Properties

Label 114.2.h.f.107.2
Level $114$
Weight $2$
Character 114.107
Analytic conductor $0.910$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.910294583043\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.2
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 114.107
Dual form 114.2.h.f.65.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.72474 - 0.158919i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.22474 + 0.707107i) q^{5} +(1.00000 + 1.41421i) q^{6} -0.449490 q^{7} -1.00000 q^{8} +(2.94949 - 0.548188i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(1.72474 - 0.158919i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.22474 + 0.707107i) q^{5} +(1.00000 + 1.41421i) q^{6} -0.449490 q^{7} -1.00000 q^{8} +(2.94949 - 0.548188i) q^{9} +(-1.22474 - 0.707107i) q^{10} -3.14626i q^{11} +(-0.724745 + 1.57313i) q^{12} +(-3.00000 - 1.73205i) q^{13} +(-0.224745 - 0.389270i) q^{14} +(-2.00000 + 1.41421i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.550510 + 0.317837i) q^{17} +(1.94949 + 2.28024i) q^{18} +(3.17423 + 2.98735i) q^{19} -1.41421i q^{20} +(-0.775255 + 0.0714323i) q^{21} +(2.72474 - 1.57313i) q^{22} +(-6.12372 - 3.53553i) q^{23} +(-1.72474 + 0.158919i) q^{24} +(-1.50000 + 2.59808i) q^{25} -3.46410i q^{26} +(5.00000 - 1.41421i) q^{27} +(0.224745 - 0.389270i) q^{28} +(1.22474 - 2.12132i) q^{29} +(-2.22474 - 1.02494i) q^{30} +4.24264i q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.500000 - 5.42650i) q^{33} +(-0.550510 - 0.317837i) q^{34} +(0.550510 - 0.317837i) q^{35} +(-1.00000 + 2.82843i) q^{36} -7.70674i q^{37} +(-1.00000 + 4.24264i) q^{38} +(-5.44949 - 2.51059i) q^{39} +(1.22474 - 0.707107i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(-0.449490 - 0.635674i) q^{42} +(4.44949 + 7.70674i) q^{43} +(2.72474 + 1.57313i) q^{44} +(-3.22474 + 2.75699i) q^{45} -7.07107i q^{46} +(11.5732 + 6.68180i) q^{47} +(-1.00000 - 1.41421i) q^{48} -6.79796 q^{49} -3.00000 q^{50} +(-0.898979 + 0.635674i) q^{51} +(3.00000 - 1.73205i) q^{52} +(-5.44949 + 9.43879i) q^{53} +(3.72474 + 3.62302i) q^{54} +(2.22474 + 3.85337i) q^{55} +0.449490 q^{56} +(5.94949 + 4.64796i) q^{57} +2.44949 q^{58} +(5.72474 + 9.91555i) q^{59} +(-0.224745 - 2.43916i) q^{60} +(0.775255 - 1.34278i) q^{61} +(-3.67423 + 2.12132i) q^{62} +(-1.32577 + 0.246405i) q^{63} +1.00000 q^{64} +4.89898 q^{65} +(4.44949 - 3.14626i) q^{66} +(2.17423 + 1.25529i) q^{67} -0.635674i q^{68} +(-11.1237 - 5.12472i) q^{69} +(0.550510 + 0.317837i) q^{70} +(3.00000 + 5.19615i) q^{71} +(-2.94949 + 0.548188i) q^{72} +(-4.39898 - 7.61926i) q^{73} +(6.67423 - 3.85337i) q^{74} +(-2.17423 + 4.71940i) q^{75} +(-4.17423 + 1.25529i) q^{76} +1.41421i q^{77} +(-0.550510 - 5.97469i) q^{78} +(-7.34847 + 4.24264i) q^{79} +(1.22474 + 0.707107i) q^{80} +(8.39898 - 3.23375i) q^{81} +(1.50000 - 2.59808i) q^{82} -17.0027i q^{83} +(0.325765 - 0.707107i) q^{84} +(0.449490 - 0.778539i) q^{85} +(-4.44949 + 7.70674i) q^{86} +(1.77526 - 3.85337i) q^{87} +3.14626i q^{88} +(3.55051 - 6.14966i) q^{89} +(-4.00000 - 1.41421i) q^{90} +(1.34847 + 0.778539i) q^{91} +(6.12372 - 3.53553i) q^{92} +(0.674235 + 7.31747i) q^{93} +13.3636i q^{94} +(-6.00000 - 1.41421i) q^{95} +(0.724745 - 1.57313i) q^{96} +(2.84847 - 1.64456i) q^{97} +(-3.39898 - 5.88721i) q^{98} +(-1.72474 - 9.27987i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + 2q^{12} - 12q^{13} + 4q^{14} - 8q^{15} - 2q^{16} - 12q^{17} - 2q^{18} - 2q^{19} - 8q^{21} + 6q^{22} - 2q^{24} - 6q^{25} + 20q^{27} - 4q^{28} - 4q^{30} + 2q^{32} - 2q^{33} - 12q^{34} + 12q^{35} - 4q^{36} - 4q^{38} - 12q^{39} - 6q^{41} + 8q^{42} + 8q^{43} + 6q^{44} - 8q^{45} + 12q^{47} - 4q^{48} + 12q^{49} - 12q^{50} + 16q^{51} + 12q^{52} - 12q^{53} + 10q^{54} + 4q^{55} - 8q^{56} + 14q^{57} + 18q^{59} + 4q^{60} + 8q^{61} - 20q^{63} + 4q^{64} + 8q^{66} - 6q^{67} - 20q^{69} + 12q^{70} + 12q^{71} - 2q^{72} + 2q^{73} + 12q^{74} + 6q^{75} - 2q^{76} - 12q^{78} + 14q^{81} + 6q^{82} + 16q^{84} - 8q^{85} - 8q^{86} + 12q^{87} + 24q^{89} - 16q^{90} - 24q^{91} - 12q^{93} - 24q^{95} - 2q^{96} - 18q^{97} + 6q^{98} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.72474 0.158919i 0.995782 0.0917517i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.22474 + 0.707107i −0.547723 + 0.316228i −0.748203 0.663470i \(-0.769083\pi\)
0.200480 + 0.979698i \(0.435750\pi\)
\(6\) 1.00000 + 1.41421i 0.408248 + 0.577350i
\(7\) −0.449490 −0.169891 −0.0849456 0.996386i \(-0.527072\pi\)
−0.0849456 + 0.996386i \(0.527072\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.94949 0.548188i 0.983163 0.182729i
\(10\) −1.22474 0.707107i −0.387298 0.223607i
\(11\) 3.14626i 0.948634i −0.880354 0.474317i \(-0.842695\pi\)
0.880354 0.474317i \(-0.157305\pi\)
\(12\) −0.724745 + 1.57313i −0.209216 + 0.454124i
\(13\) −3.00000 1.73205i −0.832050 0.480384i 0.0225039 0.999747i \(-0.492836\pi\)
−0.854554 + 0.519362i \(0.826170\pi\)
\(14\) −0.224745 0.389270i −0.0600656 0.104037i
\(15\) −2.00000 + 1.41421i −0.516398 + 0.365148i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.550510 + 0.317837i −0.133518 + 0.0770869i −0.565271 0.824905i \(-0.691229\pi\)
0.431753 + 0.901992i \(0.357895\pi\)
\(18\) 1.94949 + 2.28024i 0.459499 + 0.537457i
\(19\) 3.17423 + 2.98735i 0.728219 + 0.685344i
\(20\) 1.41421i 0.316228i
\(21\) −0.775255 + 0.0714323i −0.169175 + 0.0155878i
\(22\) 2.72474 1.57313i 0.580918 0.335393i
\(23\) −6.12372 3.53553i −1.27688 0.737210i −0.300610 0.953747i \(-0.597190\pi\)
−0.976274 + 0.216537i \(0.930524\pi\)
\(24\) −1.72474 + 0.158919i −0.352062 + 0.0324391i
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 3.46410i 0.679366i
\(27\) 5.00000 1.41421i 0.962250 0.272166i
\(28\) 0.224745 0.389270i 0.0424728 0.0735650i
\(29\) 1.22474 2.12132i 0.227429 0.393919i −0.729616 0.683857i \(-0.760301\pi\)
0.957046 + 0.289938i \(0.0936346\pi\)
\(30\) −2.22474 1.02494i −0.406181 0.187128i
