# Properties

 Label 114.2.h.f.107.2 Level $114$ Weight $2$ Character 114.107 Analytic conductor $0.910$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$114 = 2 \cdot 3 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 114.h (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.910294583043$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} - 2 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 107.2 Root $$-1.22474 + 0.707107i$$ of defining polynomial Character $$\chi$$ $$=$$ 114.107 Dual form 114.2.h.f.65.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.72474 - 0.158919i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.22474 + 0.707107i) q^{5} +(1.00000 + 1.41421i) q^{6} -0.449490 q^{7} -1.00000 q^{8} +(2.94949 - 0.548188i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.72474 - 0.158919i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.22474 + 0.707107i) q^{5} +(1.00000 + 1.41421i) q^{6} -0.449490 q^{7} -1.00000 q^{8} +(2.94949 - 0.548188i) q^{9} +(-1.22474 - 0.707107i) q^{10} -3.14626i q^{11} +(-0.724745 + 1.57313i) q^{12} +(-3.00000 - 1.73205i) q^{13} +(-0.224745 - 0.389270i) q^{14} +(-2.00000 + 1.41421i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.550510 + 0.317837i) q^{17} +(1.94949 + 2.28024i) q^{18} +(3.17423 + 2.98735i) q^{19} -1.41421i q^{20} +(-0.775255 + 0.0714323i) q^{21} +(2.72474 - 1.57313i) q^{22} +(-6.12372 - 3.53553i) q^{23} +(-1.72474 + 0.158919i) q^{24} +(-1.50000 + 2.59808i) q^{25} -3.46410i q^{26} +(5.00000 - 1.41421i) q^{27} +(0.224745 - 0.389270i) q^{28} +(1.22474 - 2.12132i) q^{29} +(-2.22474 - 1.02494i) q^{30} +4.24264i q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.500000 - 5.42650i) q^{33} +(-0.550510 - 0.317837i) q^{34} +(0.550510 - 0.317837i) q^{35} +(-1.00000 + 2.82843i) q^{36} -7.70674i q^{37} +(-1.00000 + 4.24264i) q^{38} +(-5.44949 - 2.51059i) q^{39} +(1.22474 - 0.707107i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(-0.449490 - 0.635674i) q^{42} +(4.44949 + 7.70674i) q^{43} +(2.72474 + 1.57313i) q^{44} +(-3.22474 + 2.75699i) q^{45} -7.07107i q^{46} +(11.5732 + 6.68180i) q^{47} +(-1.00000 - 1.41421i) q^{48} -6.79796 q^{49} -3.00000 q^{50} +(-0.898979 + 0.635674i) q^{51} +(3.00000 - 1.73205i) q^{52} +(-5.44949 + 9.43879i) q^{53} +(3.72474 + 3.62302i) q^{54} +(2.22474 + 3.85337i) q^{55} +0.449490 q^{56} +(5.94949 + 4.64796i) q^{57} +2.44949 q^{58} +(5.72474 + 9.91555i) q^{59} +(-0.224745 - 2.43916i) q^{60} +(0.775255 - 1.34278i) q^{61} +(-3.67423 + 2.12132i) q^{62} +(-1.32577 + 0.246405i) q^{63} +1.00000 q^{64} +4.89898 q^{65} +(4.44949 - 3.14626i) q^{66} +(2.17423 + 1.25529i) q^{67} -0.635674i q^{68} +(-11.1237 - 5.12472i) q^{69} +(0.550510 + 0.317837i) q^{70} +(3.00000 + 5.19615i) q^{71} +(-2.94949 + 0.548188i) q^{72} +(-4.39898 - 7.61926i) q^{73} +(6.67423 - 3.85337i) q^{74} +(-2.17423 + 4.71940i) q^{75} +(-4.17423 + 1.25529i) q^{76} +1.41421i q^{77} +(-0.550510 - 5.97469i) q^{78} +(-7.34847 + 4.24264i) q^{79} +(1.22474 + 0.707107i) q^{80} +(8.39898 - 3.23375i) q^{81} +(1.50000 - 2.59808i) q^{82} -17.0027i q^{83} +(0.325765 - 0.707107i) q^{84} +(0.449490 - 0.778539i) q^{85} +(-4.44949 + 7.70674i) q^{86} +(1.77526 - 3.85337i) q^{87} +3.14626i q^{88} +(3.55051 - 6.14966i) q^{89} +(-4.00000 - 1.41421i) q^{90} +(1.34847 + 0.778539i) q^{91} +(6.12372 - 3.53553i) q^{92} +(0.674235 + 7.31747i) q^{93} +13.3636i q^{94} +(-6.00000 - 1.41421i) q^{95} +(0.724745 - 1.57313i) q^{96} +(2.84847 - 1.64456i) q^{97} +(-3.39898 - 5.88721i) q^{98} +(-1.72474 - 9.27987i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + O(q^{10})$$ $$4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + 2q^{12} - 12q^{13} + 4q^{14} - 8q^{15} - 2q^{16} - 12q^{17} - 2q^{18} - 2q^{19} - 8q^{21} + 6q^{22} - 2q^{24} - 6q^{25} + 20q^{27} - 4q^{28} - 4q^{30} + 2q^{32} - 2q^{33} - 12q^{34} + 12q^{35} - 4q^{36} - 4q^{38} - 12q^{39} - 6q^{41} + 8q^{42} + 8q^{43} + 6q^{44} - 8q^{45} + 12q^{47} - 4q^{48} + 12q^{49} - 12q^{50} + 16q^{51} + 12q^{52} - 12q^{53} + 10q^{54} + 4q^{55} - 8q^{56} + 14q^{57} + 18q^{59} + 4q^{60} + 8q^{61} - 20q^{63} + 4q^{64} + 8q^{66} - 6q^{67} - 20q^{69} + 12q^{70} + 12q^{71} - 2q^{72} + 2q^{73} + 12q^{74} + 6q^{75} - 2q^{76} - 12q^{78} + 14q^{81} + 6q^{82} + 16q^{84} - 8q^{85} - 8q^{86} + 12q^{87} + 24q^{89} - 16q^{90} - 24q^{91} - 12q^{93} - 24q^{95} - 2q^{96} - 18q^{97} + 6q^{98} - 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/114\mathbb{Z}\right)^\times$$.

