Properties

Label 114.2.i.a
Level $114$
Weight $2$
Character orbit 114.i
Analytic conductor $0.910$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.i (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.910294583043\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{18} q^{2} + \zeta_{18}^{4} q^{3} + \zeta_{18}^{2} q^{4} + (\zeta_{18}^{5} - \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{5} + \zeta_{18}^{5} q^{6} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 3 \zeta_{18}^{3} - \zeta_{18}^{2} + 3) q^{7} + \zeta_{18}^{3} q^{8} + (\zeta_{18}^{5} - \zeta_{18}^{2}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{18} q^{2} + \zeta_{18}^{4} q^{3} + \zeta_{18}^{2} q^{4} + (\zeta_{18}^{5} - \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{5} + \zeta_{18}^{5} q^{6} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 3 \zeta_{18}^{3} - \zeta_{18}^{2} + 3) q^{7} + \zeta_{18}^{3} q^{8} + (\zeta_{18}^{5} - \zeta_{18}^{2}) q^{9} + ( - \zeta_{18}^{4} + 2 \zeta_{18}^{3} - \zeta_{18} - 1) q^{10} + ( - 2 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{2} - 2 \zeta_{18}) q^{11} + (\zeta_{18}^{3} - 1) q^{12} + ( - \zeta_{18}^{4} - \zeta_{18}^{3} - 2 \zeta_{18} + 3) q^{13} + (\zeta_{18}^{5} - 3 \zeta_{18}^{4} + 3 \zeta_{18} - 1) q^{14} + ( - 2 \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18} - 2) q^{15} + \zeta_{18}^{4} q^{16} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} - \zeta_{18}^{2} - 2) q^{17} - q^{18} + ( - 4 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{2} + \zeta_{18} - 2) q^{19} + ( - \zeta_{18}^{5} + 2 \zeta_{18}^{4} - \zeta_{18}^{2} - \zeta_{18}) q^{20} + (\zeta_{18}^{5} - \zeta_{18}^{3} - \zeta_{18}^{2} + 3 \zeta_{18}) q^{21} + (\zeta_{18}^{5} - \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2) q^{22} + (2 \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18} + 2) q^{23} + (\zeta_{18}^{4} - \zeta_{18}) q^{24} + ( - \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}) q^{25} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} - 2 \zeta_{18}^{2} + 3 \zeta_{18}) q^{26} - \zeta_{18}^{3} q^{27} + ( - 3 \zeta_{18}^{5} + \zeta_{18}^{3} + 3 \zeta_{18}^{2} - \zeta_{18} - 1) q^{28} + (6 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} - 6 \zeta_{18}^{2} - 2 \zeta_{18} - 2) q^{29} + ( - 2 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{2} - 2 \zeta_{18}) q^{30} + ( - 6 \zeta_{18}^{5} - 6 \zeta_{18}^{4} + 3 \zeta_{18}^{3} + \zeta_{18}^{2} + 5 \zeta_{18} - 3) q^{31} + \zeta_{18}^{5} q^{32} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{33} + (\zeta_{18}^{4} - 2 \zeta_{18}^{3} - 2 \zeta_{18} + 1) q^{34} + ( - 4 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 4 \zeta_{18}^{3} + 8 \zeta_{18}^{2} - 8) q^{35} - \zeta_{18} q^{36} + (2 \zeta_{18}^{4} - 2 \zeta_{18}^{2} - 2 \zeta_{18} + 3) q^{37} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 2 \zeta_{18} + 4) q^{38} + ( - 3 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18}) q^{39} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{40} + (6 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 3) q^{41} + ( - \zeta_{18}^{4} + 3 \zeta_{18}^{2} - 1) q^{42} + (3 \zeta_{18}^{5} + 3 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - 3 \zeta_{18} - 3) q^{43} + ( - \zeta_{18}^{4} - \zeta_{18}^{3} + 2 \zeta_{18} - 1) q^{44} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + 2 \zeta_{18}^{2} - \zeta_{18}) q^{45} + (2 \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{2} + 2 \zeta_{18}) q^{46} + (3 \zeta_{18}^{5} - 5 \zeta_{18}^{4} + \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 4 \zeta_{18} + 4) q^{47} + (\zeta_{18}^{5} - \zeta_{18}^{2}) q^{48} + (7 \zeta_{18}^{5} - \zeta_{18}^{4} - 4 \zeta_{18}^{3} - \zeta_{18}^{2} + 7 \zeta_{18}) q^{49} + (3 \zeta_{18}^{5} + 3 \zeta_{18}^{4} - \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 1) q^{50} + ( - \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18} + 2) q^{51} + ( - \zeta_{18}^{5} - 3 \zeta_{18}^{3} + 3 \zeta_{18}^{2} + 1) q^{52} + (2 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 4 \zeta_{18} + 2) q^{53} - \zeta_{18}^{4} q^{54} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 6 \zeta_{18}) q^{55} + (\zeta_{18}^{4} - \zeta_{18}^{2} - \zeta_{18} + 3) q^{56} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + 2) q^{57} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 2 \zeta_{18}^{2} - 2 \zeta_{18} - 6) q^{58} + ( - 3 \zeta_{18}^{5} + 3 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 6 \zeta_{18}) q^{59} + (\zeta_{18}^{5} - \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2) q^{60} + ( - 3 \zeta_{18}^{4} + 5 \zeta_{18}^{3} + 3 \zeta_{18}^{2} + 5 \zeta_{18} - 3) q^{61} + ( - 6 \zeta_{18}^{5} + 3 \zeta_{18}^{4} - 5 \zeta_{18}^{3} + 5 \zeta_{18}^{2} - 3 \zeta_{18} + 6) q^{62} + (3 \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}) q^{63} + (\zeta_{18}^{3} - 1) q^{64} + (\zeta_{18}^{5} + 4 \zeta_{18}^{4} - 6 \zeta_{18}^{3} + 4 \zeta_{18}^{2} + \zeta_{18}) q^{65} + (\zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18} + 1) q^{66} + (6 \zeta_{18}^{5} - \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 6 \zeta_{18}^{2} - 2 \zeta_{18} - 2) q^{67} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{2} + \zeta_{18}) q^{68} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 2 \zeta_{18}^{2} + \zeta_{18}) q^{69} + ( - 3 \zeta_{18}^{5} + 4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} - 8 \zeta_{18} + 4) q^{70} + ( - 3 \zeta_{18}^{5} - 9 \zeta_{18}^{4} - 3 \zeta_{18}^{3} + 3 \zeta_{18}^{2} + 9 \zeta_{18} + 3) q^{71} - \zeta_{18}^{2} q^{72} + (\zeta_{18}^{5} - 3 \zeta_{18}^{4} + 6 \zeta_{18}^{3} + 5 \zeta_{18}^{2} - 5) q^{73} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 3 \zeta_{18}) q^{74} + (3 \zeta_{18}^{4} - 3 \zeta_{18}^{2} - 3 \zeta_{18} + 1) q^{75} + ( - 2 \zeta_{18}^{4} - \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 4 \zeta_{18} + 2) q^{76} + ( - 4 \zeta_{18}^{5} + 8 \zeta_{18}^{4} - 4 \zeta_{18}^{2} - 4 \zeta_{18} + 3) q^{77} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} + 3) q^{78} + ( - 2 \zeta_{18}^{5} + 9 \zeta_{18}^{4} + 3 \zeta_{18}^{3} + 5 \zeta_{18}^{2} - 5) q^{79} + ( - 2 \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18} - 2) q^{80} + ( - \zeta_{18}^{4} + \zeta_{18}) q^{81} + (3 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} + 3 \zeta_{18} - 6) q^{82} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + 3 \zeta_{18}^{3} + 8 \zeta_{18}^{2} - 7 \zeta_{18} - 3) q^{83} + ( - \zeta_{18}^{5} + 3 \zeta_{18}^{3} - \zeta_{18}) q^{84} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{2} + 3 \zeta_{18} + 3) q^{85} + (3 \zeta_{18}^{5} - \zeta_{18}^{4} + 4 \zeta_{18}^{3} - 3 \zeta_{18}^{2} - 3 \zeta_{18} - 3) q^{86} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} - 6 \zeta_{18}^{3} - \zeta_{18}^{2} - \zeta_{18}) q^{87} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + 2 \zeta_{18}^{2} - \zeta_{18}) q^{88} + ( - 9 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18} + 1) q^{89} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{90} + (8 \zeta_{18}^{4} - 8 \zeta_{18}^{3} - \zeta_{18}^{2} - 8 \zeta_{18} + 8) q^{91} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2) q^{92} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + 6 \zeta_{18}^{2} - 3 \zeta_{18} + 5) q^{93} + ( - 5 \zeta_{18}^{5} + \zeta_{18}^{4} + 4 \zeta_{18}^{2} + 4 \zeta_{18} - 3) q^{94} + (4 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 8 \zeta_{18}^{2} + 3 \zeta_{18} + 5) q^{95} - q^{96} + ( - 9 \zeta_{18}^{2} + 4 \zeta_{18} - 9) q^{97} + ( - \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 6 \zeta_{18}^{3} + 7 \zeta_{18}^{2} - 7) q^{98} + (2 \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18} + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{5} + 9 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 9 q^{5} + 9 q^{7} + 3 q^{8} - 3 q^{12} + 15 q^{13} - 6 q^{14} - 9 q^{15} - 9 q^{17} - 6 q^{18} - 12 q^{19} - 3 q^{21} + 9 q^{22} + 9 q^{23} + 9 q^{25} - 3 q^{27} - 3 q^{28} - 9 q^{29} - 9 q^{31} + 9 q^{33} - 36 q^{35} + 18 q^{37} + 18 q^{38} + 27 q^{41} - 6 q^{42} - 21 q^{43} - 9 q^{44} + 27 q^{47} - 12 q^{49} + 3 q^{50} + 9 q^{51} - 3 q^{52} - 9 q^{55} + 18 q^{56} + 18 q^{57} - 36 q^{58} + 9 q^{59} + 9 q^{60} - 3 q^{61} + 21 q^{62} - 3 q^{63} - 3 q^{64} - 18 q^{65} - 3 q^{67} + 36 q^{70} + 9 q^{71} - 12 q^{73} - 6 q^{74} + 6 q^{75} + 9 q^{76} + 18 q^{77} + 12 q^{78} - 21 q^{79} - 9 q^{80} - 27 q^{82} - 9 q^{83} + 9 q^{84} + 18 q^{85} - 6 q^{86} - 18 q^{87} + 9 q^{90} + 24 q^{91} - 9 q^{92} + 33 q^{93} - 18 q^{94} + 36 q^{95} - 6 q^{96} - 54 q^{97} - 24 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(\zeta_{18}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
−0.766044 + 0.642788i
0.939693 0.342020i
−0.173648 + 0.984808i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.173648 0.984808i
−0.766044 + 0.642788i −0.939693 0.342020i 0.173648 0.984808i −0.386659 2.19285i 0.939693 0.342020i 1.32635 2.29731i 0.500000 + 0.866025i 0.766044 + 0.642788i 1.70574 + 1.43128i
43.1 0.939693 0.342020i 0.173648 0.984808i 0.766044 0.642788i −0.907604 0.761570i −0.173648 0.984808i 0.733956 + 1.27125i 0.500000 0.866025i −0.939693 0.342020i −1.11334 0.405223i
55.1 −0.173648 + 0.984808i 0.766044 + 0.642788i −0.939693 0.342020i −3.20574 + 1.16679i −0.766044 + 0.642788i 2.43969 + 4.22567i 0.500000 0.866025i 0.173648 + 0.984808i −0.592396 3.35965i
61.1 0.939693 + 0.342020i 0.173648 + 0.984808i 0.766044 + 0.642788i −0.907604 + 0.761570i −0.173648 + 0.984808i 0.733956 1.27125i 0.500000 + 0.866025i −0.939693 + 0.342020i −1.11334 + 0.405223i