\(31\) 4.24264i 0.762001i 0.924575 + 0.381000i \(0.124420\pi\)
−0.924575 + 0.381000i \(0.875580\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −0.500000 5.42650i −0.0870388 0.944633i
\(34\) −0.550510 0.317837i −0.0944117 0.0545086i
\(35\) 0.550510 0.317837i 0.0930532 0.0537243i
\(36\) −1.00000 + 2.82843i −0.166667 + 0.471405i
\(37\) 7.70674i 1.26698i −0.773751 0.633490i \(-0.781622\pi\)
0.773751 0.633490i \(-0.218378\pi\)
\(38\) −1.00000 + 4.24264i −0.162221 + 0.688247i
\(39\) −5.44949 2.51059i −0.872617 0.402016i
\(40\) 1.22474 0.707107i 0.193649 0.111803i
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) −0.449490 0.635674i −0.0693578 0.0980867i
\(43\) 4.44949 + 7.70674i 0.678541 + 1.17527i 0.975420 + 0.220352i \(0.0707207\pi\)
−0.296880 + 0.954915i \(0.595946\pi\)
\(44\) 2.72474 + 1.57313i 0.410771 + 0.237159i
\(45\) −3.22474 + 2.75699i −0.480717 + 0.410989i
\(46\) 7.07107i 1.04257i
\(47\) 11.5732 + 6.68180i 1.68813 + 0.974640i 0.955952 + 0.293524i \(0.0948280\pi\)
0.732175 + 0.681117i \(0.238505\pi\)
\(48\) −1.00000 1.41421i −0.144338 0.204124i
\(49\) −6.79796 −0.971137
\(50\) −3.00000 −0.424264
\(51\) −0.898979 + 0.635674i −0.125882 + 0.0890122i
\(52\) 3.00000 1.73205i 0.416025 0.240192i
\(53\) −5.44949 + 9.43879i −0.748545 + 1.29652i 0.199975 + 0.979801i \(0.435914\pi\)
−0.948520 + 0.316717i \(0.897419\pi\)
\(54\) 3.72474 + 3.62302i 0.506874 + 0.493031i
\(55\) 2.22474 + 3.85337i 0.299985 + 0.519588i
\(56\) 0.449490 0.0600656
\(57\) 5.94949 + 4.64796i 0.788029 + 0.615638i
\(58\) 2.44949 0.321634
\(59\) 5.72474 + 9.91555i 0.745298 + 1.29089i 0.950055 + 0.312082i \(0.101026\pi\)
−0.204757 + 0.978813i \(0.565640\pi\)
\(60\) −0.224745 2.43916i −0.0290144 0.314894i
\(61\) 0.775255 1.34278i 0.0992612 0.171926i −0.812118 0.583493i \(-0.801685\pi\)
0.911379 + 0.411568i \(0.135019\pi\)
\(62\) −3.67423 + 2.12132i −0.466628 + 0.269408i
\(63\) −1.32577 + 0.246405i −0.167031 + 0.0310441i
\(64\) 1.00000 0.125000
\(65\) 4.89898 0.607644
\(66\) 4.44949 3.14626i 0.547694 0.387278i
\(67\) 2.17423 + 1.25529i 0.265625 + 0.153359i 0.626898 0.779101i \(-0.284324\pi\)
−0.361273 + 0.932460i \(0.617658\pi\)
\(68\) 0.635674i 0.0770869i
\(69\) −11.1237 5.12472i −1.33914 0.616944i
\(70\) 0.550510 + 0.317837i 0.0657986 + 0.0379888i
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) −2.94949 + 0.548188i −0.347601 + 0.0646046i
\(73\) −4.39898 7.61926i −0.514862 0.891766i −0.999851 0.0172466i \(-0.994510\pi\)
0.484990 0.874520i \(-0.338823\pi\)
\(74\) 6.67423 3.85337i 0.775864 0.447945i
\(75\) −2.17423 + 4.71940i −0.251059 + 0.544949i
\(76\) −4.17423 + 1.25529i −0.478818 + 0.143992i
\(77\) 1.41421i 0.161165i
\(78\) −0.550510 5.97469i −0.0623330 0.676501i
\(79\) −7.34847 + 4.24264i −0.826767 + 0.477334i −0.852745 0.522328i \(-0.825064\pi\)
0.0259772 + 0.999663i \(0.491730\pi\)
\(80\) 1.22474 + 0.707107i 0.136931 + 0.0790569i
\(81\) 8.39898 3.23375i 0.933220 0.359306i
\(82\) 1.50000 2.59808i 0.165647 0.286910i
\(83\) 17.0027i 1.86629i −0.359506 0.933143i \(-0.617055\pi\)
0.359506 0.933143i \(-0.382945\pi\)
\(84\) 0.325765 0.707107i 0.0355439 0.0771517i
\(85\) 0.449490 0.778539i 0.0487540 0.0844444i
\(86\) −4.44949 + 7.70674i −0.479801 + 0.831039i
\(87\) 1.77526 3.85337i 0.190327 0.413125i
\(88\) 3.14626i 0.335393i
\(89\) 3.55051 6.14966i 0.376353 0.651863i −0.614175 0.789170i \(-0.710511\pi\)
0.990529 + 0.137307i \(0.0438445\pi\)
\(90\) −4.00000 1.41421i −0.421637 0.149071i
\(91\) 1.34847 + 0.778539i 0.141358 + 0.0816131i
\(92\) 6.12372 3.53553i 0.638442 0.368605i
\(93\) 0.674235 + 7.31747i 0.0699149 + 0.758787i
\(94\) 13.3636i 1.37835i
\(95\) −6.00000 1.41421i −0.615587 0.145095i
\(96\) 0.724745 1.57313i 0.0739690 0.160557i
\(97\) 2.84847 1.64456i 0.289218 0.166980i −0.348371 0.937357i \(-0.613265\pi\)
0.637589 + 0.770377i \(0.279932\pi\)
\(98\) −3.39898 5.88721i −0.343349 0.594698i
\(99\) −1.72474 9.27987i −0.173343 0.932662i
\(100\) −1.50000 2.59808i −0.150000 0.259808i
\(101\) 8.57321 + 4.94975i 0.853067 + 0.492518i 0.861684 0.507445i \(-0.169410\pi\)
−0.00861771 + 0.999963i \(0.502743\pi\)
\(102\) −1.00000 0.460702i −0.0990148 0.0456163i
\(103\) 5.02118i 0.494752i −0.968920 0.247376i \(-0.920432\pi\)
0.968920 0.247376i \(-0.0795682\pi\)
\(104\) 3.00000 + 1.73205i 0.294174 + 0.169842i
\(105\) 0.898979 0.635674i 0.0877314 0.0620355i
\(106\) −10.8990 −1.05860
\(107\) −4.89898 −0.473602 −0.236801 0.971558i \(-0.576099\pi\)
−0.236801 + 0.971558i \(0.576099\pi\)
\(108\) −1.27526 + 5.03723i −0.122711 + 0.484708i
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) −2.22474 + 3.85337i −0.212121 + 0.367405i
\(111\) −1.22474 13.2922i −0.116248 1.26164i
\(112\) 0.224745 + 0.389270i 0.0212364 + 0.0367825i
\(113\) −18.7980 −1.76836 −0.884182 0.467143i \(-0.845283\pi\)
−0.884182 + 0.467143i \(0.845283\pi\)
\(114\) −1.05051 + 7.47639i −0.0983893 + 0.700228i
\(115\) 10.0000 0.932505
\(116\) 1.22474 + 2.12132i 0.113715 + 0.196960i
\(117\) −9.79796 3.46410i −0.905822 0.320256i
\(118\) −5.72474 + 9.91555i −0.527005 + 0.912800i
\(119\) 0.247449 0.142865i 0.0226836 0.0130964i
\(120\) 2.00000 1.41421i 0.182574 0.129099i
\(121\) 1.10102 0.100093
\(122\) 1.55051 0.140377
\(123\) −3.00000 4.24264i −0.270501 0.382546i
\(124\) −3.67423 2.12132i −0.329956 0.190500i
\(125\) 11.3137i 1.01193i
\(126\) −0.876276 1.02494i −0.0780648 0.0913093i
\(127\) −9.00000 5.19615i −0.798621 0.461084i 0.0443678 0.999015i \(-0.485873\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 8.89898 + 12.5851i 0.783511 + 1.10805i
\(130\) 2.44949 + 4.24264i 0.214834 + 0.372104i
\(131\) 1.92679 1.11243i 0.168344 0.0971935i −0.413461 0.910522i \(-0.635680\pi\)
0.581805 + 0.813328i \(0.302347\pi\)
\(132\) 4.94949 + 2.28024i 0.430798 + 0.198469i
\(133\) −1.42679 1.34278i −0.123718 0.116434i
\(134\) 2.51059i 0.216882i
\(135\) −5.12372 + 5.26758i −0.440980 + 0.453362i
\(136\) 0.550510 0.317837i 0.0472059 0.0272543i