 $$n$$ $$77$$ $$97$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ 1.72474 0.158919i 0.995782 0.0917517i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −1.22474 + 0.707107i −0.547723 + 0.316228i −0.748203 0.663470i $$-0.769083\pi$$
0.200480 + 0.979698i $$0.435750\pi$$
$$6$$ 1.00000 + 1.41421i 0.408248 + 0.577350i
$$7$$ −0.449490 −0.169891 −0.0849456 0.996386i $$-0.527072\pi$$
−0.0849456 + 0.996386i $$0.527072\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ 2.94949 0.548188i 0.983163 0.182729i
$$10$$ −1.22474 0.707107i −0.387298 0.223607i
$$11$$ 3.14626i 0.948634i −0.880354 0.474317i $$-0.842695\pi$$
0.880354 0.474317i $$-0.157305\pi$$
$$12$$ −0.724745 + 1.57313i −0.209216 + 0.454124i
$$13$$ −3.00000 1.73205i −0.832050 0.480384i 0.0225039 0.999747i $$-0.492836\pi$$
−0.854554 + 0.519362i $$0.826170\pi$$
$$14$$ −0.224745 0.389270i −0.0600656 0.104037i
$$15$$ −2.00000 + 1.41421i −0.516398 + 0.365148i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −0.550510 + 0.317837i −0.133518 + 0.0770869i −0.565271 0.824905i $$-0.691229\pi$$
0.431753 + 0.901992i $$0.357895\pi$$
$$18$$ 1.94949 + 2.28024i 0.459499 + 0.537457i
$$19$$ 3.17423 + 2.98735i 0.728219 + 0.685344i
$$20$$ 1.41421i 0.316228i
$$21$$ −0.775255 + 0.0714323i −0.169175 + 0.0155878i
$$22$$ 2.72474 1.57313i 0.580918 0.335393i
$$23$$ −6.12372 3.53553i −1.27688 0.737210i −0.300610 0.953747i $$-0.597190\pi$$
−0.976274 + 0.216537i $$0.930524\pi$$
$$24$$ −1.72474 + 0.158919i −0.352062 + 0.0324391i
$$25$$ −1.50000 + 2.59808i −0.300000 + 0.519615i
$$26$$ 3.46410i 0.679366i
$$27$$ 5.00000 1.41421i 0.962250 0.272166i
$$28$$ 0.224745 0.389270i 0.0424728 0.0735650i
$$29$$ 1.22474 2.12132i 0.227429 0.393919i −0.729616 0.683857i $$-0.760301\pi$$
0.957046 + 0.289938i $$0.0936346\pi$$
$$30$$ −2.22474 1.02494i −0.406181 0.187128i
$$31$$ 4.24264i 0.762001i 0.924575 + 0.381000i $$0.124420\pi$$
−0.924575 + 0.381000i $$0.875580\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ −0.500000 5.42650i −0.0870388 0.944633i
$$34$$ −0.550510 0.317837i −0.0944117 0.0545086i
$$35$$ 0.550510 0.317837i 0.0930532 0.0537243i
$$36$$ −1.00000 + 2.82843i −0.166667 + 0.471405i
$$37$$ 7.70674i 1.26698i −0.773751 0.633490i $$-0.781622\pi$$
0.773751 0.633490i $$-0.218378\pi$$
$$38$$ −1.00000 + 4.24264i −0.162221 + 0.688247i
$$39$$ −5.44949 2.51059i −0.872617 0.402016i
$$40$$ 1.22474 0.707107i 0.193649 0.111803i
$$41$$ −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i $$-0.241934\pi$$
−0.959058 + 0.283211i $$0.908600\pi$$
$$42$$ −0.449490 0.635674i −0.0693578 0.0980867i
$$43$$ 4.44949 + 7.70674i 0.678541 + 1.17527i 0.975420 + 0.220352i $$0.0707207\pi$$
−0.296880 + 0.954915i $$0.595946\pi$$
$$44$$ 2.72474 + 1.57313i 0.410771 + 0.237159i
$$45$$ −3.22474 + 2.75699i −0.480717 + 0.410989i
$$46$$ 7.07107i 1.04257i
$$47$$ 11.5732 + 6.68180i 1.68813 + 0.974640i 0.955952 + 0.293524i $$0.0948280\pi$$
0.732175 + 0.681117i $$0.238505\pi$$
$$48$$ −1.00000 1.41421i −0.144338 0.204124i
$$49$$ −6.79796 −0.971137
$$50$$ −3.00000 −0.424264
$$51$$ −0.898979 + 0.635674i −0.125882 + 0.0890122i
$$52$$ 3.00000 1.73205i 0.416025 0.240192i
$$53$$ −5.44949 + 9.43879i −0.748545 + 1.29652i 0.199975 + 0.979801i $$0.435914\pi$$
−0.948520 + 0.316717i $$0.897419\pi$$
$$54$$ 3.72474 + 3.62302i 0.506874 + 0.493031i
$$55$$ 2.22474 + 3.85337i 0.299985 + 0.519588i
$$56$$ 0.449490 0.0600656
$$57$$ 5.94949 + 4.64796i 0.788029 + 0.615638i
$$58$$ 2.44949 0.321634
$$59$$ 5.72474 + 9.91555i 0.745298 + 1.29089i 0.950055 + 0.312082i $$0.101026\pi$$
−0.204757 + 0.978813i $$0.565640\pi$$
$$60$$ −0.224745 2.43916i −0.0290144 0.314894i
$$61$$ 0.775255 1.34278i 0.0992612 0.171926i −0.812118 0.583493i $$-0.801685\pi$$
0.911379 + 0.411568i $$0.135019\pi$$
$$62$$ −3.67423 + 2.12132i −0.466628 + 0.269408i
$$63$$ −1.32577 + 0.246405i −0.167031 + 0.0310441i
$$64$$ 1.00000 0.125000
$$65$$ 4.89898 0.607644
$$66$$ 4.44949 3.14626i 0.547694 0.387278i
$$67$$ 2.17423 + 1.25529i 0.265625 + 0.153359i 0.626898 0.779101i $$-0.284324\pi$$
−0.361273 + 0.932460i $$0.617658\pi$$
$$68$$ 0.635674i 0.0770869i
$$69$$ −11.1237 5.12472i −1.33914 0.616944i
