Properties

Label 114.2.h.f.65.2
Level $114$
Weight $2$
Character 114.65
Analytic conductor $0.910$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.910294583043\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 65.2
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 114.65
Dual form 114.2.h.f.107.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.72474 + 0.158919i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.22474 - 0.707107i) q^{5} +(1.00000 - 1.41421i) q^{6} -0.449490 q^{7} -1.00000 q^{8} +(2.94949 + 0.548188i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(1.72474 + 0.158919i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.22474 - 0.707107i) q^{5} +(1.00000 - 1.41421i) q^{6} -0.449490 q^{7} -1.00000 q^{8} +(2.94949 + 0.548188i) q^{9} +(-1.22474 + 0.707107i) q^{10} +3.14626i q^{11} +(-0.724745 - 1.57313i) q^{12} +(-3.00000 + 1.73205i) q^{13} +(-0.224745 + 0.389270i) q^{14} +(-2.00000 - 1.41421i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.550510 - 0.317837i) q^{17} +(1.94949 - 2.28024i) q^{18} +(3.17423 - 2.98735i) q^{19} +1.41421i q^{20} +(-0.775255 - 0.0714323i) q^{21} +(2.72474 + 1.57313i) q^{22} +(-6.12372 + 3.53553i) q^{23} +(-1.72474 - 0.158919i) q^{24} +(-1.50000 - 2.59808i) q^{25} +3.46410i q^{26} +(5.00000 + 1.41421i) q^{27} +(0.224745 + 0.389270i) q^{28} +(1.22474 + 2.12132i) q^{29} +(-2.22474 + 1.02494i) q^{30} -4.24264i q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.500000 + 5.42650i) q^{33} +(-0.550510 + 0.317837i) q^{34} +(0.550510 + 0.317837i) q^{35} +(-1.00000 - 2.82843i) q^{36} +7.70674i q^{37} +(-1.00000 - 4.24264i) q^{38} +(-5.44949 + 2.51059i) q^{39} +(1.22474 + 0.707107i) q^{40} +(-1.50000 + 2.59808i) q^{41} +(-0.449490 + 0.635674i) q^{42} +(4.44949 - 7.70674i) q^{43} +(2.72474 - 1.57313i) q^{44} +(-3.22474 - 2.75699i) q^{45} +7.07107i q^{46} +(11.5732 - 6.68180i) q^{47} +(-1.00000 + 1.41421i) q^{48} -6.79796 q^{49} -3.00000 q^{50} +(-0.898979 - 0.635674i) q^{51} +(3.00000 + 1.73205i) q^{52} +(-5.44949 - 9.43879i) q^{53} +(3.72474 - 3.62302i) q^{54} +(2.22474 - 3.85337i) q^{55} +0.449490 q^{56} +(5.94949 - 4.64796i) q^{57} +2.44949 q^{58} +(5.72474 - 9.91555i) q^{59} +(-0.224745 + 2.43916i) q^{60} +(0.775255 + 1.34278i) q^{61} +(-3.67423 - 2.12132i) q^{62} +(-1.32577 - 0.246405i) q^{63} +1.00000 q^{64} +4.89898 q^{65} +(4.44949 + 3.14626i) q^{66} +(2.17423 - 1.25529i) q^{67} +0.635674i q^{68} +(-11.1237 + 5.12472i) q^{69} +(0.550510 - 0.317837i) q^{70} +(3.00000 - 5.19615i) q^{71} +(-2.94949 - 0.548188i) q^{72} +(-4.39898 + 7.61926i) q^{73} +(6.67423 + 3.85337i) q^{74} +(-2.17423 - 4.71940i) q^{75} +(-4.17423 - 1.25529i) q^{76} -1.41421i q^{77} +(-0.550510 + 5.97469i) q^{78} +(-7.34847 - 4.24264i) q^{79} +(1.22474 - 0.707107i) q^{80} +(8.39898 + 3.23375i) q^{81} +(1.50000 + 2.59808i) q^{82} +17.0027i q^{83} +(0.325765 + 0.707107i) q^{84} +(0.449490 + 0.778539i) q^{85} +(-4.44949 - 7.70674i) q^{86} +(1.77526 + 3.85337i) q^{87} -3.14626i q^{88} +(3.55051 + 6.14966i) q^{89} +(-4.00000 + 1.41421i) q^{90} +(1.34847 - 0.778539i) q^{91} +(6.12372 + 3.53553i) q^{92} +(0.674235 - 7.31747i) q^{93} -13.3636i q^{94} +(-6.00000 + 1.41421i) q^{95} +(0.724745 + 1.57313i) q^{96} +(2.84847 + 1.64456i) q^{97} +(-3.39898 + 5.88721i) q^{98} +(-1.72474 + 9.27987i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + 2q^{12} - 12q^{13} + 4q^{14} - 8q^{15} - 2q^{16} - 12q^{17} - 2q^{18} - 2q^{19} - 8q^{21} + 6q^{22} - 2q^{24} - 6q^{25} + 20q^{27} - 4q^{28} - 4q^{30} + 2q^{32} - 2q^{33} - 12q^{34} + 12q^{35} - 4q^{36} - 4q^{38} - 12q^{39} - 6q^{41} + 8q^{42} + 8q^{43} + 6q^{44} - 8q^{45} + 12q^{47} - 4q^{48} + 12q^{49} - 12q^{50} + 16q^{51} + 12q^{52} - 12q^{53} + 10q^{54} + 4q^{55} - 8q^{56} + 14q^{57} + 18q^{59} + 4q^{60} + 8q^{61} - 20q^{63} + 4q^{64} + 8q^{66} - 6q^{67} - 20q^{69} + 12q^{70} + 12q^{71} - 2q^{72} + 2q^{73} + 12q^{74} + 6q^{75} - 2q^{76} - 12q^{78} + 14q^{81} + 6q^{82} + 16q^{84} - 8q^{85} - 8q^{86} + 12q^{87} + 24q^{89} - 16q^{90} - 24q^{91} - 12q^{93} - 24q^{95} - 2q^{96} - 18q^{97} + 6q^{98} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.72474 + 0.158919i 0.995782 + 0.0917517i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.22474 0.707107i −0.547723 0.316228i 0.200480 0.979698i \(-0.435750\pi\)
−0.748203 + 0.663470i \(0.769083\pi\)
\(6\) 1.00000 1.41421i 0.408248 0.577350i
\(7\) −0.449490 −0.169891 −0.0849456 0.996386i \(-0.527072\pi\)
−0.0849456 + 0.996386i \(0.527072\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.94949 + 0.548188i 0.983163 + 0.182729i
\(10\) −1.22474 + 0.707107i −0.387298 + 0.223607i
\(11\) 3.14626i 0.948634i 0.880354 + 0.474317i \(0.157305\pi\)
−0.880354 + 0.474317i \(0.842695\pi\)
\(12\) −0.724745 1.57313i −0.209216 0.454124i
\(13\) −3.00000 + 1.73205i −0.832050 + 0.480384i −0.854554 0.519362i \(-0.826170\pi\)
0.0225039 + 0.999747i \(0.492836\pi\)
\(14\) −0.224745 + 0.389270i −0.0600656 + 0.104037i
\(15\) −2.00000 1.41421i −0.516398 0.365148i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.550510 0.317837i −0.133518 0.0770869i 0.431753 0.901992i \(-0.357895\pi\)
−0.565271 + 0.824905i \(0.691229\pi\)
\(18\) 1.94949 2.28024i 0.459499 0.537457i
\(19\) 3.17423 2.98735i 0.728219 0.685344i
\(20\) 1.41421i 0.316228i
\(21\) −0.775255 0.0714323i −0.169175 0.0155878i
\(22\) 2.72474 + 1.57313i 0.580918 + 0.335393i
\(23\) −6.12372 + 3.53553i −1.27688 + 0.737210i −0.976274 0.216537i \(-0.930524\pi\)
−0.300610 + 0.953747i \(0.597190\pi\)
\(24\) −1.72474 0.158919i −0.352062 0.0324391i
\(25\) −1.50000 2.59808i −0.300000 0.519615i
\(26\) 3.46410i 0.679366i
\(27\) 5.00000 + 1.41421i 0.962250 + 0.272166i
\(28\) 0.224745 + 0.389270i 0.0424728 + 0.0735650i
\(29\) 1.22474 + 2.12132i 0.227429 + 0.393919i 0.957046 0.289938i \(-0.0936346\pi\)
−0.729616 + 0.683857i \(0.760301\pi\)
\(30\) −2.22474 + 1.02494i −0.406181 + 0.187128i