\(137\) 3.39898 + 1.96240i 0.290394 + 0.167659i 0.638120 0.769937i \(-0.279712\pi\)
−0.347725 + 0.937596i \(0.613046\pi\)
\(138\) −1.12372 12.1958i −0.0956578 1.03817i
\(139\) 7.17423 12.4261i 0.608511 1.05397i −0.382975 0.923759i \(-0.625101\pi\)
0.991486 0.130213i \(-0.0415661\pi\)
\(140\) 0.635674i 0.0537243i
\(141\) 21.0227 + 9.68520i 1.77043 + 0.815641i
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) −5.44949 + 9.43879i −0.455709 + 0.789312i
\(144\) −1.94949 2.28024i −0.162457 0.190020i
\(145\) 3.46410i 0.287678i
\(146\) 4.39898 7.61926i 0.364062 0.630574i
\(147\) −11.7247 + 1.08032i −0.967041 + 0.0891035i
\(148\) 6.67423 + 3.85337i 0.548619 + 0.316745i
\(149\) 1.77526 1.02494i 0.145435 0.0839667i −0.425517 0.904950i \(-0.639908\pi\)
0.570952 + 0.820984i \(0.306574\pi\)
\(150\) −5.17423 + 0.476756i −0.422474 + 0.0389270i
\(151\) 9.61377i 0.782357i −0.920315 0.391179i \(-0.872067\pi\)
0.920315 0.391179i \(-0.127933\pi\)
\(152\) −3.17423 2.98735i −0.257464 0.242306i
\(153\) −1.44949 + 1.23924i −0.117184 + 0.100187i
\(154\) −1.22474 + 0.707107i −0.0986928 + 0.0569803i
\(155\) −3.00000 5.19615i −0.240966 0.417365i
\(156\) 4.89898 3.46410i 0.392232 0.277350i
\(157\) −5.34847 9.26382i −0.426854 0.739333i 0.569737 0.821827i \(-0.307045\pi\)
−0.996592 + 0.0824935i \(0.973712\pi\)
\(158\) −7.34847 4.24264i −0.584613 0.337526i
\(159\) −7.89898 + 17.1455i −0.626430 + 1.35973i
\(160\) 1.41421i 0.111803i
\(161\) 2.75255 + 1.58919i 0.216931 + 0.125245i
\(162\) 7.00000 + 5.65685i 0.549972 + 0.444444i
\(163\) 18.3485 1.43716 0.718582 0.695443i \(-0.244792\pi\)
0.718582 + 0.695443i \(0.244792\pi\)
\(164\) 3.00000 0.234261
\(165\) 4.44949 + 6.29253i 0.346392 + 0.489873i
\(166\) 14.7247 8.50134i 1.14286 0.659832i
\(167\) −2.44949 + 4.24264i −0.189547 + 0.328305i −0.945099 0.326783i \(-0.894035\pi\)
0.755552 + 0.655089i \(0.227369\pi\)
\(168\) 0.775255 0.0714323i 0.0598122 0.00551112i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0.898979 0.0689486
\(171\) 11.0000 + 7.07107i 0.841191 + 0.540738i
\(172\) −8.89898 −0.678541
\(173\) 0.550510 + 0.953512i 0.0418545 + 0.0724942i 0.886194 0.463315i \(-0.153340\pi\)
−0.844339 + 0.535809i \(0.820007\pi\)
\(174\) 4.22474 0.389270i 0.320277 0.0295104i
\(175\) 0.674235 1.16781i 0.0509673 0.0882780i
\(176\) −2.72474 + 1.57313i −0.205385 + 0.118579i
\(177\) 11.4495 + 16.1920i 0.860596 + 1.21707i
\(178\) 7.10102 0.532244
\(179\) −7.65153 −0.571902 −0.285951 0.958244i \(-0.592310\pi\)
−0.285951 + 0.958244i \(0.592310\pi\)
\(180\) −0.775255 4.17121i −0.0577841 0.310904i
\(181\) 18.6742 + 10.7816i 1.38804 + 0.801388i 0.993095 0.117314i \(-0.0374285\pi\)
0.394950 + 0.918703i \(0.370762\pi\)
\(182\) 1.55708i 0.115418i
\(183\) 1.12372 2.43916i 0.0830681 0.180308i
\(184\) 6.12372 + 3.53553i 0.451447 + 0.260643i
\(185\) 5.44949 + 9.43879i 0.400654 + 0.693954i
\(186\) −6.00000 + 4.24264i −0.439941 + 0.311086i
\(187\) 1.00000 + 1.73205i 0.0731272 + 0.126660i
\(188\) −11.5732 + 6.68180i −0.844063 + 0.487320i
\(189\) −2.24745 + 0.635674i −0.163478 + 0.0462385i
\(190\) −1.77526 5.90326i −0.128791 0.428267i
\(191\) 8.19955i 0.593299i 0.954986 + 0.296649i \(0.0958693\pi\)
−0.954986 + 0.296649i \(0.904131\pi\)
\(192\) 1.72474 0.158919i 0.124473 0.0114690i
\(193\) −22.3485 + 12.9029i −1.60868 + 0.928771i −0.619012 + 0.785382i \(0.712467\pi\)
−0.989666 + 0.143389i \(0.954200\pi\)
\(194\) 2.84847 + 1.64456i 0.204508 + 0.118073i
\(195\) 8.44949 0.778539i 0.605081 0.0557523i
\(196\) 3.39898 5.88721i 0.242784 0.420515i
\(197\) 20.2918i 1.44573i −0.690989 0.722865i \(-0.742825\pi\)
0.690989 0.722865i \(-0.257175\pi\)
\(198\) 7.17423 6.13361i 0.509851 0.435897i
\(199\) 1.44949 2.51059i 0.102752 0.177971i −0.810066 0.586339i \(-0.800569\pi\)
0.912817 + 0.408368i \(0.133902\pi\)
\(200\) 1.50000 2.59808i 0.106066 0.183712i
\(201\) 3.94949 + 1.81954i 0.278576 + 0.128340i
\(202\) 9.89949i 0.696526i
\(203\) −0.550510 + 0.953512i −0.0386382 + 0.0669234i
\(204\) −0.101021 1.09638i −0.00707285 0.0767617i
\(205\) 3.67423 + 2.12132i 0.256620 + 0.148159i
\(206\) 4.34847 2.51059i 0.302972 0.174921i
\(207\) −20.0000 7.07107i −1.39010 0.491473i
\(208\) 3.46410i 0.240192i
\(209\) 9.39898 9.98698i 0.650141 0.690814i
\(210\) 1.00000 + 0.460702i 0.0690066 + 0.0317914i
\(211\) −1.34847 + 0.778539i −0.0928325 + 0.0535968i −0.545698 0.837982i \(-0.683735\pi\)
0.452865 + 0.891579i \(0.350402\pi\)
\(212\) −5.44949 9.43879i −0.374272 0.648259i
\(213\) 6.00000 + 8.48528i 0.411113 + 0.581402i
\(214\) −2.44949 4.24264i −0.167444 0.290021i
\(215\) −10.8990 6.29253i −0.743304 0.429147i
\(216\) −5.00000 + 1.41421i −0.340207 + 0.0962250i
\(217\) 1.90702i 0.129457i
\(218\) 0 0
\(219\) −8.79796 12.4422i −0.594511 0.840765i
\(220\) −4.44949 −0.299985
\(221\) 2.20204 0.148125
\(222\) 10.8990 7.70674i 0.731492 0.517243i
\(223\) −15.6742 + 9.04952i −1.04962 + 0.606001i −0.922544 0.385892i \(-0.873894\pi\)
−0.127080 + 0.991892i \(0.540561\pi\)
\(224\) −0.224745 + 0.389270i −0.0150164 + 0.0260092i
\(225\) −3.00000 + 8.48528i −0.200000 + 0.565685i
\(226\) −9.39898 16.2795i −0.625211 1.08290i
\(227\) 0.550510 0.0365386 0.0182693 0.999833i \(-0.494184\pi\)
0.0182693 + 0.999833i \(0.494184\pi\)
\(228\) −7.00000 + 2.82843i −0.463586 + 0.187317i
\(229\) 0.898979 0.0594062 0.0297031 0.999559i \(-0.490544\pi\)
0.0297031 + 0.999559i \(0.490544\pi\)
\(230\) 5.00000 + 8.66025i 0.329690 + 0.571040i
\(231\) 0.224745 + 2.43916i 0.0147871 + 0.160485i
\(232\) −1.22474 + 2.12132i −0.0804084 + 0.139272i
\(233\) −15.3990 + 8.89060i −1.00882 + 0.582443i −0.910846 0.412746i \(-0.864570\pi\)
−0.0979745 + 0.995189i \(0.531236\pi\)
\(234\) −1.89898 10.2173i −0.124140 0.667928i
\(235\) −18.8990 −1.23283
\(236\) −11.4495 −0.745298
\(237\) −12.0000 + 8.48528i −0.779484 + 0.551178i
\(238\) 0.247449 + 0.142865i 0.0160397 + 0.00926054i
\(239\) 21.0703i 1.36293i −0.731852 0.681463i \(-0.761344\pi\)