$$70$$ 0.550510 + 0.317837i 0.0657986 + 0.0379888i
$$71$$ 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i $$-0.0507952\pi$$
−0.631260 + 0.775571i $$0.717462\pi$$
$$72$$ −2.94949 + 0.548188i −0.347601 + 0.0646046i
$$73$$ −4.39898 7.61926i −0.514862 0.891766i −0.999851 0.0172466i $$-0.994510\pi$$
0.484990 0.874520i $$-0.338823\pi$$
$$74$$ 6.67423 3.85337i 0.775864 0.447945i
$$75$$ −2.17423 + 4.71940i −0.251059 + 0.544949i
$$76$$ −4.17423 + 1.25529i −0.478818 + 0.143992i
$$77$$ 1.41421i 0.161165i
$$78$$ −0.550510 5.97469i −0.0623330 0.676501i
$$79$$ −7.34847 + 4.24264i −0.826767 + 0.477334i −0.852745 0.522328i $$-0.825064\pi$$
0.0259772 + 0.999663i $$0.491730\pi$$
$$80$$ 1.22474 + 0.707107i 0.136931 + 0.0790569i
$$81$$ 8.39898 3.23375i 0.933220 0.359306i
$$82$$ 1.50000 2.59808i 0.165647 0.286910i
$$83$$ 17.0027i 1.86629i −0.359506 0.933143i $$-0.617055\pi$$
0.359506 0.933143i $$-0.382945\pi$$
$$84$$ 0.325765 0.707107i 0.0355439 0.0771517i
$$85$$ 0.449490 0.778539i 0.0487540 0.0844444i
$$86$$ −4.44949 + 7.70674i −0.479801 + 0.831039i
$$87$$ 1.77526 3.85337i 0.190327 0.413125i
$$88$$ 3.14626i 0.335393i
$$89$$ 3.55051 6.14966i 0.376353 0.651863i −0.614175 0.789170i $$-0.710511\pi$$
0.990529 + 0.137307i $$0.0438445\pi$$
$$90$$ −4.00000 1.41421i −0.421637 0.149071i
$$91$$ 1.34847 + 0.778539i 0.141358 + 0.0816131i
$$92$$ 6.12372 3.53553i 0.638442 0.368605i
$$93$$ 0.674235 + 7.31747i 0.0699149 + 0.758787i
$$94$$ 13.3636i 1.37835i
$$95$$ −6.00000 1.41421i −0.615587 0.145095i
$$96$$ 0.724745 1.57313i 0.0739690 0.160557i
$$97$$ 2.84847 1.64456i 0.289218 0.166980i −0.348371 0.937357i $$-0.613265\pi$$
0.637589 + 0.770377i $$0.279932\pi$$
$$98$$ −3.39898 5.88721i −0.343349 0.594698i
$$99$$ −1.72474 9.27987i −0.173343 0.932662i
$$100$$ −1.50000 2.59808i −0.150000 0.259808i
$$101$$ 8.57321 + 4.94975i 0.853067 + 0.492518i 0.861684 0.507445i $$-0.169410\pi$$
−0.00861771 + 0.999963i $$0.502743\pi$$
$$102$$ −1.00000 0.460702i −0.0990148 0.0456163i
$$103$$ 5.02118i 0.494752i −0.968920 0.247376i $$-0.920432\pi$$
0.968920 0.247376i $$-0.0795682\pi$$
$$104$$ 3.00000 + 1.73205i 0.294174 + 0.169842i
$$105$$ 0.898979 0.635674i 0.0877314 0.0620355i
$$106$$ −10.8990 −1.05860
$$107$$ −4.89898 −0.473602 −0.236801 0.971558i $$-0.576099\pi$$
−0.236801 + 0.971558i $$0.576099\pi$$
$$108$$ −1.27526 + 5.03723i −0.122711 + 0.484708i
$$109$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$110$$ −2.22474 + 3.85337i −0.212121 + 0.367405i
$$111$$ −1.22474 13.2922i −0.116248 1.26164i
$$112$$ 0.224745 + 0.389270i 0.0212364 + 0.0367825i
$$113$$ −18.7980 −1.76836 −0.884182 0.467143i $$-0.845283\pi$$
−0.884182 + 0.467143i $$0.845283\pi$$
$$114$$ −1.05051 + 7.47639i −0.0983893 + 0.700228i
$$115$$ 10.0000 0.932505
$$116$$ 1.22474 + 2.12132i 0.113715 + 0.196960i
$$117$$ −9.79796 3.46410i −0.905822 0.320256i
$$118$$ −5.72474 + 9.91555i −0.527005 + 0.912800i
$$119$$ 0.247449 0.142865i 0.0226836 0.0130964i
$$120$$ 2.00000 1.41421i 0.182574 0.129099i
$$121$$ 1.10102 0.100093
$$122$$ 1.55051 0.140377
$$123$$ −3.00000 4.24264i −0.270501 0.382546i
$$124$$ −3.67423 2.12132i −0.329956 0.190500i
$$125$$ 11.3137i 1.01193i
$$126$$ −0.876276 1.02494i −0.0780648 0.0913093i
$$127$$ −9.00000 5.19615i −0.798621 0.461084i 0.0443678 0.999015i $$-0.485873\pi$$
−0.842989 + 0.537931i $$0.819206\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ 8.89898 + 12.5851i 0.783511 + 1.10805i
$$130$$ 2.44949 + 4.24264i 0.214834 + 0.372104i
$$131$$ 1.92679 1.11243i 0.168344 0.0971935i −0.413461 0.910522i $$-0.635680\pi$$
0.581805 + 0.813328i $$0.302347\pi$$
$$132$$ 4.94949 + 2.28024i 0.430798 + 0.198469i
$$133$$ −1.42679 1.34278i −0.123718 0.116434i
$$134$$ 2.51059i 0.216882i
$$135$$ −5.12372 + 5.26758i −0.440980 + 0.453362i
$$136$$ 0.550510 0.317837i 0.0472059 0.0272543i
$$137$$ 3.39898 + 1.96240i 0.290394 + 0.167659i 0.638120 0.769937i $$-0.279712\pi$$
−0.347725 + 0.937596i $$0.613046\pi$$
$$138$$ −1.12372 12.1958i −0.0956578 1.03817i
$$139$$ 7.17423 12.4261i 0.608511 1.05397i −0.382975 0.923759i $$-0.625101\pi$$
0.991486 0.130213i $$-0.0415661\pi$$