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.500000 + 5.42650i −0.0870388 + 0.944633i
\(34\) −0.550510 + 0.317837i −0.0944117 + 0.0545086i
\(35\) 0.550510 + 0.317837i 0.0930532 + 0.0537243i
\(36\) −1.00000 2.82843i −0.166667 0.471405i
\(37\) 7.70674i 1.26698i 0.773751 + 0.633490i \(0.218378\pi\)
−0.773751 + 0.633490i \(0.781622\pi\)
\(38\) −1.00000 4.24264i −0.162221 0.688247i
\(39\) −5.44949 + 2.51059i −0.872617 + 0.402016i
\(40\) 1.22474 + 0.707107i 0.193649 + 0.111803i
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) −0.449490 + 0.635674i −0.0693578 + 0.0980867i
\(43\) 4.44949 7.70674i 0.678541 1.17527i −0.296880 0.954915i \(-0.595946\pi\)
0.975420 0.220352i \(-0.0707207\pi\)
\(44\) 2.72474 1.57313i 0.410771 0.237159i
\(45\) −3.22474 2.75699i −0.480717 0.410989i
\(46\) 7.07107i 1.04257i
\(47\) 11.5732 6.68180i 1.68813 0.974640i 0.732175 0.681117i \(-0.238505\pi\)
0.955952 0.293524i \(-0.0948280\pi\)
\(48\) −1.00000 + 1.41421i −0.144338 + 0.204124i
\(49\) −6.79796 −0.971137
\(50\) −3.00000 −0.424264
\(51\) −0.898979 0.635674i −0.125882 0.0890122i
\(52\) 3.00000 + 1.73205i 0.416025 + 0.240192i
\(53\) −5.44949 9.43879i −0.748545 1.29652i −0.948520 0.316717i \(-0.897419\pi\)
0.199975 0.979801i \(-0.435914\pi\)
\(54\) 3.72474 3.62302i 0.506874 0.493031i
\(55\) 2.22474 3.85337i 0.299985 0.519588i
\(56\) 0.449490 0.0600656
\(57\) 5.94949 4.64796i 0.788029 0.615638i
\(58\) 2.44949 0.321634
\(59\) 5.72474 9.91555i 0.745298 1.29089i −0.204757 0.978813i \(-0.565640\pi\)
0.950055 0.312082i \(-0.101026\pi\)
\(60\) −0.224745 + 2.43916i −0.0290144 + 0.314894i
\(61\) 0.775255 + 1.34278i 0.0992612 + 0.171926i 0.911379 0.411568i \(-0.135019\pi\)
−0.812118 + 0.583493i \(0.801685\pi\)
\(62\) −3.67423 2.12132i −0.466628 0.269408i
\(63\) −1.32577 0.246405i −0.167031 0.0310441i
\(64\) 1.00000 0.125000
\(65\) 4.89898 0.607644
\(66\) 4.44949 + 3.14626i 0.547694 + 0.387278i
\(67\) 2.17423 1.25529i 0.265625 0.153359i −0.361273 0.932460i \(-0.617658\pi\)
0.626898 + 0.779101i \(0.284324\pi\)
\(68\) 0.635674i 0.0770869i
\(69\) −11.1237 + 5.12472i −1.33914 + 0.616944i
\(70\) 0.550510 0.317837i 0.0657986 0.0379888i
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) −2.94949 0.548188i −0.347601 0.0646046i
\(73\) −4.39898 + 7.61926i −0.514862 + 0.891766i 0.484990 + 0.874520i \(0.338823\pi\)
−0.999851 + 0.0172466i \(0.994510\pi\)
\(74\) 6.67423 + 3.85337i 0.775864 + 0.447945i
\(75\) −2.17423 4.71940i −0.251059 0.544949i
\(76\) −4.17423 1.25529i −0.478818 0.143992i
\(77\) 1.41421i 0.161165i
\(78\) −0.550510 + 5.97469i −0.0623330 + 0.676501i
\(79\) −7.34847 4.24264i −0.826767 0.477334i 0.0259772 0.999663i \(-0.491730\pi\)
−0.852745 + 0.522328i \(0.825064\pi\)
\(80\) 1.22474 0.707107i 0.136931 0.0790569i
\(81\) 8.39898 + 3.23375i 0.933220 + 0.359306i
\(82\) 1.50000 + 2.59808i 0.165647 + 0.286910i
\(83\) 17.0027i 1.86629i 0.359506 + 0.933143i \(0.382945\pi\)
−0.359506 + 0.933143i \(0.617055\pi\)
\(84\) 0.325765 + 0.707107i 0.0355439 + 0.0771517i
\(85\) 0.449490 + 0.778539i 0.0487540 + 0.0844444i
\(86\) −4.44949 7.70674i −0.479801 0.831039i
\(87\) 1.77526 + 3.85337i 0.190327 + 0.413125i
\(88\) 3.14626i 0.335393i
\(89\) 3.55051 + 6.14966i 0.376353 + 0.651863i 0.990529 0.137307i \(-0.0438445\pi\)
−0.614175 + 0.789170i \(0.710511\pi\)
\(90\) −4.00000 + 1.41421i −0.421637 + 0.149071i
\(91\) 1.34847 0.778539i 0.141358 0.0816131i
\(92\) 6.12372 + 3.53553i 0.638442 + 0.368605i
\(93\) 0.674235 7.31747i 0.0699149 0.758787i
\(94\) 13.3636i 1.37835i
\(95\) −6.00000 + 1.41421i −0.615587 + 0.145095i
\(96\) 0.724745 + 1.57313i 0.0739690 + 0.160557i
\(97\) 2.84847 + 1.64456i 0.289218 + 0.166980i 0.637589 0.770377i \(-0.279932\pi\)
−0.348371 + 0.937357i \(0.613265\pi\)
\(98\) −3.39898 + 5.88721i −0.343349 + 0.594698i
\(99\) −1.72474 + 9.27987i −0.173343 + 0.932662i
\(100\) −1.50000 + 2.59808i −0.150000 + 0.259808i
\(101\) 8.57321 4.94975i 0.853067 0.492518i −0.00861771 0.999963i \(-0.502743\pi\)
0.861684 + 0.507445i \(0.169410\pi\)
\(102\) −1.00000 + 0.460702i −0.0990148 + 0.0456163i
\(103\) 5.02118i 0.494752i 0.968920 + 0.247376i \(0.0795682\pi\)
−0.968920 + 0.247376i \(0.920432\pi\)
\(104\) 3.00000 1.73205i 0.294174 0.169842i
\(105\) 0.898979 + 0.635674i 0.0877314 + 0.0620355i
\(106\) −10.8990 −1.05860
\(107\) −4.89898 −0.473602 −0.236801 0.971558i \(-0.576099\pi\)
−0.236801 + 0.971558i \(0.576099\pi\)
\(108\) −1.27526 5.03723i −0.122711 0.484708i
\(109\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) −2.22474 3.85337i −0.212121 0.367405i
\(111\) −1.22474 + 13.2922i −0.116248 + 1.26164i
\(112\) 0.224745 0.389270i 0.0212364 0.0367825i
\(113\) −18.7980 −1.76836 −0.884182 0.467143i \(-0.845283\pi\)
−0.884182 + 0.467143i \(0.845283\pi\)
\(114\) −1.05051 7.47639i −0.0983893 0.700228i
\(115\) 10.0000 0.932505
\(116\) 1.22474 2.12132i 0.113715 0.196960i
\(117\) −9.79796 + 3.46410i −0.905822 + 0.320256i
\(118\) −5.72474 9.91555i −0.527005 0.912800i
\(119\) 0.247449 + 0.142865i 0.0226836 + 0.0130964i
\(120\) 2.00000 + 1.41421i 0.182574 + 0.129099i
\(121\) 1.10102 0.100093
\(122\) 1.55051 0.140377
\(123\) −3.00000 + 4.24264i −0.270501 + 0.382546i
\(124\) −3.67423 + 2.12132i −0.329956 + 0.190500i
\(125\) 11.3137i 1.01193i
\(126\) −0.876276 + 1.02494i −0.0780648 + 0.0913093i
\(127\) −9.00000 + 5.19615i −0.798621 + 0.461084i −0.842989 0.537931i \(-0.819206\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 8.89898 12.5851i 0.783511 1.10805i
\(130\) 2.44949 4.24264i 0.214834 0.372104i
\(131\) 1.92679 + 1.11243i 0.168344 + 0.0971935i 0.581805 0.813328i \(-0.302347\pi\)
−0.413461 + 0.910522i \(0.635680\pi\)
\(132\) 4.94949 2.28024i 0.430798 0.198469i
\(133\) −1.42679 + 1.34278i −0.123718 + 0.116434i
\(134\) 2.51059i 0.216882i
\(135\) −5.12372 5.26758i −0.440980 0.453362i
\(136\) 0.550510 + 0.317837i 0.0472059 + 0.0272543i