0.731852 0.681463i \(-0.238656\pi\)
\(240\) 2.22474 + 1.02494i 0.143607 + 0.0661599i
\(241\) −5.84847 3.37662i −0.376733 0.217507i 0.299663 0.954045i \(-0.403126\pi\)
−0.676396 + 0.736538i \(0.736459\pi\)
\(242\) 0.550510 + 0.953512i 0.0353881 + 0.0612941i
\(243\) 13.9722 6.91215i 0.896317 0.443415i
\(244\) 0.775255 + 1.34278i 0.0496306 + 0.0859628i
\(245\) 8.32577 4.80688i 0.531914 0.307100i
\(246\) 2.17423 4.71940i 0.138624 0.300898i
\(247\) −4.34847 14.4600i −0.276686 0.920066i
\(248\) 4.24264i 0.269408i
\(249\) −2.70204 29.3253i −0.171235 1.85841i
\(250\) 9.79796 5.65685i 0.619677 0.357771i
\(251\) −3.27526 1.89097i −0.206732 0.119357i 0.393060 0.919513i \(-0.371417\pi\)
−0.599792 + 0.800156i \(0.704750\pi\)
\(252\) 0.449490 1.27135i 0.0283152 0.0800875i
\(253\) −11.1237 + 19.2669i −0.699343 + 1.21130i
\(254\) 10.3923i 0.652071i
\(255\) 0.651531 1.41421i 0.0408004 0.0885615i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.50000 + 12.9904i −0.467837 + 0.810318i −0.999325 0.0367485i \(-0.988300\pi\)
0.531487 + 0.847066i \(0.321633\pi\)
\(258\) −6.44949 + 13.9993i −0.401528 + 0.871557i
\(259\) 3.46410i 0.215249i
\(260\) −2.44949 + 4.24264i −0.151911 + 0.263117i
\(261\) 2.44949 6.92820i 0.151620 0.428845i
\(262\) 1.92679 + 1.11243i 0.119037 + 0.0687262i
\(263\) 7.77526 4.48905i 0.479443 0.276806i −0.240741 0.970589i \(-0.577391\pi\)
0.720184 + 0.693783i \(0.244057\pi\)
\(264\) 0.500000 + 5.42650i 0.0307729 + 0.333978i
\(265\) 15.4135i 0.946843i
\(266\) 0.449490 1.90702i 0.0275600 0.116927i
\(267\) 5.14643 11.1708i 0.314956 0.683645i
\(268\) −2.17423 + 1.25529i −0.132813 + 0.0766793i
\(269\) 12.2474 + 21.2132i 0.746740 + 1.29339i 0.949377 + 0.314138i \(0.101715\pi\)
−0.202637 + 0.979254i \(0.564951\pi\)
\(270\) −7.12372 1.80348i −0.433536 0.109756i
\(271\) 10.0227 + 17.3598i 0.608836 + 1.05453i 0.991433 + 0.130619i \(0.0416965\pi\)
−0.382597 + 0.923915i \(0.624970\pi\)
\(272\) 0.550510 + 0.317837i 0.0333796 + 0.0192717i
\(273\) 2.44949 + 1.12848i 0.148250 + 0.0682990i
\(274\) 3.92480i 0.237106i
\(275\) 8.17423 + 4.71940i 0.492925 + 0.284590i
\(276\) 10.0000 7.07107i 0.601929 0.425628i
\(277\) 20.2474 1.21655 0.608276 0.793726i \(-0.291862\pi\)
0.608276 + 0.793726i \(0.291862\pi\)
\(278\) 14.3485 0.860564
\(279\) 2.32577 + 12.5136i 0.139240 + 0.749171i
\(280\) −0.550510 + 0.317837i −0.0328993 + 0.0189944i
\(281\) 11.2980 19.5686i 0.673980 1.16737i −0.302786 0.953058i \(-0.597917\pi\)
0.976766 0.214309i \(-0.0687498\pi\)
\(282\) 2.12372 + 23.0488i 0.126466 + 1.37254i
\(283\) 4.72474 + 8.18350i 0.280857 + 0.486458i 0.971596 0.236646i \(-0.0760480\pi\)
−0.690739 + 0.723104i \(0.742715\pi\)
\(284\) −6.00000 −0.356034
\(285\) −10.5732 1.48565i −0.626303 0.0880021i
\(286\) −10.8990 −0.644470
\(287\) 0.674235 + 1.16781i 0.0397988 + 0.0689336i
\(288\) 1.00000 2.82843i 0.0589256 0.166667i
\(289\) −8.29796 + 14.3725i −0.488115 + 0.845440i
\(290\) −3.00000 + 1.73205i −0.176166 + 0.101710i
\(291\) 4.65153 3.28913i 0.272678 0.192812i
\(292\) 8.79796 0.514862
\(293\) −19.3485 −1.13035 −0.565175 0.824971i \(-0.691191\pi\)
−0.565175 + 0.824971i \(0.691191\pi\)
\(294\) −6.79796 9.61377i −0.396465 0.560686i
\(295\) −14.0227 8.09601i −0.816433 0.471368i
\(296\) 7.70674i 0.447945i
\(297\) −4.44949 15.7313i −0.258186 0.912824i
\(298\) 1.77526 + 1.02494i 0.102838 + 0.0593734i
\(299\) 12.2474 + 21.2132i 0.708288 + 1.22679i
\(300\) −3.00000 4.24264i −0.173205 0.244949i
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 8.32577 4.80688i 0.479094 0.276605i
\(303\) 15.5732 + 7.17461i 0.894658 + 0.412170i
\(304\) 1.00000 4.24264i 0.0573539 0.243332i
\(305\) 2.19275i 0.125557i
\(306\) −1.79796 0.635674i −0.102782 0.0363391i
\(307\) 18.5227 10.6941i 1.05715 0.610344i 0.132505 0.991182i \(-0.457698\pi\)
0.924642 + 0.380838i \(0.124365\pi\)
\(308\) −1.22474 0.707107i −0.0697863 0.0402911i
\(309\) −0.797959 8.66025i −0.0453943 0.492665i
\(310\) 3.00000 5.19615i 0.170389 0.295122i
\(311\) 15.5563i 0.882120i 0.897478 + 0.441060i \(0.145397\pi\)
−0.897478 + 0.441060i \(0.854603\pi\)
\(312\) 5.44949 + 2.51059i 0.308517 + 0.142134i
\(313\) 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i \(-0.652902\pi\)
0.999065 0.0432311i \(-0.0137652\pi\)
\(314\) 5.34847 9.26382i 0.301832 0.522788i
\(315\) 1.44949 1.23924i 0.0816695 0.0698233i
\(316\) 8.48528i 0.477334i
\(317\) −3.00000 + 5.19615i −0.168497 + 0.291845i −0.937892 0.346929i \(-0.887225\pi\)
0.769395 + 0.638774i \(0.220558\pi\)
\(318\) −18.7980 + 1.73205i −1.05414 + 0.0971286i
\(319\) −6.67423 3.85337i −0.373685 0.215747i
\(320\) −1.22474 + 0.707107i −0.0684653 + 0.0395285i
\(321\) −8.44949 + 0.778539i −0.471605 + 0.0434538i
\(322\) 3.17837i 0.177124i
\(323\) −2.69694 0.635674i −0.150062 0.0353699i
\(324\) −1.39898 + 8.89060i −0.0777211 + 0.493922i
\(325\) 9.00000 5.19615i 0.499230 0.288231i
\(326\) 9.17423 + 15.8902i 0.508114 + 0.880079i
\(327\) 0 0
\(328\) 1.50000 + 2.59808i 0.0828236 + 0.143455i
\(329\) −5.20204 3.00340i −0.286798 0.165583i
\(330\) −3.22474 + 6.99964i −0.177516 + 0.385317i
\(331\) 23.2952i 1.28042i 0.768200 + 0.640210i \(0.221153\pi\)
−0.768200 + 0.640210i \(0.778847\pi\)
\(332\) 14.7247 + 8.50134i 0.808125 + 0.466571i
\(333\) −4.22474 22.7310i −0.231515 1.24565i
\(334\) −4.89898 −0.268060
\(335\) −3.55051 −0.193985
\(336\) 0.449490 + 0.635674i 0.0245217 + 0.0346789i
\(337\) −17.8485 + 10.3048i −0.972268 + 0.561339i −0.899927 0.436041i \(-0.856380\pi\)
−0.0723411 + 0.997380i \(0.523047\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) −32.4217 + 2.98735i −1.76090 + 0.162250i
\(340\) 0.449490 + 0.778539i 0.0243770 + 0.0422222i
\(341\) 13.3485 0.722860
\(342\) −0.623724 + 13.0618i −0.0337272 + 0.706302i
\(343\) 6.20204 0.334879
\(344\) −4.44949 7.70674i −0.239900 0.415520i
\(345\) 17.2474 1.58919i 0.928571 0.0855589i
\(346\) −0.550510 + 0.953512i −0.0295956 + 0.0512611i