$$140$$ 0.635674i 0.0537243i
$$141$$ 21.0227 + 9.68520i 1.77043 + 0.815641i
$$142$$ −3.00000 + 5.19615i −0.251754 + 0.436051i
$$143$$ −5.44949 + 9.43879i −0.455709 + 0.789312i
$$144$$ −1.94949 2.28024i −0.162457 0.190020i
$$145$$ 3.46410i 0.287678i
$$146$$ 4.39898 7.61926i 0.364062 0.630574i
$$147$$ −11.7247 + 1.08032i −0.967041 + 0.0891035i
$$148$$ 6.67423 + 3.85337i 0.548619 + 0.316745i
$$149$$ 1.77526 1.02494i 0.145435 0.0839667i −0.425517 0.904950i $$-0.639908\pi$$
0.570952 + 0.820984i $$0.306574\pi$$
$$150$$ −5.17423 + 0.476756i −0.422474 + 0.0389270i
$$151$$ 9.61377i 0.782357i −0.920315 0.391179i $$-0.872067\pi$$
0.920315 0.391179i $$-0.127933\pi$$
$$152$$ −3.17423 2.98735i −0.257464 0.242306i
$$153$$ −1.44949 + 1.23924i −0.117184 + 0.100187i
$$154$$ −1.22474 + 0.707107i −0.0986928 + 0.0569803i
$$155$$ −3.00000 5.19615i −0.240966 0.417365i
$$156$$ 4.89898 3.46410i 0.392232 0.277350i
$$157$$ −5.34847 9.26382i −0.426854 0.739333i 0.569737 0.821827i $$-0.307045\pi$$
−0.996592 + 0.0824935i $$0.973712\pi$$
$$158$$ −7.34847 4.24264i −0.584613 0.337526i
$$159$$ −7.89898 + 17.1455i −0.626430 + 1.35973i
$$160$$ 1.41421i 0.111803i
$$161$$ 2.75255 + 1.58919i 0.216931 + 0.125245i
$$162$$ 7.00000 + 5.65685i 0.549972 + 0.444444i
$$163$$ 18.3485 1.43716 0.718582 0.695443i $$-0.244792\pi$$
0.718582 + 0.695443i $$0.244792\pi$$
$$164$$ 3.00000 0.234261
$$165$$ 4.44949 + 6.29253i 0.346392 + 0.489873i
$$166$$ 14.7247 8.50134i 1.14286 0.659832i
$$167$$ −2.44949 + 4.24264i −0.189547 + 0.328305i −0.945099 0.326783i $$-0.894035\pi$$
0.755552 + 0.655089i $$0.227369\pi$$
$$168$$ 0.775255 0.0714323i 0.0598122 0.00551112i
$$169$$ −0.500000 0.866025i −0.0384615 0.0666173i
$$170$$ 0.898979 0.0689486
$$171$$ 11.0000 + 7.07107i 0.841191 + 0.540738i
$$172$$ −8.89898 −0.678541
$$173$$ 0.550510 + 0.953512i 0.0418545 + 0.0724942i 0.886194 0.463315i $$-0.153340\pi$$
−0.844339 + 0.535809i $$0.820007\pi$$
$$174$$ 4.22474 0.389270i 0.320277 0.0295104i
$$175$$ 0.674235 1.16781i 0.0509673 0.0882780i
$$176$$ −2.72474 + 1.57313i −0.205385 + 0.118579i
$$177$$ 11.4495 + 16.1920i 0.860596 + 1.21707i
$$178$$ 7.10102 0.532244
$$179$$ −7.65153 −0.571902 −0.285951 0.958244i $$-0.592310\pi$$
−0.285951 + 0.958244i $$0.592310\pi$$
$$180$$ −0.775255 4.17121i −0.0577841 0.310904i
$$181$$ 18.6742 + 10.7816i 1.38804 + 0.801388i 0.993095 0.117314i $$-0.0374285\pi$$
0.394950 + 0.918703i $$0.370762\pi$$
$$182$$ 1.55708i 0.115418i
$$183$$ 1.12372 2.43916i 0.0830681 0.180308i
$$184$$ 6.12372 + 3.53553i 0.451447 + 0.260643i
$$185$$ 5.44949 + 9.43879i 0.400654 + 0.693954i
$$186$$ −6.00000 + 4.24264i −0.439941 + 0.311086i
$$187$$ 1.00000 + 1.73205i 0.0731272 + 0.126660i
$$188$$ −11.5732 + 6.68180i −0.844063 + 0.487320i
$$189$$ −2.24745 + 0.635674i −0.163478 + 0.0462385i
$$190$$ −1.77526 5.90326i −0.128791 0.428267i
$$191$$ 8.19955i 0.593299i 0.954986 + 0.296649i $$0.0958693\pi$$
−0.954986 + 0.296649i $$0.904131\pi$$
$$192$$ 1.72474 0.158919i 0.124473 0.0114690i
$$193$$ −22.3485 + 12.9029i −1.60868 + 0.928771i −0.619012 + 0.785382i $$0.712467\pi$$
−0.989666 + 0.143389i $$0.954200\pi$$
$$194$$ 2.84847 + 1.64456i 0.204508 + 0.118073i
$$195$$ 8.44949 0.778539i 0.605081 0.0557523i
$$196$$ 3.39898 5.88721i 0.242784 0.420515i
$$197$$ 20.2918i 1.44573i −0.690989 0.722865i $$-0.742825\pi$$
0.690989 0.722865i $$-0.257175\pi$$
$$198$$ 7.17423 6.13361i 0.509851 0.435897i
$$199$$ 1.44949 2.51059i 0.102752 0.177971i −0.810066 0.586339i $$-0.800569\pi$$
0.912817 + 0.408368i $$0.133902\pi$$
$$200$$ 1.50000 2.59808i 0.106066 0.183712i
$$201$$ 3.94949 + 1.81954i 0.278576 + 0.128340i
$$202$$ 9.89949i 0.696526i
$$203$$ −0.550510 + 0.953512i −0.0386382 + 0.0669234i
$$204$$ −0.101021 1.09638i −0.00707285 0.0767617i
$$205$$ 3.67423 + 2.12132i 0.256620 + 0.148159i
$$206$$ 4.34847 2.51059i 0.302972 0.174921i
$$207$$ −20.0000 7.07107i −1.39010 0.491473i
$$208$$ 3.46410i 0.240192i
$$209$$ 9.39898 9.98698i 0.650141 0.690814i
$$210$$ 1.00000 + 0.460702i 0.0690066 + 0.0317914i
$$211$$ −1.34847 + 0.778539i −0.0928325 + 0.0535968i −0.545698 0.837982i $$-0.683735\pi$$
0.452865 + 0.891579i $$0.350402\pi$$