\(137\) 3.39898 1.96240i 0.290394 0.167659i −0.347725 0.937596i \(-0.613046\pi\)
0.638120 + 0.769937i \(0.279712\pi\)
\(138\) −1.12372 + 12.1958i −0.0956578 + 1.03817i
\(139\) 7.17423 + 12.4261i 0.608511 + 1.05397i 0.991486 + 0.130213i \(0.0415661\pi\)
−0.382975 + 0.923759i \(0.625101\pi\)
\(140\) 0.635674i 0.0537243i
\(141\) 21.0227 9.68520i 1.77043 0.815641i
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) −5.44949 9.43879i −0.455709 0.789312i
\(144\) −1.94949 + 2.28024i −0.162457 + 0.190020i
\(145\) 3.46410i 0.287678i
\(146\) 4.39898 + 7.61926i 0.364062 + 0.630574i
\(147\) −11.7247 1.08032i −0.967041 0.0891035i
\(148\) 6.67423 3.85337i 0.548619 0.316745i
\(149\) 1.77526 + 1.02494i 0.145435 + 0.0839667i 0.570952 0.820984i \(-0.306574\pi\)
−0.425517 + 0.904950i \(0.639908\pi\)
\(150\) −5.17423 0.476756i −0.422474 0.0389270i
\(151\) 9.61377i 0.782357i 0.920315 + 0.391179i \(0.127933\pi\)
−0.920315 + 0.391179i \(0.872067\pi\)
\(152\) −3.17423 + 2.98735i −0.257464 + 0.242306i
\(153\) −1.44949 1.23924i −0.117184 0.100187i
\(154\) −1.22474 0.707107i −0.0986928 0.0569803i
\(155\) −3.00000 + 5.19615i −0.240966 + 0.417365i
\(156\) 4.89898 + 3.46410i 0.392232 + 0.277350i
\(157\) −5.34847 + 9.26382i −0.426854 + 0.739333i −0.996592 0.0824935i \(-0.973712\pi\)
0.569737 + 0.821827i \(0.307045\pi\)
\(158\) −7.34847 + 4.24264i −0.584613 + 0.337526i
\(159\) −7.89898 17.1455i −0.626430 1.35973i
\(160\) 1.41421i 0.111803i
\(161\) 2.75255 1.58919i 0.216931 0.125245i
\(162\) 7.00000 5.65685i 0.549972 0.444444i
\(163\) 18.3485 1.43716 0.718582 0.695443i \(-0.244792\pi\)
0.718582 + 0.695443i \(0.244792\pi\)
\(164\) 3.00000 0.234261
\(165\) 4.44949 6.29253i 0.346392 0.489873i
\(166\) 14.7247 + 8.50134i 1.14286 + 0.659832i
\(167\) −2.44949 4.24264i −0.189547 0.328305i 0.755552 0.655089i \(-0.227369\pi\)
−0.945099 + 0.326783i \(0.894035\pi\)
\(168\) 0.775255 + 0.0714323i 0.0598122 + 0.00551112i
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0.898979 0.0689486
\(171\) 11.0000 7.07107i 0.841191 0.540738i
\(172\) −8.89898 −0.678541
\(173\) 0.550510 0.953512i 0.0418545 0.0724942i −0.844339 0.535809i \(-0.820007\pi\)
0.886194 + 0.463315i \(0.153340\pi\)
\(174\) 4.22474 + 0.389270i 0.320277 + 0.0295104i
\(175\) 0.674235 + 1.16781i 0.0509673 + 0.0882780i
\(176\) −2.72474 1.57313i −0.205385 0.118579i
\(177\) 11.4495 16.1920i 0.860596 1.21707i
\(178\) 7.10102 0.532244
\(179\) −7.65153 −0.571902 −0.285951 0.958244i \(-0.592310\pi\)
−0.285951 + 0.958244i \(0.592310\pi\)
\(180\) −0.775255 + 4.17121i −0.0577841 + 0.310904i
\(181\) 18.6742 10.7816i 1.38804 0.801388i 0.394950 0.918703i \(-0.370762\pi\)
0.993095 + 0.117314i \(0.0374285\pi\)
\(182\) 1.55708i 0.115418i
\(183\) 1.12372 + 2.43916i 0.0830681 + 0.180308i
\(184\) 6.12372 3.53553i 0.451447 0.260643i
\(185\) 5.44949 9.43879i 0.400654 0.693954i
\(186\) −6.00000 4.24264i −0.439941 0.311086i
\(187\) 1.00000 1.73205i 0.0731272 0.126660i
\(188\) −11.5732 6.68180i −0.844063 0.487320i
\(189\) −2.24745 0.635674i −0.163478 0.0462385i
\(190\) −1.77526 + 5.90326i −0.128791 + 0.428267i
\(191\) 8.19955i 0.593299i −0.954986 0.296649i \(-0.904131\pi\)
0.954986 0.296649i \(-0.0958693\pi\)
\(192\) 1.72474 + 0.158919i 0.124473 + 0.0114690i
\(193\) −22.3485 12.9029i −1.60868 0.928771i −0.989666 0.143389i \(-0.954200\pi\)
−0.619012 0.785382i \(-0.712467\pi\)
\(194\) 2.84847 1.64456i 0.204508 0.118073i
\(195\) 8.44949 + 0.778539i 0.605081 + 0.0557523i
\(196\) 3.39898 + 5.88721i 0.242784 + 0.420515i
\(197\) 20.2918i 1.44573i 0.690989 + 0.722865i \(0.257175\pi\)
−0.690989 + 0.722865i \(0.742825\pi\)
\(198\) 7.17423 + 6.13361i 0.509851 + 0.435897i
\(199\) 1.44949 + 2.51059i 0.102752 + 0.177971i 0.912817 0.408368i \(-0.133902\pi\)
−0.810066 + 0.586339i \(0.800569\pi\)
\(200\) 1.50000 + 2.59808i 0.106066 + 0.183712i
\(201\) 3.94949 1.81954i 0.278576 0.128340i
\(202\) 9.89949i 0.696526i
\(203\) −0.550510 0.953512i −0.0386382 0.0669234i
\(204\) −0.101021 + 1.09638i −0.00707285 + 0.0767617i
\(205\) 3.67423 2.12132i 0.256620 0.148159i
\(206\) 4.34847 + 2.51059i 0.302972 + 0.174921i
\(207\) −20.0000 + 7.07107i −1.39010 + 0.491473i
\(208\) 3.46410i 0.240192i
\(209\) 9.39898 + 9.98698i 0.650141 + 0.690814i
\(210\) 1.00000 0.460702i 0.0690066 0.0317914i
\(211\) −1.34847 0.778539i −0.0928325 0.0535968i 0.452865 0.891579i \(-0.350402\pi\)
−0.545698 + 0.837982i \(0.683735\pi\)
\(212\) −5.44949 + 9.43879i −0.374272 + 0.648259i
\(213\) 6.00000 8.48528i 0.411113 0.581402i
\(214\) −2.44949 + 4.24264i −0.167444 + 0.290021i
\(215\) −10.8990 + 6.29253i −0.743304 + 0.429147i
\(216\) −5.00000 1.41421i −0.340207 0.0962250i
\(217\) 1.90702i 0.129457i
\(218\) 0 0
\(219\) −8.79796 + 12.4422i −0.594511 + 0.840765i
\(220\) −4.44949 −0.299985
\(221\) 2.20204 0.148125
\(222\) 10.8990 + 7.70674i 0.731492 + 0.517243i
\(223\) −15.6742 9.04952i −1.04962 0.606001i −0.127080 0.991892i \(-0.540561\pi\)
−0.922544 + 0.385892i \(0.873894\pi\)
\(224\) −0.224745 0.389270i −0.0150164 0.0260092i
\(225\) −3.00000 8.48528i −0.200000 0.565685i
\(226\) −9.39898 + 16.2795i −0.625211 + 1.08290i
\(227\) 0.550510 0.0365386 0.0182693 0.999833i \(-0.494184\pi\)
0.0182693 + 0.999833i \(0.494184\pi\)
\(228\) −7.00000 2.82843i −0.463586 0.187317i
\(229\) 0.898979 0.0594062 0.0297031 0.999559i \(-0.490544\pi\)
0.0297031 + 0.999559i \(0.490544\pi\)
\(230\) 5.00000 8.66025i 0.329690 0.571040i
\(231\) 0.224745 2.43916i 0.0147871 0.160485i
\(232\) −1.22474 2.12132i −0.0804084 0.139272i
\(233\) −15.3990 8.89060i −1.00882 0.582443i −0.0979745 0.995189i \(-0.531236\pi\)
−0.910846 + 0.412746i \(0.864570\pi\)
\(234\) −1.89898 + 10.2173i −0.124140 + 0.667928i
\(235\) −18.8990 −1.23283
\(236\) −11.4495 −0.745298
\(237\) −12.0000 8.48528i −0.779484 0.551178i
\(238\) 0.247449 0.142865i 0.0160397 0.00926054i
\(239\) 21.0703i 1.36293i 0.731852 + 0.681463i \(0.238656\pi\)
−0.731852 + 0.681463i \(0.761344\pi\)