73.1 −0.766044 0.642788i −0.939693 + 0.342020i 0.173648 + 0.984808i −0.386659 + 2.19285i 0.939693 + 0.342020i 1.32635 + 2.29731i 0.500000 0.866025i 0.766044 0.642788i 1.70574 1.43128i
85.1 −0.173648 0.984808i 0.766044 0.642788i −0.939693 + 0.342020i −3.20574 1.16679i −0.766044 0.642788i 2.43969 4.22567i 0.500000 + 0.866025i 0.173648 0.984808i −0.592396 + 3.35965i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 85.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 114.2.i.a 6
3.b odd 2 1 342.2.u.e 6
4.b odd 2 1 912.2.bo.a 6
19.e even 9 1 inner 114.2.i.a 6
19.e even 9 1 2166.2.a.q 3
19.f odd 18 1 2166.2.a.s 3
57.j even 18 1 6498.2.a.bm 3
57.l odd 18 1 342.2.u.e 6
57.l odd 18 1 6498.2.a.br 3
76.l odd 18 1 912.2.bo.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.i.a 6 1.a even 1 1 trivial
114.2.i.a 6 19.e even 9 1 inner
342.2.u.e 6 3.b odd 2 1
342.2.u.e 6 57.l odd 18 1
912.2.bo.a 6 4.b odd 2 1
912.2.bo.a 6 76.l odd 18 1
2166.2.a.q 3 19.e even 9 1
2166.2.a.s 3 19.f odd 18 1
6498.2.a.bm 3 57.j even 18 1
6498.2.a.br 3 57.l odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 9T_{5}^{5} + 36T_{5}^{4} + 90T_{5}^{3} + 162T_{5}^{2} + 162T_{5} + 81 \) acting on \(S_{2}^{\mathrm{new}}(114, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$5$ \( T^{6} + 9 T^{5} + 36 T^{4} + 90 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( T^{6} - 9 T^{5} + 57 T^{4} - 178 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$11$ \( T^{6} + 9 T^{4} + 18 T^{3} + 81 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{6} - 15 T^{5} + 96 T^{4} + \cdots + 1369 \) Copy content Toggle raw display
$17$ \( T^{6} + 9 T^{5} + 36 T^{4} + 72 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( T^{6} + 12 T^{5} + 78 T^{4} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 9 T^{5} + 36 T^{4} - 90 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{6} + 9 T^{5} - 18 T^{4} + \cdots + 29241 \) Copy content Toggle raw display
$31$ \( T^{6} + 9 T^{5} + 147 T^{4} + \cdots + 292681 \) Copy content Toggle raw display
$37$ \( (T^{3} - 9 T^{2} + 15 T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 27 T^{5} + 405 T^{4} + \cdots + 210681 \) Copy content Toggle raw display
$43$ \( T^{6} + 21 T^{5} + 231 T^{4} + \cdots + 32041 \) Copy content Toggle raw display
$47$ \( T^{6} - 27 T^{5} + 333 T^{4} + \cdots + 23409 \) Copy content Toggle raw display
$53$ \( T^{6} + 90 T^{4} + 315 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$59$ \( T^{6} - 9 T^{5} + 162 T^{4} + \cdots + 6561 \) Copy content Toggle raw display
$61$ \( T^{6} + 3 T^{5} - 12 T^{4} + \cdots + 94249 \) Copy content Toggle raw display
$67$ \( T^{6} + 3 T^{5} - 66 T^{4} + \cdots + 2809 \) Copy content Toggle raw display
$71$ \( T^{6} - 9 T^{5} - 27 T^{4} + \cdots + 263169 \) Copy content Toggle raw display
$73$ \( T^{6} + 12 T^{5} + 78 T^{4} + \cdots + 54289 \) Copy content Toggle raw display
$79$ \( T^{6} + 21 T^{5} + 231 T^{4} + \cdots + 2809 \) Copy content Toggle raw display
$83$ \( T^{6} + 9 T^{5} + 225 T^{4} + \cdots + 408321 \) Copy content Toggle raw display
$89$ \( T^{6} + 90 T^{4} + 900 T^{3} + \cdots + 431649 \) Copy content Toggle raw display
$97$ \( T^{6} + 54 T^{5} + 1323 T^{4} + \cdots + 2679769 \) Copy content Toggle raw display
show more
show less