$$212$$ −5.44949 9.43879i −0.374272 0.648259i
$$213$$ 6.00000 + 8.48528i 0.411113 + 0.581402i
$$214$$ −2.44949 4.24264i −0.167444 0.290021i
$$215$$ −10.8990 6.29253i −0.743304 0.429147i
$$216$$ −5.00000 + 1.41421i −0.340207 + 0.0962250i
$$217$$ 1.90702i 0.129457i
$$218$$ 0 0
$$219$$ −8.79796 12.4422i −0.594511 0.840765i
$$220$$ −4.44949 −0.299985
$$221$$ 2.20204 0.148125
$$222$$ 10.8990 7.70674i 0.731492 0.517243i
$$223$$ −15.6742 + 9.04952i −1.04962 + 0.606001i −0.922544 0.385892i $$-0.873894\pi$$
−0.127080 + 0.991892i $$0.540561\pi$$
$$224$$ −0.224745 + 0.389270i −0.0150164 + 0.0260092i
$$225$$ −3.00000 + 8.48528i −0.200000 + 0.565685i
$$226$$ −9.39898 16.2795i −0.625211 1.08290i
$$227$$ 0.550510 0.0365386 0.0182693 0.999833i $$-0.494184\pi$$
0.0182693 + 0.999833i $$0.494184\pi$$
$$228$$ −7.00000 + 2.82843i −0.463586 + 0.187317i
$$229$$ 0.898979 0.0594062 0.0297031 0.999559i $$-0.490544\pi$$
0.0297031 + 0.999559i $$0.490544\pi$$
$$230$$ 5.00000 + 8.66025i 0.329690 + 0.571040i
$$231$$ 0.224745 + 2.43916i 0.0147871 + 0.160485i
$$232$$ −1.22474 + 2.12132i −0.0804084 + 0.139272i
$$233$$ −15.3990 + 8.89060i −1.00882 + 0.582443i −0.910846 0.412746i $$-0.864570\pi$$
−0.0979745 + 0.995189i $$0.531236\pi$$
$$234$$ −1.89898 10.2173i −0.124140 0.667928i
$$235$$ −18.8990 −1.23283
$$236$$ −11.4495 −0.745298
$$237$$ −12.0000 + 8.48528i −0.779484 + 0.551178i
$$238$$ 0.247449 + 0.142865i 0.0160397 + 0.00926054i
$$239$$ 21.0703i 1.36293i −0.731852 0.681463i $$-0.761344\pi$$
0.731852 0.681463i $$-0.238656\pi$$
$$240$$ 2.22474 + 1.02494i 0.143607 + 0.0661599i
$$241$$ −5.84847 3.37662i −0.376733 0.217507i 0.299663 0.954045i $$-0.403126\pi$$
−0.676396 + 0.736538i $$0.736459\pi$$
$$242$$ 0.550510 + 0.953512i 0.0353881 + 0.0612941i
$$243$$ 13.9722 6.91215i 0.896317 0.443415i
$$244$$ 0.775255 + 1.34278i 0.0496306 + 0.0859628i
$$245$$ 8.32577 4.80688i 0.531914 0.307100i
$$246$$ 2.17423 4.71940i 0.138624 0.300898i
$$247$$ −4.34847 14.4600i −0.276686 0.920066i
$$248$$ 4.24264i 0.269408i
$$249$$ −2.70204 29.3253i −0.171235 1.85841i
$$250$$ 9.79796 5.65685i 0.619677 0.357771i
$$251$$ −3.27526 1.89097i −0.206732 0.119357i 0.393060 0.919513i $$-0.371417\pi$$
−0.599792 + 0.800156i $$0.704750\pi$$
$$252$$ 0.449490 1.27135i 0.0283152 0.0800875i
$$253$$ −11.1237 + 19.2669i −0.699343 + 1.21130i
$$254$$ 10.3923i 0.652071i
$$255$$ 0.651531 1.41421i 0.0408004 0.0885615i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −7.50000 + 12.9904i −0.467837 + 0.810318i −0.999325 0.0367485i $$-0.988300\pi$$
0.531487 + 0.847066i $$0.321633\pi$$
$$258$$ −6.44949 + 13.9993i −0.401528 + 0.871557i
$$259$$ 3.46410i 0.215249i
$$260$$ −2.44949 + 4.24264i −0.151911 + 0.263117i
$$261$$ 2.44949 6.92820i 0.151620 0.428845i
$$262$$ 1.92679 + 1.11243i 0.119037 + 0.0687262i
$$263$$ 7.77526 4.48905i 0.479443 0.276806i −0.240741 0.970589i $$-0.577391\pi$$
0.720184 + 0.693783i $$0.244057\pi$$
$$264$$ 0.500000 + 5.42650i 0.0307729 + 0.333978i
$$265$$ 15.4135i 0.946843i
$$266$$ 0.449490 1.90702i 0.0275600 0.116927i
$$267$$ 5.14643 11.1708i 0.314956 0.683645i
$$268$$ −2.17423 + 1.25529i −0.132813 + 0.0766793i
$$269$$ 12.2474 + 21.2132i 0.746740 + 1.29339i 0.949377 + 0.314138i $$0.101715\pi$$
−0.202637 + 0.979254i $$0.564951\pi$$
$$270$$ −7.12372 1.80348i −0.433536 0.109756i
$$271$$ 10.0227 + 17.3598i 0.608836 + 1.05453i 0.991433 + 0.130619i $$0.0416965\pi$$
−0.382597 + 0.923915i $$0.624970\pi$$
$$272$$ 0.550510 + 0.317837i 0.0333796 + 0.0192717i
$$273$$ 2.44949 + 1.12848i 0.148250 + 0.0682990i
$$274$$ 3.92480i 0.237106i
$$275$$ 8.17423 + 4.71940i 0.492925 + 0.284590i
$$276$$ 10.0000 7.07107i 0.601929 0.425628i
$$277$$ 20.2474 1.21655 0.608276 0.793726i $$-0.291862\pi$$
0.608276 + 0.793726i $$0.291862\pi$$
$$278$$ 14.3485 0.860564
$$279$$ 2.32577 + 12.5136i 0.139240 + 0.749171i
$$280$$ −0.550510 + 0.317837i −0.0328993 + 0.0189944i
$$281$$ 11.2980 19.5686i 0.673980 1.16737i −0.302786 0.953058i $$-0.597917\pi$$
0.976766 0.214309i $$-0.0687498\pi$$
$$282$$ 2.12372 + 23.0488i 0.126466 + 1.37254i
$$283$$ 4.72474 + 8.18350i 0.280857 + 0.486458i 0.971596 0.236646i $$-0.0760480\pi$$