\(240\) 2.22474 1.02494i 0.143607 0.0661599i
\(241\) −5.84847 + 3.37662i −0.376733 + 0.217507i −0.676396 0.736538i \(-0.736459\pi\)
0.299663 + 0.954045i \(0.403126\pi\)
\(242\) 0.550510 0.953512i 0.0353881 0.0612941i
\(243\) 13.9722 + 6.91215i 0.896317 + 0.443415i
\(244\) 0.775255 1.34278i 0.0496306 0.0859628i
\(245\) 8.32577 + 4.80688i 0.531914 + 0.307100i
\(246\) 2.17423 + 4.71940i 0.138624 + 0.300898i
\(247\) −4.34847 + 14.4600i −0.276686 + 0.920066i
\(248\) 4.24264i 0.269408i
\(249\) −2.70204 + 29.3253i −0.171235 + 1.85841i
\(250\) 9.79796 + 5.65685i 0.619677 + 0.357771i
\(251\) −3.27526 + 1.89097i −0.206732 + 0.119357i −0.599792 0.800156i \(-0.704750\pi\)
0.393060 + 0.919513i \(0.371417\pi\)
\(252\) 0.449490 + 1.27135i 0.0283152 + 0.0800875i
\(253\) −11.1237 19.2669i −0.699343 1.21130i
\(254\) 10.3923i 0.652071i
\(255\) 0.651531 + 1.41421i 0.0408004 + 0.0885615i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.50000 12.9904i −0.467837 0.810318i 0.531487 0.847066i \(-0.321633\pi\)
−0.999325 + 0.0367485i \(0.988300\pi\)
\(258\) −6.44949 13.9993i −0.401528 0.871557i
\(259\) 3.46410i 0.215249i
\(260\) −2.44949 4.24264i −0.151911 0.263117i
\(261\) 2.44949 + 6.92820i 0.151620 + 0.428845i
\(262\) 1.92679 1.11243i 0.119037 0.0687262i
\(263\) 7.77526 + 4.48905i 0.479443 + 0.276806i 0.720184 0.693783i \(-0.244057\pi\)
−0.240741 + 0.970589i \(0.577391\pi\)
\(264\) 0.500000 5.42650i 0.0307729 0.333978i
\(265\) 15.4135i 0.946843i
\(266\) 0.449490 + 1.90702i 0.0275600 + 0.116927i
\(267\) 5.14643 + 11.1708i 0.314956 + 0.683645i
\(268\) −2.17423 1.25529i −0.132813 0.0766793i
\(269\) 12.2474 21.2132i 0.746740 1.29339i −0.202637 0.979254i \(-0.564951\pi\)
0.949377 0.314138i \(-0.101715\pi\)
\(270\) −7.12372 + 1.80348i −0.433536 + 0.109756i
\(271\) 10.0227 17.3598i 0.608836 1.05453i −0.382597 0.923915i \(-0.624970\pi\)
0.991433 0.130619i \(-0.0416965\pi\)
\(272\) 0.550510 0.317837i 0.0333796 0.0192717i
\(273\) 2.44949 1.12848i 0.148250 0.0682990i
\(274\) 3.92480i 0.237106i
\(275\) 8.17423 4.71940i 0.492925 0.284590i
\(276\) 10.0000 + 7.07107i 0.601929 + 0.425628i
\(277\) 20.2474 1.21655 0.608276 0.793726i \(-0.291862\pi\)
0.608276 + 0.793726i \(0.291862\pi\)
\(278\) 14.3485 0.860564
\(279\) 2.32577 12.5136i 0.139240 0.749171i
\(280\) −0.550510 0.317837i −0.0328993 0.0189944i
\(281\) 11.2980 + 19.5686i 0.673980 + 1.16737i 0.976766 + 0.214309i \(0.0687498\pi\)
−0.302786 + 0.953058i \(0.597917\pi\)
\(282\) 2.12372 23.0488i 0.126466 1.37254i
\(283\) 4.72474 8.18350i 0.280857 0.486458i −0.690739 0.723104i \(-0.742715\pi\)
0.971596 + 0.236646i \(0.0760480\pi\)
\(284\) −6.00000 −0.356034
\(285\) −10.5732 + 1.48565i −0.626303 + 0.0880021i
\(286\) −10.8990 −0.644470
\(287\) 0.674235 1.16781i 0.0397988 0.0689336i
\(288\) 1.00000 + 2.82843i 0.0589256 + 0.166667i
\(289\) −8.29796 14.3725i −0.488115 0.845440i
\(290\) −3.00000 1.73205i −0.176166 0.101710i
\(291\) 4.65153 + 3.28913i 0.272678 + 0.192812i
\(292\) 8.79796 0.514862
\(293\) −19.3485 −1.13035 −0.565175 0.824971i \(-0.691191\pi\)
−0.565175 + 0.824971i \(0.691191\pi\)
\(294\) −6.79796 + 9.61377i −0.396465 + 0.560686i
\(295\) −14.0227 + 8.09601i −0.816433 + 0.471368i
\(296\) 7.70674i 0.447945i
\(297\) −4.44949 + 15.7313i −0.258186 + 0.912824i
\(298\) 1.77526 1.02494i 0.102838 0.0593734i
\(299\) 12.2474 21.2132i 0.708288 1.22679i
\(300\) −3.00000 + 4.24264i −0.173205 + 0.244949i
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) 8.32577 + 4.80688i 0.479094 + 0.276605i
\(303\) 15.5732 7.17461i 0.894658 0.412170i
\(304\) 1.00000 + 4.24264i 0.0573539 + 0.243332i
\(305\) 2.19275i 0.125557i
\(306\) −1.79796 + 0.635674i −0.102782 + 0.0363391i
\(307\) 18.5227 + 10.6941i 1.05715 + 0.610344i 0.924642 0.380838i \(-0.124365\pi\)
0.132505 + 0.991182i \(0.457698\pi\)
\(308\) −1.22474 + 0.707107i −0.0697863 + 0.0402911i
\(309\) −0.797959 + 8.66025i −0.0453943 + 0.492665i
\(310\) 3.00000 + 5.19615i 0.170389 + 0.295122i
\(311\) 15.5563i 0.882120i −0.897478 0.441060i \(-0.854603\pi\)
0.897478 0.441060i \(-0.145397\pi\)
\(312\) 5.44949 2.51059i 0.308517 0.142134i
\(313\) 9.50000 + 16.4545i 0.536972 + 0.930062i 0.999065 + 0.0432311i \(0.0137652\pi\)
−0.462093 + 0.886831i \(0.652902\pi\)
\(314\) 5.34847 + 9.26382i 0.301832 + 0.522788i
\(315\) 1.44949 + 1.23924i 0.0816695 + 0.0698233i
\(316\) 8.48528i 0.477334i
\(317\) −3.00000 5.19615i −0.168497 0.291845i 0.769395 0.638774i \(-0.220558\pi\)
−0.937892 + 0.346929i \(0.887225\pi\)
\(318\) −18.7980 1.73205i −1.05414 0.0971286i
\(319\) −6.67423 + 3.85337i −0.373685 + 0.215747i
\(320\) −1.22474 0.707107i −0.0684653 0.0395285i
\(321\) −8.44949 0.778539i −0.471605 0.0434538i
\(322\) 3.17837i 0.177124i
\(323\) −2.69694 + 0.635674i −0.150062 + 0.0353699i
\(324\) −1.39898 8.89060i −0.0777211 0.493922i
\(325\) 9.00000 + 5.19615i 0.499230 + 0.288231i
\(326\) 9.17423 15.8902i 0.508114 0.880079i
\(327\) 0 0
\(328\) 1.50000 2.59808i 0.0828236 0.143455i
\(329\) −5.20204 + 3.00340i −0.286798 + 0.165583i
\(330\) −3.22474 6.99964i −0.177516 0.385317i
\(331\) 23.2952i 1.28042i −0.768200 0.640210i \(-0.778847\pi\)
0.768200 0.640210i \(-0.221153\pi\)
\(332\) 14.7247 8.50134i 0.808125 0.466571i
\(333\) −4.22474 + 22.7310i −0.231515 + 1.24565i
\(334\) −4.89898 −0.268060
\(335\) −3.55051 −0.193985
\(336\) 0.449490 0.635674i 0.0245217 0.0346789i
\(337\) −17.8485 10.3048i −0.972268 0.561339i −0.0723411 0.997380i \(-0.523047\pi\)
−0.899927 + 0.436041i \(0.856380\pi\)
\(338\) 0.500000 + 0.866025i 0.0271964 + 0.0471056i
\(339\) −32.4217 2.98735i −1.76090 0.162250i
\(340\) 0.449490 0.778539i 0.0243770 0.0422222i
\(341\) 13.3485 0.722860
\(342\) −0.623724 13.0618i −0.0337272 0.706302i
\(343\) 6.20204 0.334879
\(344\) −4.44949 + 7.70674i −0.239900 + 0.415520i
\(345\) 17.2474 + 1.58919i 0.928571 + 0.0855589i
\(346\) −0.550510 0.953512i −0.0295956 0.0512611i
