | 1 | ||
342.2.u.b | 6 | 57.l | odd | 18 | 1 | ||
912.2.bo.d | 6 | 4.b | odd | 2 | 1 | ||
912.2.bo.d | 6 | 76.l | odd | 18 | 1 | ||
2166.2.a.p | 3 | 19.f | odd | 18 | 1 | ||
2166.2.a.r | 3 | 19.e | even | 9 | 1 | ||
6498.2.a.bp | 3 | 57.l | odd | 18 | 1 | ||
6498.2.a.bu | 3 | 57.j | even | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{6} - 3T_{5}^{5} + 12T_{5}^{4} - 46T_{5}^{3} + 60T_{5}^{2} + 12T_{5} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(114, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + T^{3} + 1 \)
$3$
\( T^{6} - T^{3} + 1 \)
$5$
\( T^{6} - 3 T^{5} + 12 T^{4} - 46 T^{3} + \cdots + 1 \)
$7$
\( T^{6} + 3 T^{5} + 27 T^{4} + \cdots + 3249 \)
$11$
\( T^{6} + 21 T^{4} + 74 T^{3} + \cdots + 1369 \)
$13$
\( T^{6} - 9 T^{5} + 36 T^{4} - 28 T^{3} + \cdots + 1 \)
$17$
\( T^{6} + 3 T^{5} + 18 T^{4} + 24 T^{3} + \cdots + 9 \)
$19$
\( T^{6} + 107T^{3} + 6859 \)
$23$
\( T^{6} - 27 T^{5} + 378 T^{4} + \cdots + 157609 \)
$29$
\( T^{6} + 3 T^{5} + 12 T^{4} + 46 T^{3} + \cdots + 1 \)
$31$
\( T^{6} + 15 T^{5} + 153 T^{4} + \cdots + 11881 \)
$37$
\( (T^{3} + 3 T^{2} - 45 T + 17)^{2} \)
$41$
\( T^{6} + 15 T^{5} + 87 T^{4} + \cdots + 2809 \)
$43$
\( T^{6} - 3 T^{5} - 3 T^{4} + \cdots + 63001 \)
$47$
\( T^{6} - 15 T^{5} + 51 T^{4} + \cdots + 5041 \)
$53$
\( T^{6} - 6 T^{5} - 30 T^{4} + \cdots + 395641 \)
$59$
\( T^{6} + 27 T^{5} + 198 T^{4} + \cdots + 81 \)
$61$
\( T^{6} + 15 T^{5} + 84 T^{4} + \cdots + 289 \)
$67$
\( T^{6} + 3 T^{5} + 72 T^{4} + \cdots + 7017201 \)
$71$
\( T^{6} - 3 T^{5} - 87 T^{4} + \cdots + 26569 \)
$73$
\( T^{6} - 12 T^{5} + 54 T^{4} + \cdots + 3249 \)
$79$
\( T^{6} - 27 T^{5} + 351 T^{4} + \cdots + 32761 \)
$83$
\( T^{6} - 3 T^{5} + 45 T^{4} + \cdots + 2601 \)
$89$
\( T^{6} - 42 T^{5} + 756 T^{4} + \cdots + 239121 \)
$97$
\( T^{6} - 18 T^{5} + 171 T^{4} + \cdots + 218089 \)
show more
show less