−0.690739 + 0.723104i $$0.742715\pi$$
$$284$$ −6.00000 −0.356034
$$285$$ −10.5732 1.48565i −0.626303 0.0880021i
$$286$$ −10.8990 −0.644470
$$287$$ 0.674235 + 1.16781i 0.0397988 + 0.0689336i
$$288$$ 1.00000 2.82843i 0.0589256 0.166667i
$$289$$ −8.29796 + 14.3725i −0.488115 + 0.845440i
$$290$$ −3.00000 + 1.73205i −0.176166 + 0.101710i
$$291$$ 4.65153 3.28913i 0.272678 0.192812i
$$292$$ 8.79796 0.514862
$$293$$ −19.3485 −1.13035 −0.565175 0.824971i $$-0.691191\pi$$
−0.565175 + 0.824971i $$0.691191\pi$$
$$294$$ −6.79796 9.61377i −0.396465 0.560686i
$$295$$ −14.0227 8.09601i −0.816433 0.471368i
$$296$$ 7.70674i 0.447945i
$$297$$ −4.44949 15.7313i −0.258186 0.912824i
$$298$$ 1.77526 + 1.02494i 0.102838 + 0.0593734i
$$299$$ 12.2474 + 21.2132i 0.708288 + 1.22679i
$$300$$ −3.00000 4.24264i −0.173205 0.244949i
$$301$$ −2.00000 3.46410i −0.115278 0.199667i
$$302$$ 8.32577 4.80688i 0.479094 0.276605i
$$303$$ 15.5732 + 7.17461i 0.894658 + 0.412170i
$$304$$ 1.00000 4.24264i 0.0573539 0.243332i
$$305$$ 2.19275i 0.125557i
$$306$$ −1.79796 0.635674i −0.102782 0.0363391i
$$307$$ 18.5227 10.6941i 1.05715 0.610344i 0.132505 0.991182i $$-0.457698\pi$$
0.924642 + 0.380838i $$0.124365\pi$$
$$308$$ −1.22474 0.707107i −0.0697863 0.0402911i
$$309$$ −0.797959 8.66025i −0.0453943 0.492665i
$$310$$ 3.00000 5.19615i 0.170389 0.295122i
$$311$$ 15.5563i 0.882120i 0.897478 + 0.441060i $$0.145397\pi$$
−0.897478 + 0.441060i $$0.854603\pi$$
$$312$$ 5.44949 + 2.51059i 0.308517 + 0.142134i
$$313$$ 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i $$-0.652902\pi$$
0.999065 0.0432311i $$-0.0137652\pi$$
$$314$$ 5.34847 9.26382i 0.301832 0.522788i
$$315$$ 1.44949 1.23924i 0.0816695 0.0698233i
$$316$$ 8.48528i 0.477334i
$$317$$ −3.00000 + 5.19615i −0.168497 + 0.291845i −0.937892 0.346929i $$-0.887225\pi$$
0.769395 + 0.638774i $$0.220558\pi$$
$$318$$ −18.7980 + 1.73205i −1.05414 + 0.0971286i
$$319$$ −6.67423 3.85337i −0.373685 0.215747i
$$320$$ −1.22474 + 0.707107i −0.0684653 + 0.0395285i
$$321$$ −8.44949 + 0.778539i −0.471605 + 0.0434538i
$$322$$ 3.17837i 0.177124i
$$323$$ −2.69694 0.635674i −0.150062 0.0353699i
$$324$$ −1.39898 + 8.89060i −0.0777211 + 0.493922i
$$325$$ 9.00000 5.19615i 0.499230 0.288231i
$$326$$ 9.17423 + 15.8902i 0.508114 + 0.880079i
$$327$$ 0 0
$$328$$ 1.50000 + 2.59808i 0.0828236 + 0.143455i
$$329$$ −5.20204 3.00340i −0.286798 0.165583i
$$330$$ −3.22474 + 6.99964i −0.177516 + 0.385317i
$$331$$ 23.2952i 1.28042i 0.768200 + 0.640210i $$0.221153\pi$$
−0.768200 + 0.640210i $$0.778847\pi$$
$$332$$ 14.7247 + 8.50134i 0.808125 + 0.466571i
$$333$$ −4.22474 22.7310i −0.231515 1.24565i
$$334$$ −4.89898 −0.268060
$$335$$ −3.55051 −0.193985
$$336$$ 0.449490 + 0.635674i 0.0245217 + 0.0346789i
$$337$$ −17.8485 + 10.3048i −0.972268 + 0.561339i −0.899927 0.436041i $$-0.856380\pi$$
−0.0723411 + 0.997380i $$0.523047\pi$$
$$338$$ 0.500000 0.866025i 0.0271964 0.0471056i
$$339$$ −32.4217 + 2.98735i −1.76090 + 0.162250i
$$340$$ 0.449490 + 0.778539i 0.0243770 + 0.0422222i
$$341$$ 13.3485 0.722860
$$342$$ −0.623724 + 13.0618i −0.0337272 + 0.706302i
$$343$$ 6.20204 0.334879
$$344$$ −4.44949 7.70674i −0.239900 0.415520i
$$345$$ 17.2474 1.58919i 0.928571 0.0855589i
$$346$$ −0.550510 + 0.953512i −0.0295956 + 0.0512611i
$$347$$ 3.27526 1.89097i 0.175825 0.101513i −0.409505 0.912308i $$-0.634298\pi$$
0.585330 + 0.810795i $$0.300965\pi$$
$$348$$ 2.44949 + 3.46410i 0.131306 + 0.185695i
$$349$$ 32.4949 1.73941 0.869706 0.493570i $$-0.164308\pi$$
0.869706 + 0.493570i $$0.164308\pi$$
$$350$$ 1.34847 0.0720787
$$351$$ −17.4495 4.41761i −0.931385 0.235795i
$$352$$ −2.72474 1.57313i −0.145229 0.0838482i
$$353$$ 24.9951i 1.33036i 0.746684 + 0.665179i $$0.231645\pi$$
−0.746684 + 0.665179i $$0.768355\pi$$
$$354$$ −8.29796 + 18.0116i −0.441032 + 0.957304i
$$355$$ −7.34847 4.24264i −0.390016 0.225176i
$$356$$ 3.55051 + 6.14966i 0.188177 + 0.325932i
$$357$$ 0.404082 0.285729i 0.0213863 0.0151224i
$$358$$ −3.82577 6.62642i −0.202198 0.350217i
$$359$$ 20.8207 12.0208i 1.09887 0.634434i 0.162948 0.986635i $$-0.447900\pi$$