\(347\) 3.27526 + 1.89097i 0.175825 + 0.101513i 0.585330 0.810795i \(-0.300965\pi\)
−0.409505 + 0.912308i \(0.634298\pi\)
\(348\) 2.44949 3.46410i 0.131306 0.185695i
\(349\) 32.4949 1.73941 0.869706 0.493570i \(-0.164308\pi\)
0.869706 + 0.493570i \(0.164308\pi\)
\(350\) 1.34847 0.0720787
\(351\) −17.4495 + 4.41761i −0.931385 + 0.235795i
\(352\) −2.72474 + 1.57313i −0.145229 + 0.0838482i
\(353\) 24.9951i 1.33036i −0.746684 0.665179i \(-0.768355\pi\)
0.746684 0.665179i \(-0.231645\pi\)
\(354\) −8.29796 18.0116i −0.441032 0.957304i
\(355\) −7.34847 + 4.24264i −0.390016 + 0.225176i
\(356\) 3.55051 6.14966i 0.188177 0.325932i
\(357\) 0.404082 + 0.285729i 0.0213863 + 0.0151224i
\(358\) −3.82577 + 6.62642i −0.202198 + 0.350217i
\(359\) 20.8207 + 12.0208i 1.09887 + 0.634434i 0.935925 0.352200i \(-0.114566\pi\)
0.162948 + 0.986635i \(0.447900\pi\)
\(360\) 3.22474 + 2.75699i 0.169959 + 0.145306i
\(361\) 1.15153 18.9651i 0.0606069 0.998162i
\(362\) 21.5631i 1.13333i
\(363\) 1.89898 + 0.174973i 0.0996706 + 0.00918368i
\(364\) −1.34847 0.778539i −0.0706790 0.0408065i
\(365\) 10.7753 6.22110i 0.564003 0.325627i
\(366\) 2.67423 + 0.246405i 0.139784 + 0.0128798i
\(367\) 4.32577 + 7.49245i 0.225803 + 0.391102i 0.956560 0.291535i \(-0.0941661\pi\)
−0.730757 + 0.682638i \(0.760833\pi\)
\(368\) 7.07107i 0.368605i
\(369\) −5.84847 + 6.84072i −0.304459 + 0.356113i
\(370\) −5.44949 9.43879i −0.283305 0.490699i
\(371\) 2.44949 + 4.24264i 0.127171 + 0.220267i
\(372\) −6.67423 + 3.07483i −0.346043 + 0.159423i
\(373\) 25.4558i 1.31805i 0.752119 + 0.659027i \(0.229032\pi\)
−0.752119 + 0.659027i \(0.770968\pi\)
\(374\) −1.00000 1.73205i −0.0517088 0.0895622i
\(375\) −1.79796 + 19.5133i −0.0928462 + 1.00766i
\(376\) −11.5732 + 6.68180i −0.596843 + 0.344587i
\(377\) −7.34847 4.24264i −0.378465 0.218507i
\(378\) −1.67423 + 1.62851i −0.0861133 + 0.0837615i
\(379\) 1.55708i 0.0799817i −0.999200 0.0399909i \(-0.987267\pi\)
0.999200 0.0399909i \(-0.0127329\pi\)
\(380\) 4.22474 + 4.48905i 0.216725 + 0.230283i
\(381\) −16.3485 + 7.53177i −0.837557 + 0.385864i
\(382\) −7.10102 4.09978i −0.363320 0.209763i
\(383\) 10.2247 17.7098i 0.522460 0.904927i −0.477198 0.878796i \(-0.658348\pi\)
0.999659 0.0261318i \(-0.00831896\pi\)
\(384\) 1.00000 1.41421i 0.0510310 0.0721688i
\(385\) −1.00000 + 1.73205i −0.0509647 + 0.0882735i
\(386\) −22.3485 + 12.9029i −1.13751 + 0.656740i
\(387\) 17.3485 20.2918i 0.881872 1.03149i
\(388\) 3.28913i 0.166980i
\(389\) −13.1010 + 7.56388i −0.664248 + 0.383504i −0.793894 0.608057i \(-0.791949\pi\)
0.129646 + 0.991560i \(0.458616\pi\)
\(390\) 4.89898 6.92820i 0.248069 0.350823i
\(391\) 4.49490 0.227317
\(392\) 6.79796 0.343349
\(393\) 3.14643 + 2.22486i 0.158716 + 0.112229i
\(394\) 17.5732 + 10.1459i 0.885326 + 0.511143i
\(395\) 6.00000 + 10.3923i 0.301893 + 0.522894i
\(396\) 8.89898 3.14626i 0.447191 0.158106i
\(397\) 2.67423 4.63191i 0.134216 0.232469i −0.791082 0.611711i \(-0.790482\pi\)
0.925298 + 0.379242i \(0.123815\pi\)
\(398\) 2.89898 0.145313
\(399\) −2.67423 + 2.08921i −0.133879 + 0.104591i
\(400\) 3.00000 0.150000
\(401\) −3.39898 + 5.88721i −0.169737 + 0.293993i −0.938327 0.345748i \(-0.887625\pi\)
0.768590 + 0.639741i \(0.220958\pi\)
\(402\) 0.398979 4.33013i 0.0198993 0.215967i
\(403\) 7.34847 + 12.7279i 0.366053 + 0.634023i
\(404\) −8.57321 4.94975i −0.426533 0.246259i
\(405\) −8.00000 9.89949i −0.397523 0.491910i
\(406\) −1.10102 −0.0546427
\(407\) −24.2474 −1.20190
\(408\) 0.898979 + 0.635674i 0.0445061 + 0.0314706i
\(409\) 3.15153 1.81954i 0.155833 0.0899703i −0.420056 0.907498i \(-0.637989\pi\)
0.575889 + 0.817528i \(0.304656\pi\)
\(410\) 4.24264i 0.209529i
\(411\) 6.17423 2.84448i 0.304553 0.140308i
\(412\) 4.34847 2.51059i 0.214234 0.123688i
\(413\) −2.57321 + 4.45694i −0.126620 + 0.219312i
\(414\) −3.87628 + 20.8560i −0.190509 + 1.02502i
\(415\) 12.0227 20.8239i 0.590171 1.02221i
\(416\) −3.00000 1.73205i −0.147087 0.0849208i
\(417\) 10.3990 + 22.5720i 0.509240 + 1.10536i
\(418\) 13.3485 3.14626i 0.652895 0.153889i
\(419\) 24.5344i 1.19859i 0.800530 + 0.599293i \(0.204552\pi\)
−0.800530 + 0.599293i \(0.795448\pi\)
\(420\) 0.101021 1.09638i 0.00492930 0.0534977i
\(421\) −3.97730 2.29629i −0.193842 0.111914i 0.399938 0.916542i \(-0.369032\pi\)
−0.593780 + 0.804628i \(0.702365\pi\)
\(422\) −1.34847 + 0.778539i −0.0656425 + 0.0378987i
\(423\) 37.7980 13.3636i 1.83780 0.649760i
\(424\) 5.44949 + 9.43879i 0.264651 + 0.458388i
\(425\) 1.90702i 0.0925042i
\(426\) −4.34847 9.43879i −0.210684 0.457311i
\(427\) −0.348469 0.603566i −0.0168636 0.0292086i
\(428\) 2.44949 + 4.24264i 0.118401 + 0.205076i
\(429\) −7.89898 17.1455i −0.381366 0.827794i
\(430\) 12.5851i 0.606905i
\(431\) 1.65153 + 2.86054i 0.0795514 + 0.137787i 0.903056 0.429522i \(-0.141318\pi\)
−0.823505 + 0.567309i \(0.807985\pi\)
\(432\) −3.72474 + 3.62302i −0.179207 + 0.174313i
\(433\) −17.6969 + 10.2173i −0.850461 + 0.491014i −0.860806 0.508933i \(-0.830040\pi\)
0.0103456 + 0.999946i \(0.496707\pi\)
\(434\) 1.65153 + 0.953512i 0.0792760 + 0.0457700i
\(435\) 0.550510 5.97469i 0.0263949 0.286465i
\(436\) 0 0
\(437\) −8.87628 + 29.5163i −0.424610 + 1.41196i
\(438\) 6.37628 + 13.8404i 0.304670 + 0.661318i
\(439\) −9.67423 5.58542i −0.461726 0.266578i 0.251044 0.967976i \(-0.419226\pi\)
−0.712770 + 0.701398i \(0.752560\pi\)
\(440\) −2.22474 + 3.85337i −0.106061 + 0.183702i
\(441\) −20.0505 3.72656i −0.954786 0.177455i
\(442\) 1.10102 1.90702i 0.0523702 0.0907079i
\(443\) −16.3207 + 9.42274i −0.775418 + 0.447688i −0.834804 0.550547i \(-0.814419\pi\)
0.0593859 + 0.998235i \(0.481086\pi\)
\(444\) 12.1237 5.58542i 0.575366 0.265072i
\(445\) 10.0424i 0.476053i
\(446\) −15.6742 + 9.04952i −0.742197 + 0.428507i
\(447\) 2.89898 + 2.04989i 0.137117 + 0.0969564i
\(448\) −0.449490 −0.0212364
\(449\) 30.7980 1.45345 0.726723 0.686931i \(-0.241042\pi\)
0.726723 + 0.686931i \(0.241042\pi\)