\(347\) 3.27526 1.89097i 0.175825 0.101513i −0.409505 0.912308i \(-0.634298\pi\)
0.585330 + 0.810795i \(0.300965\pi\)
\(348\) 2.44949 + 3.46410i 0.131306 + 0.185695i
\(349\) 32.4949 1.73941 0.869706 0.493570i \(-0.164308\pi\)
0.869706 + 0.493570i \(0.164308\pi\)
\(350\) 1.34847 0.0720787
\(351\) −17.4495 4.41761i −0.931385 0.235795i
\(352\) −2.72474 1.57313i −0.145229 0.0838482i
\(353\) 24.9951i 1.33036i 0.746684 + 0.665179i \(0.231645\pi\)
−0.746684 + 0.665179i \(0.768355\pi\)
\(354\) −8.29796 + 18.0116i −0.441032 + 0.957304i
\(355\) −7.34847 4.24264i −0.390016 0.225176i
\(356\) 3.55051 + 6.14966i 0.188177 + 0.325932i
\(357\) 0.404082 0.285729i 0.0213863 0.0151224i
\(358\) −3.82577 6.62642i −0.202198 0.350217i
\(359\) 20.8207 12.0208i 1.09887 0.634434i 0.162948 0.986635i \(-0.447900\pi\)
0.935925 + 0.352200i \(0.114566\pi\)
\(360\) 3.22474 2.75699i 0.169959 0.145306i
\(361\) 1.15153 + 18.9651i 0.0606069 + 0.998162i
\(362\) 21.5631i 1.13333i
\(363\) 1.89898 0.174973i 0.0996706 0.00918368i
\(364\) −1.34847 + 0.778539i −0.0706790 + 0.0408065i
\(365\) 10.7753 + 6.22110i 0.564003 + 0.325627i
\(366\) 2.67423 0.246405i 0.139784 0.0128798i
\(367\) 4.32577 7.49245i 0.225803 0.391102i −0.730757 0.682638i \(-0.760833\pi\)
0.956560 + 0.291535i \(0.0941661\pi\)
\(368\) 7.07107i 0.368605i
\(369\) −5.84847 6.84072i −0.304459 0.356113i
\(370\) −5.44949 + 9.43879i −0.283305 + 0.490699i
\(371\) 2.44949 4.24264i 0.127171 0.220267i
\(372\) −6.67423 3.07483i −0.346043 0.159423i
\(373\) 25.4558i 1.31805i −0.752119 0.659027i \(-0.770968\pi\)
0.752119 0.659027i \(-0.229032\pi\)
\(374\) −1.00000 + 1.73205i −0.0517088 + 0.0895622i
\(375\) −1.79796 19.5133i −0.0928462 1.00766i
\(376\) −11.5732 6.68180i −0.596843 0.344587i
\(377\) −7.34847 + 4.24264i −0.378465 + 0.218507i
\(378\) −1.67423 1.62851i −0.0861133 0.0837615i
\(379\) 1.55708i 0.0799817i 0.999200 + 0.0399909i \(0.0127329\pi\)
−0.999200 + 0.0399909i \(0.987267\pi\)
\(380\) 4.22474 4.48905i 0.216725 0.230283i
\(381\) −16.3485 7.53177i −0.837557 0.385864i
\(382\) −7.10102 + 4.09978i −0.363320 + 0.209763i
\(383\) 10.2247 + 17.7098i 0.522460 + 0.904927i 0.999659 + 0.0261318i \(0.00831896\pi\)
−0.477198 + 0.878796i \(0.658348\pi\)
\(384\) 1.00000 + 1.41421i 0.0510310 + 0.0721688i
\(385\) −1.00000 1.73205i −0.0509647 0.0882735i
\(386\) −22.3485 12.9029i −1.13751 0.656740i
\(387\) 17.3485 + 20.2918i 0.881872 + 1.03149i
\(388\) 3.28913i 0.166980i
\(389\) −13.1010 7.56388i −0.664248 0.383504i 0.129646 0.991560i \(-0.458616\pi\)
−0.793894 + 0.608057i \(0.791949\pi\)
\(390\) 4.89898 + 6.92820i 0.248069 + 0.350823i
\(391\) 4.49490 0.227317
\(392\) 6.79796 0.343349
\(393\) 3.14643 2.22486i 0.158716 0.112229i
\(394\) 17.5732 10.1459i 0.885326 0.511143i
\(395\) 6.00000 10.3923i 0.301893 0.522894i
\(396\) 8.89898 + 3.14626i 0.447191 + 0.158106i
\(397\) 2.67423 + 4.63191i 0.134216 + 0.232469i 0.925298 0.379242i \(-0.123815\pi\)
−0.791082 + 0.611711i \(0.790482\pi\)
\(398\) 2.89898 0.145313
\(399\) −2.67423 2.08921i −0.133879 0.104591i
\(400\) 3.00000 0.150000
\(401\) −3.39898 5.88721i −0.169737 0.293993i 0.768590 0.639741i \(-0.220958\pi\)
−0.938327 + 0.345748i \(0.887625\pi\)
\(402\) 0.398979 + 4.33013i 0.0198993 + 0.215967i
\(403\) 7.34847 12.7279i 0.366053 0.634023i
\(404\) −8.57321 + 4.94975i −0.426533 + 0.246259i
\(405\) −8.00000 + 9.89949i −0.397523 + 0.491910i
\(406\) −1.10102 −0.0546427
\(407\) −24.2474 −1.20190
\(408\) 0.898979 0.635674i 0.0445061 0.0314706i
\(409\) 3.15153 + 1.81954i 0.155833 + 0.0899703i 0.575889 0.817528i \(-0.304656\pi\)
−0.420056 + 0.907498i \(0.637989\pi\)
\(410\) 4.24264i 0.209529i
\(411\) 6.17423 + 2.84448i 0.304553 + 0.140308i
\(412\) 4.34847 + 2.51059i 0.214234 + 0.123688i
\(413\) −2.57321 4.45694i −0.126620 0.219312i
\(414\) −3.87628 20.8560i −0.190509 1.02502i
\(415\) 12.0227 + 20.8239i 0.590171 + 1.02221i
\(416\) −3.00000 + 1.73205i −0.147087 + 0.0849208i
\(417\) 10.3990 22.5720i 0.509240 1.10536i
\(418\) 13.3485 + 3.14626i 0.652895 + 0.153889i
\(419\) 24.5344i 1.19859i −0.800530 0.599293i \(-0.795448\pi\)
0.800530 0.599293i \(-0.204552\pi\)
\(420\) 0.101021 + 1.09638i 0.00492930 + 0.0534977i
\(421\) −3.97730 + 2.29629i −0.193842 + 0.111914i −0.593780 0.804628i \(-0.702365\pi\)
0.399938 + 0.916542i \(0.369032\pi\)
\(422\) −1.34847 0.778539i −0.0656425 0.0378987i
\(423\) 37.7980 + 13.3636i 1.83780 + 0.649760i
\(424\) 5.44949 9.43879i 0.264651 0.458388i
\(425\) 1.90702i 0.0925042i
\(426\) −4.34847 + 9.43879i −0.210684 + 0.457311i
\(427\) −0.348469 + 0.603566i −0.0168636 + 0.0292086i
\(428\) 2.44949 4.24264i 0.118401 0.205076i
\(429\) −7.89898 + 17.1455i −0.381366 + 0.827794i
\(430\) 12.5851i 0.606905i
\(431\) 1.65153 2.86054i 0.0795514 0.137787i −0.823505 0.567309i \(-0.807985\pi\)
0.903056 + 0.429522i \(0.141318\pi\)
\(432\) −3.72474 3.62302i −0.179207 0.174313i
\(433\) −17.6969 10.2173i −0.850461 0.491014i 0.0103456 0.999946i \(-0.496707\pi\)
−0.860806 + 0.508933i \(0.830040\pi\)
\(434\) 1.65153 0.953512i 0.0792760 0.0457700i
\(435\) 0.550510 + 5.97469i 0.0263949 + 0.286465i
\(436\) 0 0
\(437\) −8.87628 29.5163i −0.424610 1.41196i
\(438\) 6.37628 13.8404i 0.304670 0.661318i
\(439\) −9.67423 + 5.58542i −0.461726 + 0.266578i −0.712770 0.701398i \(-0.752560\pi\)
0.251044 + 0.967976i \(0.419226\pi\)
\(440\) −2.22474 3.85337i −0.106061 0.183702i
\(441\) −20.0505 + 3.72656i −0.954786 + 0.177455i
\(442\) 1.10102 + 1.90702i 0.0523702 + 0.0907079i
\(443\) −16.3207 9.42274i −0.775418 0.447688i 0.0593859 0.998235i \(-0.481086\pi\)
−0.834804 + 0.550547i \(0.814419\pi\)
\(444\) 12.1237 + 5.58542i 0.575366 + 0.265072i
\(445\) 10.0424i 0.476053i
\(446\) −15.6742 9.04952i −0.742197 0.428507i
\(447\) 2.89898 2.04989i 0.137117 0.0969564i
\(448\) −0.449490 −0.0212364
\(449\) 30.7980 1.45345 0.726723 0.686931i \(-0.241042\pi\)
0.726723 + 0.686931i \(0.241042\pi\)
\(450\) −8.84847 + 1.64456i −0.417121 + 0.0775255i