0.935925 + 0.352200i $$0.114566\pi$$
$$360$$ 3.22474 2.75699i 0.169959 0.145306i
$$361$$ 1.15153 + 18.9651i 0.0606069 + 0.998162i
$$362$$ 21.5631i 1.13333i
$$363$$ 1.89898 0.174973i 0.0996706 0.00918368i
$$364$$ −1.34847 + 0.778539i −0.0706790 + 0.0408065i
$$365$$ 10.7753 + 6.22110i 0.564003 + 0.325627i
$$366$$ 2.67423 0.246405i 0.139784 0.0128798i
$$367$$ 4.32577 7.49245i 0.225803 0.391102i −0.730757 0.682638i $$-0.760833\pi$$
0.956560 + 0.291535i $$0.0941661\pi$$
$$368$$ 7.07107i 0.368605i
$$369$$ −5.84847 6.84072i −0.304459 0.356113i
$$370$$ −5.44949 + 9.43879i −0.283305 + 0.490699i
$$371$$ 2.44949 4.24264i 0.127171 0.220267i
$$372$$ −6.67423 3.07483i −0.346043 0.159423i
$$373$$ 25.4558i 1.31805i −0.752119 0.659027i $$-0.770968\pi$$
0.752119 0.659027i $$-0.229032\pi$$
$$374$$ −1.00000 + 1.73205i −0.0517088 + 0.0895622i
$$375$$ −1.79796 19.5133i −0.0928462 1.00766i
$$376$$ −11.5732 6.68180i −0.596843 0.344587i
$$377$$ −7.34847 + 4.24264i −0.378465 + 0.218507i
$$378$$ −1.67423 1.62851i −0.0861133 0.0837615i
$$379$$ 1.55708i 0.0799817i 0.999200 + 0.0399909i $$0.0127329\pi$$
−0.999200 + 0.0399909i $$0.987267\pi$$
$$380$$ 4.22474 4.48905i 0.216725 0.230283i
$$381$$ −16.3485 7.53177i −0.837557 0.385864i
$$382$$ −7.10102 + 4.09978i −0.363320 + 0.209763i
$$383$$ 10.2247 + 17.7098i 0.522460 + 0.904927i 0.999659 + 0.0261318i $$0.00831896\pi$$
−0.477198 + 0.878796i $$0.658348\pi$$
$$384$$ 1.00000 + 1.41421i 0.0510310 + 0.0721688i
$$385$$ −1.00000 1.73205i −0.0509647 0.0882735i
$$386$$ −22.3485 12.9029i −1.13751 0.656740i
$$387$$ 17.3485 + 20.2918i 0.881872 + 1.03149i
$$388$$ 3.28913i 0.166980i
$$389$$ −13.1010 7.56388i −0.664248 0.383504i 0.129646 0.991560i $$-0.458616\pi$$
−0.793894 + 0.608057i $$0.791949\pi$$
$$390$$ 4.89898 + 6.92820i 0.248069 + 0.350823i
$$391$$ 4.49490 0.227317
$$392$$ 6.79796 0.343349
$$393$$ 3.14643 2.22486i 0.158716 0.112229i
$$394$$ 17.5732 10.1459i 0.885326 0.511143i
$$395$$ 6.00000 10.3923i 0.301893 0.522894i
$$396$$ 8.89898 + 3.14626i 0.447191 + 0.158106i
$$397$$ 2.67423 + 4.63191i 0.134216 + 0.232469i 0.925298 0.379242i $$-0.123815\pi$$
−0.791082 + 0.611711i $$0.790482\pi$$
$$398$$ 2.89898 0.145313
$$399$$ −2.67423 2.08921i −0.133879 0.104591i
$$400$$ 3.00000 0.150000
$$401$$ −3.39898 5.88721i −0.169737 0.293993i 0.768590 0.639741i $$-0.220958\pi$$
−0.938327 + 0.345748i $$0.887625\pi$$
$$402$$ 0.398979 + 4.33013i 0.0198993 + 0.215967i
$$403$$ 7.34847 12.7279i 0.366053 0.634023i
$$404$$ −8.57321 + 4.94975i −0.426533 + 0.246259i
$$405$$ −8.00000 + 9.89949i −0.397523 + 0.491910i
$$406$$ −1.10102 −0.0546427
$$407$$ −24.2474 −1.20190
$$408$$ 0.898979 0.635674i 0.0445061 0.0314706i
$$409$$ 3.15153 + 1.81954i 0.155833 + 0.0899703i 0.575889 0.817528i $$-0.304656\pi$$
−0.420056 + 0.907498i $$0.637989\pi$$
$$410$$ 4.24264i 0.209529i
$$411$$ 6.17423 + 2.84448i 0.304553 + 0.140308i
$$412$$ 4.34847 + 2.51059i 0.214234 + 0.123688i
$$413$$ −2.57321 4.45694i −0.126620 0.219312i
$$414$$ −3.87628 20.8560i −0.190509 1.02502i
$$415$$ 12.0227 + 20.8239i 0.590171 + 1.02221i
$$416$$ −3.00000 + 1.73205i −0.147087 + 0.0849208i
$$417$$ 10.3990 22.5720i 0.509240 1.10536i
$$418$$ 13.3485 + 3.14626i 0.652895 + 0.153889i
$$419$$ 24.5344i 1.19859i −0.800530 0.599293i $$-0.795448\pi$$
0.800530 0.599293i $$-0.204552\pi$$
$$420$$ 0.101021 + 1.09638i 0.00492930 + 0.0534977i
$$421$$ −3.97730 + 2.29629i −0.193842 + 0.111914i −0.593780 0.804628i $$-0.702365\pi$$
0.399938 + 0.916542i $$0.369032\pi$$
$$422$$ −1.34847 0.778539i −0.0656425 0.0378987i
$$423$$ 37.7980 + 13.3636i 1.83780 + 0.649760i
$$424$$ 5.44949 9.43879i 0.264651 0.458388i
$$425$$ 1.90702i 0.0925042i
$$426$$ −4.34847 + 9.43879i −0.210684 + 0.457311i
$$427$$ −0.348469 + 0.603566i −0.0168636 + 0.0292086i
$$428$$ 2.44949 4.24264i 0.118401 0.205076i
$$429$$ −7.89898 + 17.1455i −0.381366 + 0.827794i
$$430$$ 12.5851i 0.606905i
$$431$$ 1.65153 2.86054i 0.0795514 0.137787i −0.823505 0.567309i $$-0.807985\pi$$
0.903056 + 0.429522i $$0.141318\pi$$
$$432$$ −3.72474 3.62302i −0.179207 0.174313i
$$433$$ −17.6969 10.2173i −0.850461 0.491014i 0.0103456 0.999946i $$-0.496707\pi$$