\(450\) −8.84847 1.64456i −0.417121 0.0775255i
\(451\) −8.17423 4.71940i −0.384910 0.222228i
\(452\) 9.39898 + 16.2795i 0.442091 + 0.765724i
\(453\) −1.52781 + 16.5813i −0.0717826 + 0.779057i
\(454\) 0.275255 0.476756i 0.0129184 0.0223753i
\(455\) −2.20204 −0.103233
\(456\) −5.94949 + 4.64796i −0.278610 + 0.217661i
\(457\) −13.0000 −0.608114 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(458\) 0.449490 0.778539i 0.0210033 0.0363787i
\(459\) −2.30306 2.36773i −0.107498 0.110516i
\(460\) −5.00000 8.66025i −0.233126 0.403786i
\(461\) −33.2474 19.1954i −1.54849 0.894020i −0.998258 0.0590072i \(-0.981207\pi\)
−0.550231 0.835013i \(-0.685460\pi\)
\(462\) −2.00000 1.41421i −0.0930484 0.0657952i
\(463\) −19.7980 −0.920089 −0.460045 0.887896i \(-0.652167\pi\)
−0.460045 + 0.887896i \(0.652167\pi\)
\(464\) −2.44949 −0.113715
\(465\) −6.00000 + 8.48528i −0.278243 + 0.393496i
\(466\) −15.3990 + 8.89060i −0.713344 + 0.411849i
\(467\) 12.6172i 0.583853i −0.956441 0.291926i \(-0.905704\pi\)
0.956441 0.291926i \(-0.0942962\pi\)
\(468\) 7.89898 + 6.75323i 0.365130 + 0.312168i
\(469\) −0.977296 + 0.564242i −0.0451273 + 0.0260543i
\(470\) −9.44949 + 16.3670i −0.435872 + 0.754953i
\(471\) −10.6969 + 15.1278i −0.492889 + 0.697050i
\(472\) −5.72474 + 9.91555i −0.263503 + 0.456400i
\(473\) 24.2474 + 13.9993i 1.11490 + 0.643687i
\(474\) −13.3485 + 6.14966i −0.613115 + 0.282463i
\(475\) −12.5227 3.76588i −0.574581 0.172791i
\(476\) 0.285729i 0.0130964i
\(477\) −10.8990 30.8270i −0.499030 1.41147i
\(478\) 18.2474 + 10.5352i 0.834619 + 0.481867i
\(479\) 0.853572 0.492810i 0.0390007 0.0225171i −0.480373 0.877064i \(-0.659499\pi\)
0.519374 + 0.854547i \(0.326165\pi\)
\(480\) 0.224745 2.43916i 0.0102582 0.111332i
\(481\) −13.3485 23.1202i −0.608638 1.05419i
\(482\) 6.75323i 0.307601i
\(483\) 5.00000 2.30351i 0.227508 0.104813i
\(484\) −0.550510 0.953512i −0.0250232 0.0433414i
\(485\) −2.32577 4.02834i −0.105608 0.182918i
\(486\) 12.9722 8.64420i 0.588431 0.392109i
\(487\) 25.0273i 1.13409i −0.823686 0.567046i \(-0.808086\pi\)
0.823686 0.567046i \(-0.191914\pi\)
\(488\) −0.775255 1.34278i −0.0350942 0.0607849i
\(489\) 31.6464 + 2.91591i 1.43110 + 0.131862i
\(490\) 8.32577 4.80688i 0.376120 0.217153i
\(491\) −13.8990 8.02458i −0.627252 0.362144i 0.152435 0.988314i \(-0.451289\pi\)
−0.779687 + 0.626169i \(0.784622\pi\)
\(492\) 5.17423 + 0.476756i 0.233273 + 0.0214938i
\(493\) 1.55708i 0.0701273i
\(494\) 10.3485 + 10.9959i 0.465600 + 0.494728i
\(495\) 8.67423 10.1459i 0.389878 0.456024i
\(496\) 3.67423 + 2.12132i 0.164978 + 0.0952501i
\(497\) −1.34847 + 2.33562i −0.0604871 + 0.104767i
\(498\) 24.0454 + 17.0027i 1.07750 + 0.761908i
\(499\) −3.72474 + 6.45145i −0.166742 + 0.288806i −0.937273 0.348597i \(-0.886658\pi\)
0.770530 + 0.637403i \(0.219992\pi\)
\(500\) 9.79796 5.65685i 0.438178 0.252982i
\(501\) −3.55051 7.70674i −0.158625 0.344312i
\(502\) 3.78194i 0.168796i
\(503\) −13.4722 + 7.77817i −0.600695 + 0.346812i −0.769315 0.638870i \(-0.779402\pi\)
0.168620 + 0.985681i \(0.446069\pi\)
\(504\) 1.32577 + 0.246405i 0.0590543 + 0.0109757i
\(505\) −14.0000 −0.622992
\(506\) −22.2474 −0.989020
\(507\) −1.00000 + 1.41421i −0.0444116 + 0.0628074i
\(508\) 9.00000 + 5.19615i 0.399310 + 0.230542i
\(509\) 8.69694 + 15.0635i 0.385485 + 0.667680i 0.991836 0.127517i \(-0.0407008\pi\)
−0.606351 + 0.795197i \(0.707367\pi\)
\(510\) 1.55051 + 0.142865i 0.0686577 + 0.00632615i
\(511\) 1.97730 3.42478i 0.0874704 0.151503i
\(512\) −1.00000 −0.0441942
\(513\) 20.0959 10.4477i 0.887256 0.461276i
\(514\) −15.0000 −0.661622
\(515\) 3.55051 6.14966i 0.156454 0.270987i
\(516\) −15.3485 1.41421i −0.675679 0.0622573i
\(517\) 21.0227 + 36.4124i 0.924577 + 1.60142i
\(518\) −3.00000 1.73205i −0.131812 0.0761019i
\(519\) 1.10102 1.55708i 0.0483294 0.0683481i
\(520\) −4.89898 −0.214834
\(521\) −25.8990 −1.13465 −0.567327 0.823492i \(-0.692023\pi\)
−0.567327 + 0.823492i \(0.692023\pi\)
\(522\) 7.22474 + 1.34278i 0.316218 + 0.0587719i
\(523\) −5.69694 + 3.28913i −0.249110 + 0.143824i −0.619357 0.785110i \(-0.712606\pi\)
0.370247 + 0.928933i \(0.379273\pi\)
\(524\) 2.22486i 0.0971935i
\(525\) 0.977296 + 2.12132i 0.0426527 + 0.0925820i
\(526\) 7.77526 4.48905i 0.339017 0.195732i
\(527\) −1.34847 + 2.33562i −0.0587402 + 0.101741i
\(528\) −4.44949 3.14626i −0.193639 0.136924i
\(529\) 13.5000 23.3827i 0.586957 1.01664i
\(530\) 13.3485 + 7.70674i 0.579820 + 0.334759i
\(531\) 22.3207 26.1076i 0.968634 1.13297i
\(532\) 1.87628 + 0.564242i 0.0813469 + 0.0244630i
\(533\) 10.3923i 0.450141i
\(534\) 12.2474 + 1.12848i 0.529999 + 0.0488343i
\(535\) 6.00000 + 3.46410i 0.259403 + 0.149766i
\(536\) −2.17423 + 1.25529i −0.0939126 + 0.0542205i
\(537\) −13.1969 1.21597i −0.569490 0.0524730i
\(538\) −12.2474 21.2132i −0.528025 0.914566i
\(539\) 21.3882i 0.921254i
\(540\) −2.00000 + 7.07107i −0.0860663 + 0.304290i
\(541\) −5.34847 9.26382i −0.229949 0.398283i 0.727844 0.685743i \(-0.240522\pi\)
−0.957793 + 0.287460i \(0.907189\pi\)
\(542\) −10.0227 17.3598i −0.430512 0.745669i
\(543\) 33.9217 15.6278i 1.45572 0.670652i
\(544\) 0.635674i 0.0272543i
\(545\) 0 0
\(546\) 0.247449 2.68556i 0.0105898 0.114931i
\(547\) −32.3939 + 18.7026i −1.38506 + 0.799666i −0.992754 0.120168i \(-0.961657\pi\)
−0.392309 + 0.919834i \(0.628323\pi\)
\(548\) −3.39898 1.96240i −0.145197 0.0838296i
\(549\) 1.55051 + 4.38551i 0.0661742 + 0.187169i
\(550\) 9.43879i 0.402471i
\(551\) 10.2247 + 3.07483i 0.435589 + 0.130992i
\(552\) 11.1237 5.12472i 0.473457 0.218123i
\(553\) 3.30306 + 1.90702i 0.140460 + 0.0810949i
\(554\) 10.1237 17.5348i 0.430116 0.744982i
\(555\) 10.8990 15.4135i 0.462636 0.654266i
\(556\) 7.17423 12.4261i 0.304255 0.526986i
\(557\) 0.247449 0.142865i 0.0104847 0.00605337i −0.494748 0.869036i \(-0.664740\pi\)
0.505233 + 0.862983i \(0.331406\pi\)
\(558\) −9.67423 8.27098i −0.409543 0.350139i