\(451\) −8.17423 + 4.71940i −0.384910 + 0.222228i
\(452\) 9.39898 16.2795i 0.442091 0.765724i
\(453\) −1.52781 16.5813i −0.0717826 0.779057i
\(454\) 0.275255 + 0.476756i 0.0129184 + 0.0223753i
\(455\) −2.20204 −0.103233
\(456\) −5.94949 4.64796i −0.278610 0.217661i
\(457\) −13.0000 −0.608114 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(458\) 0.449490 + 0.778539i 0.0210033 + 0.0363787i
\(459\) −2.30306 + 2.36773i −0.107498 + 0.110516i
\(460\) −5.00000 + 8.66025i −0.233126 + 0.403786i
\(461\) −33.2474 + 19.1954i −1.54849 + 0.894020i −0.550231 + 0.835013i \(0.685460\pi\)
−0.998258 + 0.0590072i \(0.981207\pi\)
\(462\) −2.00000 + 1.41421i −0.0930484 + 0.0657952i
\(463\) −19.7980 −0.920089 −0.460045 0.887896i \(-0.652167\pi\)
−0.460045 + 0.887896i \(0.652167\pi\)
\(464\) −2.44949 −0.113715
\(465\) −6.00000 8.48528i −0.278243 0.393496i
\(466\) −15.3990 8.89060i −0.713344 0.411849i
\(467\) 12.6172i 0.583853i 0.956441 + 0.291926i \(0.0942962\pi\)
−0.956441 + 0.291926i \(0.905704\pi\)
\(468\) 7.89898 6.75323i 0.365130 0.312168i
\(469\) −0.977296 0.564242i −0.0451273 0.0260543i
\(470\) −9.44949 16.3670i −0.435872 0.754953i
\(471\) −10.6969 15.1278i −0.492889 0.697050i
\(472\) −5.72474 9.91555i −0.263503 0.456400i
\(473\) 24.2474 13.9993i 1.11490 0.643687i
\(474\) −13.3485 6.14966i −0.613115 0.282463i
\(475\) −12.5227 + 3.76588i −0.574581 + 0.172791i
\(476\) 0.285729i 0.0130964i
\(477\) −10.8990 + 30.8270i −0.499030 + 1.41147i
\(478\) 18.2474 10.5352i 0.834619 0.481867i
\(479\) 0.853572 + 0.492810i 0.0390007 + 0.0225171i 0.519374 0.854547i \(-0.326165\pi\)
−0.480373 + 0.877064i \(0.659499\pi\)
\(480\) 0.224745 + 2.43916i 0.0102582 + 0.111332i
\(481\) −13.3485 + 23.1202i −0.608638 + 1.05419i
\(482\) 6.75323i 0.307601i
\(483\) 5.00000 + 2.30351i 0.227508 + 0.104813i
\(484\) −0.550510 + 0.953512i −0.0250232 + 0.0433414i
\(485\) −2.32577 + 4.02834i −0.105608 + 0.182918i
\(486\) 12.9722 + 8.64420i 0.588431 + 0.392109i
\(487\) 25.0273i 1.13409i 0.823686 + 0.567046i \(0.191914\pi\)
−0.823686 + 0.567046i \(0.808086\pi\)
\(488\) −0.775255 + 1.34278i −0.0350942 + 0.0607849i
\(489\) 31.6464 2.91591i 1.43110 0.131862i
\(490\) 8.32577 + 4.80688i 0.376120 + 0.217153i
\(491\) −13.8990 + 8.02458i −0.627252 + 0.362144i −0.779687 0.626169i \(-0.784622\pi\)
0.152435 + 0.988314i \(0.451289\pi\)
\(492\) 5.17423 0.476756i 0.233273 0.0214938i
\(493\) 1.55708i 0.0701273i
\(494\) 10.3485 10.9959i 0.465600 0.494728i
\(495\) 8.67423 + 10.1459i 0.389878 + 0.456024i
\(496\) 3.67423 2.12132i 0.164978 0.0952501i
\(497\) −1.34847 2.33562i −0.0604871 0.104767i
\(498\) 24.0454 17.0027i 1.07750 0.761908i
\(499\) −3.72474 6.45145i −0.166742 0.288806i 0.770530 0.637403i \(-0.219992\pi\)
−0.937273 + 0.348597i \(0.886658\pi\)
\(500\) 9.79796 + 5.65685i 0.438178 + 0.252982i
\(501\) −3.55051 + 7.70674i −0.158625 + 0.344312i
\(502\) 3.78194i 0.168796i
\(503\) −13.4722 7.77817i −0.600695 0.346812i 0.168620 0.985681i \(-0.446069\pi\)
−0.769315 + 0.638870i \(0.779402\pi\)
\(504\) 1.32577 0.246405i 0.0590543 0.0109757i
\(505\) −14.0000 −0.622992
\(506\) −22.2474 −0.989020
\(507\) −1.00000 1.41421i −0.0444116 0.0628074i
\(508\) 9.00000 5.19615i 0.399310 0.230542i
\(509\) 8.69694 15.0635i 0.385485 0.667680i −0.606351 0.795197i \(-0.707367\pi\)
0.991836 + 0.127517i \(0.0407008\pi\)
\(510\) 1.55051 0.142865i 0.0686577 0.00632615i
\(511\) 1.97730 + 3.42478i 0.0874704 + 0.151503i
\(512\) −1.00000 −0.0441942
\(513\) 20.0959 + 10.4477i 0.887256 + 0.461276i
\(514\) −15.0000 −0.661622
\(515\) 3.55051 + 6.14966i 0.156454 + 0.270987i
\(516\) −15.3485 + 1.41421i −0.675679 + 0.0622573i
\(517\) 21.0227 36.4124i 0.924577 1.60142i
\(518\) −3.00000 + 1.73205i −0.131812 + 0.0761019i
\(519\) 1.10102 + 1.55708i 0.0483294 + 0.0683481i
\(520\) −4.89898 −0.214834
\(521\) −25.8990 −1.13465 −0.567327 0.823492i \(-0.692023\pi\)
−0.567327 + 0.823492i \(0.692023\pi\)
\(522\) 7.22474 1.34278i 0.316218 0.0587719i
\(523\) −5.69694 3.28913i −0.249110 0.143824i 0.370247 0.928933i \(-0.379273\pi\)
−0.619357 + 0.785110i \(0.712606\pi\)
\(524\) 2.22486i 0.0971935i
\(525\) 0.977296 2.12132i 0.0426527 0.0925820i
\(526\) 7.77526 + 4.48905i 0.339017 + 0.195732i
\(527\) −1.34847 2.33562i −0.0587402 0.101741i
\(528\) −4.44949 + 3.14626i −0.193639 + 0.136924i
\(529\) 13.5000 + 23.3827i 0.586957 + 1.01664i
\(530\) 13.3485 7.70674i 0.579820 0.334759i
\(531\) 22.3207 + 26.1076i 0.968634 + 1.13297i
\(532\) 1.87628 0.564242i 0.0813469 0.0244630i
\(533\) 10.3923i 0.450141i
\(534\) 12.2474 1.12848i 0.529999 0.0488343i
\(535\) 6.00000 3.46410i 0.259403 0.149766i
\(536\) −2.17423 1.25529i −0.0939126 0.0542205i
\(537\) −13.1969 + 1.21597i −0.569490 + 0.0524730i
\(538\) −12.2474 + 21.2132i −0.528025 + 0.914566i
\(539\) 21.3882i 0.921254i
\(540\) −2.00000 7.07107i −0.0860663 0.304290i
\(541\) −5.34847 + 9.26382i −0.229949 + 0.398283i −0.957793 0.287460i \(-0.907189\pi\)
0.727844 + 0.685743i \(0.240522\pi\)
\(542\) −10.0227 + 17.3598i −0.430512 + 0.745669i
\(543\) 33.9217 + 15.6278i 1.45572 + 0.670652i
\(544\) 0.635674i 0.0272543i
\(545\) 0 0
\(546\) 0.247449 + 2.68556i 0.0105898 + 0.114931i
\(547\) −32.3939 18.7026i −1.38506 0.799666i −0.392309 0.919834i \(-0.628323\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(548\) −3.39898 + 1.96240i −0.145197 + 0.0838296i
\(549\) 1.55051 4.38551i 0.0661742 0.187169i
\(550\) 9.43879i 0.402471i
\(551\) 10.2247 3.07483i 0.435589 0.130992i
\(552\) 11.1237 + 5.12472i 0.473457 + 0.218123i
\(553\) 3.30306 1.90702i 0.140460 0.0810949i
\(554\) 10.1237 + 17.5348i 0.430116 + 0.744982i
\(555\) 10.8990 + 15.4135i 0.462636 + 0.654266i
\(556\) 7.17423 + 12.4261i 0.304255 + 0.526986i
\(557\) 0.247449 + 0.142865i 0.0104847 + 0.00605337i 0.505233 0.862983i \(-0.331406\pi\)
−0.494748 + 0.869036i \(0.664740\pi\)
\(558\) −9.67423 + 8.27098i −0.409543 + 0.350139i
\(559\) 30.8270i 1.30384i
\(560\) −0.550510 0.317837i −0.0232633 0.0134311i
