Properties

Label 114.2.i
Level $114$
Weight $2$
Character orbit 114.i
Rep. character $\chi_{114}(25,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $24$
Newform subspaces $4$
Sturm bound $40$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.i (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 4 \)
Sturm bound: \(40\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(114, [\chi])\).

Total New Old
Modular forms 144 24 120
Cusp forms 96 24 72
Eisenstein series 48 0 48

Trace form

\( 24 q + 12 q^{7} + 12 q^{11} - 24 q^{14} - 24 q^{15} - 12 q^{17} - 24 q^{19} - 24 q^{20} - 24 q^{21} + 24 q^{22} + 12 q^{25} - 12 q^{26} - 12 q^{31} + 12 q^{33} + 12 q^{34} - 12 q^{35} + 12 q^{38} - 12 q^{41}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(114, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
114.2.i.a 114.i 19.e $6$ $0.910$ \(\Q(\zeta_{18})\) None 114.2.i.a \(0\) \(0\) \(-9\) \(9\) $\mathrm{SU}(2)[C_{9}]$ \(q+\zeta_{18}q^{2}+\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)
114.2.i.b 114.i 19.e $6$ $0.910$ \(\Q(\zeta_{18})\) None 114.2.i.b \(0\) \(0\) \(-3\) \(3\) $\mathrm{SU}(2)[C_{9}]$ \(q-\zeta_{18}q^{2}+\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)
114.2.i.c 114.i 19.e $6$ $0.910$ \(\Q(\zeta_{18})\) None 114.2.i.c \(0\) \(0\) \(3\) \(-3\) $\mathrm{SU}(2)[C_{9}]$ \(q-\zeta_{18}q^{2}-\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(1+\cdots)q^{5}+\cdots\)
114.2.i.d 114.i 19.e $6$ $0.910$ \(\Q(\zeta_{18})\) None 114.2.i.d \(0\) \(0\) \(9\) \(3\) $\mathrm{SU}(2)[C_{9}]$ \(q+\zeta_{18}q^{2}-\zeta_{18}^{4}q^{3}+\zeta_{18}^{2}q^{4}+(1+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(114, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(114, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)