\(559\) 30.8270i 1.30384i
\(560\) −0.550510 + 0.317837i −0.0232633 + 0.0134311i
\(561\) 2.00000 2.82843i 0.0844401 0.119416i
\(562\) 22.5959 0.953151
\(563\) 40.8434 1.72134 0.860671 0.509161i \(-0.170044\pi\)
0.860671 + 0.509161i \(0.170044\pi\)
\(564\) −18.8990 13.3636i −0.795791 0.562709i
\(565\) 23.0227 + 13.2922i 0.968572 + 0.559206i
\(566\) −4.72474 8.18350i −0.198596 0.343978i
\(567\) −3.77526 1.45354i −0.158546 0.0610428i
\(568\) −3.00000 + 5.19615i −0.125877 + 0.218026i
\(569\) −34.2929 −1.43763 −0.718816 0.695201i \(-0.755315\pi\)
−0.718816 + 0.695201i \(0.755315\pi\)
\(570\) −4.00000 + 9.89949i −0.167542 + 0.414644i
\(571\) 33.0454 1.38291 0.691454 0.722421i \(-0.256971\pi\)
0.691454 + 0.722421i \(0.256971\pi\)
\(572\) −5.44949 + 9.43879i −0.227855 + 0.394656i
\(573\) 1.30306 14.1421i 0.0544362 0.590796i
\(574\) −0.674235 1.16781i −0.0281420 0.0487434i
\(575\) 18.3712 + 10.6066i 0.766131 + 0.442326i
\(576\) 2.94949 + 0.548188i 0.122895 + 0.0228412i
\(577\) 18.5959 0.774158 0.387079 0.922047i \(-0.373484\pi\)
0.387079 + 0.922047i \(0.373484\pi\)
\(578\) −16.5959 −0.690299
\(579\) −36.4949 25.8058i −1.51668 1.07245i
\(580\) −3.00000 + 1.73205i −0.124568 + 0.0719195i
\(581\) 7.64253i 0.317065i
\(582\) 5.17423 2.38378i 0.214479 0.0988108i
\(583\) 29.6969 17.1455i 1.22992 0.710096i
\(584\) 4.39898 7.61926i 0.182031 0.315287i
\(585\) 14.4495 + 2.68556i 0.597413 + 0.111034i
\(586\) −9.67423 + 16.7563i −0.399639 + 0.692195i
\(587\) −13.8990 8.02458i −0.573672 0.331210i 0.184942 0.982749i \(-0.440790\pi\)
−0.758615 + 0.651540i \(0.774123\pi\)
\(588\) 4.92679 + 10.6941i 0.203177 + 0.441017i
\(589\) −12.6742 13.4671i −0.522233 0.554904i
\(590\) 16.1920i 0.666615i
\(591\) −3.22474 + 34.9982i −0.132648 + 1.43963i
\(592\) −6.67423 3.85337i −0.274309 0.158373i
\(593\) 15.0959 8.71563i 0.619915 0.357908i −0.156921 0.987611i \(-0.550157\pi\)
0.776836 + 0.629703i \(0.216823\pi\)
\(594\) 11.3990 + 11.7190i 0.467706 + 0.480838i
\(595\) −0.202041 0.349945i −0.00828287 0.0143464i
\(596\) 2.04989i 0.0839667i
\(597\) 2.10102 + 4.56048i 0.0859890 + 0.186648i
\(598\) −12.2474 21.2132i −0.500835 0.867472i
\(599\) −2.57321 4.45694i −0.105139 0.182106i 0.808656 0.588282i \(-0.200195\pi\)
−0.913795 + 0.406176i \(0.866862\pi\)
\(600\) 2.17423 + 4.71940i 0.0887628 + 0.192669i
\(601\) 14.0314i 0.572352i 0.958177 + 0.286176i \(0.0923842\pi\)
−0.958177 + 0.286176i \(0.907616\pi\)
\(602\) 2.00000 + 3.46410i 0.0815139 + 0.141186i
\(603\) 7.10102 2.51059i 0.289176 0.102239i
\(604\) 8.32577 4.80688i 0.338771 0.195589i
\(605\) −1.34847 0.778539i −0.0548231 0.0316521i
\(606\) 1.57321 17.0741i 0.0639075 0.693588i
\(607\) 11.5208i 0.467614i −0.972283 0.233807i \(-0.924882\pi\)
0.972283 0.233807i \(-0.0751185\pi\)
\(608\) 4.17423 + 1.25529i 0.169288 + 0.0509089i
\(609\) −0.797959 1.73205i −0.0323349 0.0701862i
\(610\) −1.89898 1.09638i −0.0768874 0.0443910i
\(611\) −23.1464 + 40.0908i −0.936404 + 1.62190i
\(612\) −0.348469 + 1.87492i −0.0140860 + 0.0757890i
\(613\) −23.8990 + 41.3942i −0.965271 + 1.67190i −0.256385 + 0.966575i \(0.582531\pi\)
−0.708886 + 0.705323i \(0.750802\pi\)
\(614\) 18.5227 10.6941i 0.747515 0.431578i
\(615\) 6.67423 3.07483i 0.269131 0.123989i
\(616\) 1.41421i 0.0569803i
\(617\) 8.05051 4.64796i 0.324101 0.187120i −0.329118 0.944289i \(-0.606751\pi\)
0.653219 + 0.757169i \(0.273418\pi\)
\(618\) 7.10102 + 5.02118i 0.285645 + 0.201981i
\(619\) −30.6969 −1.23381 −0.616907 0.787036i \(-0.711615\pi\)
−0.616907 + 0.787036i \(0.711615\pi\)
\(620\) 6.00000 0.240966
\(621\) −35.6186 + 9.01742i −1.42933 + 0.361856i
\(622\) −13.4722 7.77817i −0.540186 0.311876i
\(623\) −1.59592 2.76421i −0.0639391 0.110746i
\(624\) 0.550510 5.97469i 0.0220380 0.239179i
\(625\) 0.500000 0.866025i 0.0200000 0.0346410i
\(626\) 19.0000 0.759393
\(627\) 14.6237 + 18.7187i 0.584015 + 0.747552i
\(628\) 10.6969 0.426854
\(629\) 2.44949 4.24264i 0.0976676 0.169165i
\(630\) 1.79796 0.635674i 0.0716324 0.0253259i
\(631\) 17.1237 + 29.6592i 0.681685 + 1.18071i 0.974466 + 0.224533i \(0.0720857\pi\)
−0.292782 + 0.956179i \(0.594581\pi\)
\(632\) 7.34847 + 4.24264i 0.292306 + 0.168763i
\(633\) −2.20204 1.55708i −0.0875233 0.0618883i
\(634\) −6.00000 −0.238290
\(635\) 14.6969 0.583230
\(636\) −10.8990 + 15.4135i −0.432173 + 0.611184i
\(637\) 20.3939 11.7744i 0.808035 0.466519i
\(638\) 7.70674i 0.305113i
\(639\) 11.6969 13.6814i 0.462724 0.541229i
\(640\) −1.22474 + 0.707107i −0.0484123 + 0.0279508i
\(641\) −13.1969 + 22.8578i −0.521248 + 0.902828i 0.478447 + 0.878116i \(0.341200\pi\)
−0.999695 + 0.0247111i \(0.992133\pi\)
\(642\) −4.89898 + 6.92820i −0.193347 + 0.273434i
\(643\) −5.07321 + 8.78706i −0.200068 + 0.346528i −0.948550 0.316627i \(-0.897450\pi\)
0.748482 + 0.663155i \(0.230783\pi\)
\(644\) −2.75255 1.58919i −0.108466 0.0626227i
\(645\) −19.7980 + 9.12096i −0.779544 + 0.359137i
\(646\) −0.797959 + 2.65345i −0.0313953 + 0.104399i
\(647\) 14.7778i 0.580976i −0.956879 0.290488i \(-0.906182\pi\)
0.956879 0.290488i \(-0.0938176\pi\)
\(648\) −8.39898 3.23375i −0.329943 0.127034i
\(649\) 31.1969 + 18.0116i 1.22459 + 0.707016i
\(650\) 9.00000 5.19615i 0.353009 0.203810i
\(651\) −0.303062 + 3.28913i −0.0118779 + 0.128911i
\(652\) −9.17423 15.8902i −0.359291 0.622310i
\(653\) 8.19955i 0.320873i −0.987046 0.160437i \(-0.948710\pi\)
0.987046 0.160437i \(-0.0512902\pi\)
\(654\) 0 0
\(655\) −1.57321 2.72489i −0.0614706 0.106470i
\(656\) −1.50000 2.59808i −0.0585652 0.101438i
\(657\) −17.1515 + 20.0614i −0.669145 + 0.782672i
\(658\) 6.00680i 0.234169i
\(659\) −12.0000 20.7846i −0.467454 0.809653i 0.531855 0.846836i \(-0.321495\pi\)
−0.999309 + 0.0371821i \(0.988162\pi\)
\(660\) −7.67423 0.707107i −0.298719 0.0275241i
\(661\) 25.7196 14.8492i 1.00038 0.577569i 0.0920180 0.995757i \(-0.470668\pi\)
0.908360 + 0.418189i \(0.137335\pi\)
\(662\) −20.1742 11.6476i −0.784094 0.452697i