\(561\) 2.00000 + 2.82843i 0.0844401 + 0.119416i
\(562\) 22.5959 0.953151
\(563\) 40.8434 1.72134 0.860671 0.509161i \(-0.170044\pi\)
0.860671 + 0.509161i \(0.170044\pi\)
\(564\) −18.8990 + 13.3636i −0.795791 + 0.562709i
\(565\) 23.0227 13.2922i 0.968572 0.559206i
\(566\) −4.72474 + 8.18350i −0.198596 + 0.343978i
\(567\) −3.77526 + 1.45354i −0.158546 + 0.0610428i
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) −34.2929 −1.43763 −0.718816 0.695201i \(-0.755315\pi\)
−0.718816 + 0.695201i \(0.755315\pi\)
\(570\) −4.00000 9.89949i −0.167542 0.414644i
\(571\) 33.0454 1.38291 0.691454 0.722421i \(-0.256971\pi\)
0.691454 + 0.722421i \(0.256971\pi\)
\(572\) −5.44949 9.43879i −0.227855 0.394656i
\(573\) 1.30306 + 14.1421i 0.0544362 + 0.590796i
\(574\) −0.674235 + 1.16781i −0.0281420 + 0.0487434i
\(575\) 18.3712 10.6066i 0.766131 0.442326i
\(576\) 2.94949 0.548188i 0.122895 0.0228412i
\(577\) 18.5959 0.774158 0.387079 0.922047i \(-0.373484\pi\)
0.387079 + 0.922047i \(0.373484\pi\)
\(578\) −16.5959 −0.690299
\(579\) −36.4949 + 25.8058i −1.51668 + 1.07245i
\(580\) −3.00000 1.73205i −0.124568 0.0719195i
\(581\) 7.64253i 0.317065i
\(582\) 5.17423 + 2.38378i 0.214479 + 0.0988108i
\(583\) 29.6969 + 17.1455i 1.22992 + 0.710096i
\(584\) 4.39898 + 7.61926i 0.182031 + 0.315287i
\(585\) 14.4495 2.68556i 0.597413 0.111034i
\(586\) −9.67423 16.7563i −0.399639 0.692195i
\(587\) −13.8990 + 8.02458i −0.573672 + 0.331210i −0.758615 0.651540i \(-0.774123\pi\)
0.184942 + 0.982749i \(0.440790\pi\)
\(588\) 4.92679 10.6941i 0.203177 0.441017i
\(589\) −12.6742 + 13.4671i −0.522233 + 0.554904i
\(590\) 16.1920i 0.666615i
\(591\) −3.22474 34.9982i −0.132648 1.43963i
\(592\) −6.67423 + 3.85337i −0.274309 + 0.158373i
\(593\) 15.0959 + 8.71563i 0.619915 + 0.357908i 0.776836 0.629703i \(-0.216823\pi\)
−0.156921 + 0.987611i \(0.550157\pi\)
\(594\) 11.3990 11.7190i 0.467706 0.480838i
\(595\) −0.202041 + 0.349945i −0.00828287 + 0.0143464i
\(596\) 2.04989i 0.0839667i
\(597\) 2.10102 4.56048i 0.0859890 0.186648i
\(598\) −12.2474 + 21.2132i −0.500835 + 0.867472i
\(599\) −2.57321 + 4.45694i −0.105139 + 0.182106i −0.913795 0.406176i \(-0.866862\pi\)
0.808656 + 0.588282i \(0.200195\pi\)
\(600\) 2.17423 4.71940i 0.0887628 0.192669i
\(601\) 14.0314i 0.572352i −0.958177 0.286176i \(-0.907616\pi\)
0.958177 0.286176i \(-0.0923842\pi\)
\(602\) 2.00000 3.46410i 0.0815139 0.141186i
\(603\) 7.10102 + 2.51059i 0.289176 + 0.102239i
\(604\) 8.32577 + 4.80688i 0.338771 + 0.195589i
\(605\) −1.34847 + 0.778539i −0.0548231 + 0.0316521i
\(606\) 1.57321 + 17.0741i 0.0639075 + 0.693588i
\(607\) 11.5208i 0.467614i 0.972283 + 0.233807i \(0.0751185\pi\)
−0.972283 + 0.233807i \(0.924882\pi\)
\(608\) 4.17423 1.25529i 0.169288 0.0509089i
\(609\) −0.797959 + 1.73205i −0.0323349 + 0.0701862i
\(610\) −1.89898 + 1.09638i −0.0768874 + 0.0443910i
\(611\) −23.1464 40.0908i −0.936404 1.62190i
\(612\) −0.348469 1.87492i −0.0140860 0.0757890i
\(613\) −23.8990 41.3942i −0.965271 1.67190i −0.708886 0.705323i \(-0.750802\pi\)
−0.256385 0.966575i \(-0.582531\pi\)
\(614\) 18.5227 + 10.6941i 0.747515 + 0.431578i
\(615\) 6.67423 + 3.07483i 0.269131 + 0.123989i
\(616\) 1.41421i 0.0569803i
\(617\) 8.05051 + 4.64796i 0.324101 + 0.187120i 0.653219 0.757169i \(-0.273418\pi\)
−0.329118 + 0.944289i \(0.606751\pi\)
\(618\) 7.10102 5.02118i 0.285645 0.201981i
\(619\) −30.6969 −1.23381 −0.616907 0.787036i \(-0.711615\pi\)
−0.616907 + 0.787036i \(0.711615\pi\)
\(620\) 6.00000 0.240966
\(621\) −35.6186 9.01742i −1.42933 0.361856i
\(622\) −13.4722 + 7.77817i −0.540186 + 0.311876i
\(623\) −1.59592 + 2.76421i −0.0639391 + 0.110746i
\(624\) 0.550510 + 5.97469i 0.0220380 + 0.239179i
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) 19.0000 0.759393
\(627\) 14.6237 18.7187i 0.584015 0.747552i
\(628\) 10.6969 0.426854
\(629\) 2.44949 + 4.24264i 0.0976676 + 0.169165i
\(630\) 1.79796 + 0.635674i 0.0716324 + 0.0253259i
\(631\) 17.1237 29.6592i 0.681685 1.18071i −0.292782 0.956179i \(-0.594581\pi\)
0.974466 0.224533i \(-0.0720857\pi\)
\(632\) 7.34847 4.24264i 0.292306 0.168763i
\(633\) −2.20204 + 1.55708i −0.0875233 + 0.0618883i
\(634\) −6.00000 −0.238290
\(635\) 14.6969 0.583230
\(636\) −10.8990 15.4135i −0.432173 0.611184i
\(637\) 20.3939 + 11.7744i 0.808035 + 0.466519i
\(638\) 7.70674i 0.305113i
\(639\) 11.6969 + 13.6814i 0.462724 + 0.541229i
\(640\) −1.22474 0.707107i −0.0484123 0.0279508i
\(641\) −13.1969 22.8578i −0.521248 0.902828i −0.999695 0.0247111i \(-0.992133\pi\)
0.478447 0.878116i \(-0.341200\pi\)
\(642\) −4.89898 6.92820i −0.193347 0.273434i
\(643\) −5.07321 8.78706i −0.200068 0.346528i 0.748482 0.663155i \(-0.230783\pi\)
−0.948550 + 0.316627i \(0.897450\pi\)
\(644\) −2.75255 + 1.58919i −0.108466 + 0.0626227i
\(645\) −19.7980 9.12096i −0.779544 0.359137i
\(646\) −0.797959 2.65345i −0.0313953 0.104399i
\(647\) 14.7778i 0.580976i 0.956879 + 0.290488i \(0.0938176\pi\)
−0.956879 + 0.290488i \(0.906182\pi\)
\(648\) −8.39898 + 3.23375i −0.329943 + 0.127034i
\(649\) 31.1969 18.0116i 1.22459 0.707016i
\(650\) 9.00000 + 5.19615i 0.353009 + 0.203810i
\(651\) −0.303062 3.28913i −0.0118779 0.128911i
\(652\) −9.17423 + 15.8902i −0.359291 + 0.622310i
\(653\) 8.19955i 0.320873i 0.987046 + 0.160437i \(0.0512902\pi\)
−0.987046 + 0.160437i \(0.948710\pi\)
\(654\) 0 0
\(655\) −1.57321 + 2.72489i −0.0614706 + 0.106470i
\(656\) −1.50000 + 2.59808i −0.0585652 + 0.101438i
\(657\) −17.1515 20.0614i −0.669145 0.782672i
\(658\) 6.00680i 0.234169i
\(659\) −12.0000 + 20.7846i −0.467454 + 0.809653i −0.999309 0.0371821i \(-0.988162\pi\)
0.531855 + 0.846836i \(0.321495\pi\)
\(660\) −7.67423 + 0.707107i −0.298719 + 0.0275241i
\(661\) 25.7196 + 14.8492i 1.00038 + 0.577569i 0.908360 0.418189i \(-0.137335\pi\)
0.0920180 + 0.995757i \(0.470668\pi\)
\(662\) −20.1742 + 11.6476i −0.784094 + 0.452697i
\(663\) 3.79796 0.349945i 0.147501 0.0135908i
