Defining parameters
Level: | \( N \) | \(=\) | \( 114 = 2 \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 114.i (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(114, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 24 | 120 |
Cusp forms | 96 | 24 | 72 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(114, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
114.2.i.a | $6$ | $0.910$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(-9\) | \(9\) | \(q+\zeta_{18}q^{2}+\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\) |
114.2.i.b | $6$ | $0.910$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(-3\) | \(3\) | \(q-\zeta_{18}q^{2}+\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\) |
114.2.i.c | $6$ | $0.910$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(3\) | \(-3\) | \(q-\zeta_{18}q^{2}-\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(1+\cdots)q^{5}+\cdots\) |
114.2.i.d | $6$ | $0.910$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(9\) | \(3\) | \(q+\zeta_{18}q^{2}-\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(1+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(114, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(114, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)