\(663\) 3.79796 + 0.349945i 0.147501 + 0.0135908i
\(664\) 17.0027i 0.659832i
\(665\) 2.69694 0.635674i 0.104583 0.0246504i
\(666\) 17.5732 + 15.0242i 0.680948 + 0.582177i
\(667\) −15.0000 8.66025i −0.580802 0.335326i
\(668\) −2.44949 + 4.24264i −0.0947736 + 0.164153i
\(669\) −25.5959 18.0990i −0.989595 0.699750i
\(670\) −1.77526 + 3.07483i −0.0685841 + 0.118791i
\(671\) −4.22474 + 2.43916i −0.163094 + 0.0941626i
\(672\) −0.325765 0.707107i −0.0125667 0.0272772i
\(673\) 3.46410i 0.133531i −0.997769 0.0667657i \(-0.978732\pi\)
0.997769 0.0667657i \(-0.0212680\pi\)
\(674\) −17.8485 + 10.3048i −0.687497 + 0.396927i
\(675\) −3.82577 15.1117i −0.147254 0.581650i
\(676\) 1.00000 0.0384615
\(677\) −32.6969 −1.25665 −0.628323 0.777953i \(-0.716258\pi\)
−0.628323 + 0.777953i \(0.716258\pi\)
\(678\) −18.7980 + 26.5843i −0.721931 + 1.02096i
\(679\) −1.28036 0.739215i −0.0491356 0.0283685i
\(680\) −0.449490 0.778539i −0.0172371 0.0298556i
\(681\) 0.949490 + 0.0874863i 0.0363845 + 0.00335248i
\(682\) 6.67423 11.5601i 0.255570 0.442660i
\(683\) 17.3939 0.665558 0.332779 0.943005i \(-0.392014\pi\)
0.332779 + 0.943005i \(0.392014\pi\)
\(684\) −11.6237 5.99075i −0.444444 0.229062i
\(685\) −5.55051 −0.212074
\(686\) 3.10102 5.37113i 0.118398 0.205071i
\(687\) 1.55051 + 0.142865i 0.0591557 + 0.00545062i
\(688\) 4.44949 + 7.70674i 0.169635 + 0.293817i
\(689\) 32.6969 + 18.8776i 1.24565 + 0.719179i
\(690\) 10.0000 14.1421i 0.380693 0.538382i
\(691\) −40.0000 −1.52167 −0.760836 0.648944i \(-0.775211\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(692\) −1.10102 −0.0418545
\(693\) 0.775255 4.17121i 0.0294495 0.158451i
\(694\) 3.27526 1.89097i 0.124327 0.0717802i
\(695\) 20.2918i 0.769712i
\(696\) −1.77526 3.85337i −0.0672909 0.146062i
\(697\) 1.65153 0.953512i 0.0625562 0.0361168i
\(698\) 16.2474 28.1414i 0.614975 1.06517i
\(699\) −25.1464 17.7812i −0.951125 0.672547i
\(700\) 0.674235 1.16781i 0.0254837 0.0441390i
\(701\) −8.57321 4.94975i −0.323806 0.186949i 0.329282 0.944232i \(-0.393193\pi\)
−0.653088 + 0.757282i \(0.726527\pi\)
\(702\) −4.89898 + 17.3205i −0.184900 + 0.653720i
\(703\) 23.0227 + 24.4630i 0.868318 + 0.922640i
\(704\) 3.14626i 0.118579i
\(705\) −32.5959 3.00340i −1.22763 0.113115i
\(706\) −21.6464 12.4976i −0.814674 0.470352i
\(707\) −3.85357 + 2.22486i −0.144928 + 0.0836745i
\(708\) −19.7474 1.81954i −0.742155 0.0683824i
\(709\) 8.67423 + 15.0242i 0.325768 + 0.564246i 0.981667 0.190602i \(-0.0610439\pi\)
−0.655900 + 0.754848i \(0.727711\pi\)
\(710\) 8.48528i 0.318447i
\(711\) −19.3485 16.5420i −0.725624 0.620372i
\(712\) −3.55051 6.14966i −0.133061 0.230468i
\(713\) 15.0000 + 25.9808i 0.561754 + 0.972987i
\(714\) 0.449490 0.207081i 0.0168217 0.00774980i
\(715\) 15.4135i 0.576432i
\(716\) 3.82577 + 6.62642i 0.142976 + 0.247641i
\(717\) −3.34847 + 36.3410i −0.125051 + 1.35718i
\(718\) 20.8207 12.0208i 0.777020 0.448613i
\(719\) 26.1464 + 15.0956i 0.975097 + 0.562973i 0.900786 0.434262i \(-0.142991\pi\)
0.0743109 + 0.997235i \(0.476324\pi\)
\(720\) 4.00000 1.41421i 0.149071 0.0527046i
\(721\) 2.25697i 0.0840539i
\(722\) −15.8485 10.4798i −0.589819 0.390017i
\(723\) −10.6237 + 4.89437i −0.395101 + 0.182024i
\(724\) −18.6742 10.7816i −0.694022 0.400694i
\(725\) 3.67423 6.36396i 0.136458 0.236352i
\(726\) 1.10102 1.55708i 0.0408627 0.0577886i
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) −1.34847 + 0.778539i −0.0499776 + 0.0288546i
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 12.4422i 0.460506i
\(731\) −4.89898 + 2.82843i −0.181195 + 0.104613i
\(732\) 1.55051 2.19275i 0.0573085 0.0810465i
\(733\) −20.0454 −0.740394 −0.370197 0.928953i \(-0.620710\pi\)
−0.370197 + 0.928953i \(0.620710\pi\)
\(734\) 8.65153 0.319334
\(735\) 13.5959 + 9.61377i 0.501493 + 0.354609i
\(736\) −6.12372 3.53553i −0.225723 0.130322i
\(737\) 3.94949 + 6.84072i 0.145481 + 0.251981i
\(738\) 3.00000 + 8.48528i 0.110432 + 0.312348i
\(739\) −12.1742 + 21.0864i −0.447836 + 0.775676i −0.998245 0.0592200i \(-0.981139\pi\)
0.550408 + 0.834895i \(0.314472\pi\)
\(740\) −10.8990 −0.400654
\(741\) −9.79796 + 24.2487i −0.359937 + 0.890799i
\(742\) 4.89898 0.179847
\(743\) −2.32577 + 4.02834i −0.0853241 + 0.147786i −0.905529 0.424284i \(-0.860526\pi\)
0.820205 + 0.572069i \(0.193859\pi\)
\(744\) −0.674235 + 7.31747i −0.0247186 + 0.268272i
\(745\) −1.44949 2.51059i −0.0531052 0.0919809i
\(746\) 22.0454 + 12.7279i 0.807140 + 0.466002i
\(747\) −9.32066 + 50.1492i −0.341025 + 1.83486i
\(748\) −2.00000 −0.0731272
\(749\) 2.20204 0.0804608
\(750\) 16.0000 + 11.3137i 0.584237 + 0.413118i
\(751\) 17.6969 10.2173i 0.645770 0.372836i −0.141063 0.990001i \(-0.545052\pi\)
0.786834 + 0.617165i \(0.211719\pi\)
\(752\) 13.3636i 0.487320i
\(753\) −5.94949 + 2.74094i −0.216811 + 0.0998854i
\(754\) −7.34847 + 4.24264i −0.267615 + 0.154508i
\(755\) 6.79796 11.7744i 0.247403 0.428515i
\(756\) 0.573214 + 2.26418i 0.0208476 + 0.0823476i
\(757\) 19.6969 34.1161i 0.715897 1.23997i −0.246715 0.969088i \(-0.579351\pi\)
0.962612 0.270883i \(-0.0873155\pi\)
\(758\) −1.34847 0.778539i −0.0489786 0.0282778i
\(759\) −16.1237 34.9982i −0.585254 1.27035i
\(760\) 6.00000 1.41421i 0.217643 0.0512989i
\(761\) 31.5734i 1.14453i −0.820067 0.572267i \(-0.806064\pi\)
0.820067 0.572267i \(-0.193936\pi\)
\(762\) −1.65153 + 17.9241i −0.0598286 + 0.649321i
\(763\) 0 0
\(764\) −7.10102 + 4.09978i −0.256906 + 0.148325i
\(765\) 0.898979 + 2.54270i 0.0325027 + 0.0919314i
\(766\) −10.2247 17.7098i −0.369435 0.639880i
\(767\) 39.6622i 1.43212i
\(768\) −0.724745 1.57313i −0.0261520 0.0567655i
\(769\) −1.79796 3.11416i −0.0648361 0.112299i 0.831785 0.555098i \(-0.187319\pi\)
−0.896621 + 0.442798i \(0.853986\pi\)
\(770\) 1.00000 + 1.73205i 0.0360375 + 0.0624188i
\(771\) −10.8712 23.5970i −0.391516 0.849825i
\(772\) 25.8058i 0.928771i
\(773\) −1.22474 2.12132i −0.0440510 0.0762986i 0.843159 0.537664i </