\(664\) 17.0027i 0.659832i
\(665\) 2.69694 + 0.635674i 0.104583 + 0.0246504i
\(666\) 17.5732 15.0242i 0.680948 0.582177i
\(667\) −15.0000 + 8.66025i −0.580802 + 0.335326i
\(668\) −2.44949 4.24264i −0.0947736 0.164153i
\(669\) −25.5959 + 18.0990i −0.989595 + 0.699750i
\(670\) −1.77526 3.07483i −0.0685841 0.118791i
\(671\) −4.22474 2.43916i −0.163094 0.0941626i
\(672\) −0.325765 + 0.707107i −0.0125667 + 0.0272772i
\(673\) 3.46410i 0.133531i 0.997769 + 0.0667657i \(0.0212680\pi\)
−0.997769 + 0.0667657i \(0.978732\pi\)
\(674\) −17.8485 10.3048i −0.687497 0.396927i
\(675\) −3.82577 + 15.1117i −0.147254 + 0.581650i
\(676\) 1.00000 0.0384615
\(677\) −32.6969 −1.25665 −0.628323 0.777953i \(-0.716258\pi\)
−0.628323 + 0.777953i \(0.716258\pi\)
\(678\) −18.7980 26.5843i −0.721931 1.02096i
\(679\) −1.28036 + 0.739215i −0.0491356 + 0.0283685i
\(680\) −0.449490 + 0.778539i −0.0172371 + 0.0298556i
\(681\) 0.949490 0.0874863i 0.0363845 0.00335248i
\(682\) 6.67423 + 11.5601i 0.255570 + 0.442660i
\(683\) 17.3939 0.665558 0.332779 0.943005i \(-0.392014\pi\)
0.332779 + 0.943005i \(0.392014\pi\)
\(684\) −11.6237 + 5.99075i −0.444444 + 0.229062i
\(685\) −5.55051 −0.212074
\(686\) 3.10102 + 5.37113i 0.118398 + 0.205071i
\(687\) 1.55051 0.142865i 0.0591557 0.00545062i
\(688\) 4.44949 7.70674i 0.169635 0.293817i
\(689\) 32.6969 18.8776i 1.24565 0.719179i
\(690\) 10.0000 + 14.1421i 0.380693 + 0.538382i
\(691\) −40.0000 −1.52167 −0.760836 0.648944i \(-0.775211\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(692\) −1.10102 −0.0418545
\(693\) 0.775255 + 4.17121i 0.0294495 + 0.158451i
\(694\) 3.27526 + 1.89097i 0.124327 + 0.0717802i
\(695\) 20.2918i 0.769712i
\(696\) −1.77526 + 3.85337i −0.0672909 + 0.146062i
\(697\) 1.65153 + 0.953512i 0.0625562 + 0.0361168i
\(698\) 16.2474 + 28.1414i 0.614975 + 1.06517i
\(699\) −25.1464 + 17.7812i −0.951125 + 0.672547i
\(700\) 0.674235 + 1.16781i 0.0254837 + 0.0441390i
\(701\) −8.57321 + 4.94975i −0.323806 + 0.186949i −0.653088 0.757282i \(-0.726527\pi\)
0.329282 + 0.944232i \(0.393193\pi\)
\(702\) −4.89898 17.3205i −0.184900 0.653720i
\(703\) 23.0227 24.4630i 0.868318 0.922640i
\(704\) 3.14626i 0.118579i
\(705\) −32.5959 + 3.00340i −1.22763 + 0.113115i
\(706\) −21.6464 + 12.4976i −0.814674 + 0.470352i
\(707\) −3.85357 2.22486i −0.144928 0.0836745i
\(708\) −19.7474 + 1.81954i −0.742155 + 0.0683824i
\(709\) 8.67423 15.0242i 0.325768 0.564246i −0.655900 0.754848i \(-0.727711\pi\)
0.981667 + 0.190602i \(0.0610439\pi\)
\(710\) 8.48528i 0.318447i
\(711\) −19.3485 + 16.5420i −0.725624 + 0.620372i
\(712\) −3.55051 + 6.14966i −0.133061 + 0.230468i
\(713\) 15.0000 25.9808i 0.561754 0.972987i
\(714\) 0.449490 + 0.207081i 0.0168217 + 0.00774980i
\(715\) 15.4135i 0.576432i
\(716\) 3.82577 6.62642i 0.142976 0.247641i
\(717\) −3.34847 36.3410i −0.125051 1.35718i
\(718\) 20.8207 + 12.0208i 0.777020 + 0.448613i
\(719\) 26.1464 15.0956i 0.975097 0.562973i 0.0743109 0.997235i \(-0.476324\pi\)
0.900786 + 0.434262i \(0.142991\pi\)
\(720\) 4.00000 + 1.41421i 0.149071 + 0.0527046i
\(721\) 2.25697i 0.0840539i
\(722\) −15.8485 + 10.4798i −0.589819 + 0.390017i
\(723\) −10.6237 4.89437i −0.395101 0.182024i
\(724\) −18.6742 + 10.7816i −0.694022 + 0.400694i
\(725\) 3.67423 + 6.36396i 0.136458 + 0.236352i
\(726\) 1.10102 + 1.55708i 0.0408627 + 0.0577886i
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) −1.34847 0.778539i −0.0499776 0.0288546i
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 12.4422i 0.460506i
\(731\) −4.89898 2.82843i −0.181195 0.104613i
\(732\) 1.55051 + 2.19275i 0.0573085 + 0.0810465i
\(733\) −20.0454 −0.740394 −0.370197 0.928953i \(-0.620710\pi\)
−0.370197 + 0.928953i \(0.620710\pi\)
\(734\) 8.65153 0.319334
\(735\) 13.5959 9.61377i 0.501493 0.354609i
\(736\) −6.12372 + 3.53553i −0.225723 + 0.130322i
\(737\) 3.94949 6.84072i 0.145481 0.251981i
\(738\) 3.00000 8.48528i 0.110432 0.312348i
\(739\) −12.1742 21.0864i −0.447836 0.775676i 0.550408 0.834895i \(-0.314472\pi\)
−0.998245 + 0.0592200i \(0.981139\pi\)
\(740\) −10.8990 −0.400654
\(741\) −9.79796 24.2487i −0.359937 0.890799i
\(742\) 4.89898 0.179847
\(743\) −2.32577 4.02834i −0.0853241 0.147786i 0.820205 0.572069i \(-0.193859\pi\)
−0.905529 + 0.424284i \(0.860526\pi\)
\(744\) −0.674235 7.31747i −0.0247186 0.268272i
\(745\) −1.44949 + 2.51059i −0.0531052 + 0.0919809i
\(746\) 22.0454 12.7279i 0.807140 0.466002i
\(747\) −9.32066 50.1492i −0.341025 1.83486i
\(748\) −2.00000 −0.0731272
\(749\) 2.20204 0.0804608
\(750\) 16.0000 11.3137i 0.584237 0.413118i
\(751\) 17.6969 + 10.2173i 0.645770 + 0.372836i 0.786834 0.617165i \(-0.211719\pi\)
−0.141063 + 0.990001i \(0.545052\pi\)
\(752\) 13.3636i 0.487320i
\(753\) −5.94949 2.74094i −0.216811 0.0998854i
\(754\) −7.34847 4.24264i −0.267615 0.154508i
\(755\) 6.79796 + 11.7744i 0.247403 + 0.428515i
\(756\) 0.573214 2.26418i 0.0208476 0.0823476i
\(757\) 19.6969 + 34.1161i 0.715897 + 1.23997i 0.962612 + 0.270883i \(0.0873155\pi\)
−0.246715 + 0.969088i \(0.579351\pi\)
\(758\) −1.34847 + 0.778539i −0.0489786 + 0.0282778i
\(759\) −16.1237 + 34.9982i −0.585254 + 1.27035i
\(760\) 6.00000 + 1.41421i 0.217643 + 0.0512989i
\(761\) 31.5734i 1.14453i 0.820067 + 0.572267i \(0.193936\pi\)
−0.820067 + 0.572267i \(0.806064\pi\)
\(762\) −1.65153 17.9241i −0.0598286 0.649321i
\(763\) 0 0
\(764\) −7.10102 4.09978i −0.256906 0.148325i
\(765\) 0.898979 2.54270i 0.0325027 0.0919314i
\(766\) −10.2247 + 17.7098i −0.369435 + 0.639880i
\(767\) 39.6622i 1.43212i
\(768\) −0.724745 + 1.57313i −0.0261520 + 0.0567655i
\(769\) −1.79796 + 3.11416i −0.0648361 + 0.112299i −0.896621 0.442798i \(-0.853986\pi\)
0.831785 + 0.555098i \(0.187319\pi\)
\(770\) 1.00000 1.73205i 0.0360375 0.0624188i
\(771\) −10.8712 + 23.5970i −0.391516 + 0.849825i
\(772\) 25.8058i 0.928771i
\(773\) −1.22474 + 2.12132i −0.0440510 + 0.0762986i −0.887210 0.461365i \(-0.847360\pi\)
0.843159 +