−0.860806 + 0.508933i $$0.830040\pi$$
$$434$$ 1.65153 0.953512i 0.0792760 0.0457700i
$$435$$ 0.550510 + 5.97469i 0.0263949 + 0.286465i
$$436$$ 0 0
$$437$$ −8.87628 29.5163i −0.424610 1.41196i
$$438$$ 6.37628 13.8404i 0.304670 0.661318i
$$439$$ −9.67423 + 5.58542i −0.461726 + 0.266578i −0.712770 0.701398i $$-0.752560\pi$$
0.251044 + 0.967976i $$0.419226\pi$$
$$440$$ −2.22474 3.85337i −0.106061 0.183702i
$$441$$ −20.0505 + 3.72656i −0.954786 + 0.177455i
$$442$$ 1.10102 + 1.90702i 0.0523702 + 0.0907079i
$$443$$ −16.3207 9.42274i −0.775418 0.447688i 0.0593859 0.998235i $$-0.481086\pi$$
−0.834804 + 0.550547i $$0.814419\pi$$
$$444$$ 12.1237 + 5.58542i 0.575366 + 0.265072i
$$445$$ 10.0424i 0.476053i
$$446$$ −15.6742 9.04952i −0.742197 0.428507i
$$447$$ 2.89898 2.04989i 0.137117 0.0969564i
$$448$$ −0.449490 −0.0212364
$$449$$ 30.7980 1.45345 0.726723 0.686931i $$-0.241042\pi$$
0.726723 + 0.686931i $$0.241042\pi$$
$$450$$ −8.84847 + 1.64456i −0.417121 + 0.0775255i
$$451$$ −8.17423 + 4.71940i −0.384910 + 0.222228i
$$452$$ 9.39898 16.2795i 0.442091 0.765724i
$$453$$ −1.52781 16.5813i −0.0717826 0.779057i
$$454$$ 0.275255 + 0.476756i 0.0129184 + 0.0223753i
$$455$$ −2.20204 −0.103233
$$456$$ −5.94949 4.64796i −0.278610 0.217661i
$$457$$ −13.0000 −0.608114 −0.304057 0.952654i $$-0.598341\pi$$
−0.304057 + 0.952654i $$0.598341\pi$$
$$458$$ 0.449490 + 0.778539i 0.0210033 + 0.0363787i
$$459$$ −2.30306 + 2.36773i −0.107498 + 0.110516i
$$460$$ −5.00000 + 8.66025i −0.233126 + 0.403786i
$$461$$ −33.2474 + 19.1954i −1.54849 + 0.894020i −0.550231 + 0.835013i $$0.685460\pi$$
−0.998258 + 0.0590072i $$0.981207\pi$$
$$462$$ −2.00000 + 1.41421i −0.0930484 + 0.0657952i
$$463$$ −19.7980 −0.920089 −0.460045 0.887896i $$-0.652167\pi$$
−0.460045 + 0.887896i $$0.652167\pi$$
$$464$$ −2.44949 −0.113715
$$465$$ −6.00000 8.48528i −0.278243 0.393496i
$$466$$ −15.3990 8.89060i −0.713344 0.411849i
$$467$$ 12.6172i 0.583853i 0.956441 + 0.291926i $$0.0942962\pi$$
−0.956441 + 0.291926i $$0.905704\pi$$
$$468$$ 7.89898 6.75323i 0.365130 0.312168i
$$469$$ −0.977296 0.564242i −0.0451273 0.0260543i
$$470$$ −9.44949 16.3670i −0.435872 0.754953i
$$471$$ −10.6969 15.1278i −0.492889 0.697050i
$$472$$ −5.72474 9.91555i −0.263503 0.456400i
$$473$$ 24.2474 13.9993i 1.11490 0.643687i
$$474$$ −13.3485 6.14966i −0.613115 0.282463i
$$475$$ −12.5227 + 3.76588i −0.574581 + 0.172791i
$$476$$ 0.285729i 0.0130964i
$$477$$ −10.8990 + 30.8270i −0.499030 + 1.41147i
$$478$$ 18.2474 10.5352i 0.834619 0.481867i
$$479$$ 0.853572 + 0.492810i 0.0390007 + 0.0225171i 0.519374 0.854547i $$-0.326165\pi$$
−0.480373 + 0.877064i $$0.659499\pi$$
$$480$$ 0.224745 + 2.43916i 0.0102582 + 0.111332i
$$481$$ −13.3485 + 23.1202i −0.608638 + 1.05419i
$$482$$ 6.75323i 0.307601i
$$483$$ 5.00000 + 2.30351i 0.227508 + 0.104813i
$$484$$ −0.550510 + 0.953512i −0.0250232 + 0.0433414i
$$485$$ −2.32577 + 4.02834i −0.105608 + 0.182918i
$$486$$ 12.9722 + 8.64420i 0.588431 + 0.392109i
$$487$$ 25.0273i 1.13409i 0.823686 + 0.567046i $$0.191914\pi$$
−0.823686 + 0.567046i $$0.808086\pi$$
$$488$$ −0.775255 + 1.34278i −0.0350942 + 0.0607849i
$$489$$ 31.6464 2.91591i 1.43110 0.131862i
$$490$$ 8.32577 + 4.80688i 0.376120 + 0.217153i
$$491$$ −13.8990 + 8.02458i −0.627252 + 0.362144i −0.779687 0.626169i $$-0.784622\pi$$
0.152435 + 0.988314i $$0.451289\pi$$
$$492$$ 5.17423 0.476756i 0.233273 0.0214938i
$$493$$ 1.55708i 0.0701273i
$$494$$ 10.3485 10.9959i 0.465600 0.494728i
$$495$$ 8.67423 + 10.1459i 0.389878 + 0.456024i
$$496$$ 3.67423 2.12132i 0.164978 0.0952501i
$$497$$ −1.34847 2.33562i −0.0604871 0.104767i
$$498$$ 24.0454 17.0027i 1.07750 0.761908i
$$499$$ −3.72474 6.45145i −0.166742 0.288806i 0.770530 0.637403i $$-0.219992\pi$$
−0.937273 + 0.348597i $$0.886658\pi$$
$$500$$ 9.79796 + 5.65685i 0.438178 + 0.252982i
$$501$$ −3.55051 + 7.70674i −0.158625 + 0.344312i
$$502$$ 3.78194i 0.168796i
$$503$$ −13.4722 7.77817i −0.600695 0.346812i 0.168620 0.985681i $$-0.446069\pi$$
−0.769315 + 0.638870i $$0.779402\pi$$
$$504$$ 1.32577 0.246405i 0.0590543 0.0109757i
$$505$$ −14.0000 −0.622992
$$506$$ −22.2474 −0.989020
$$507$$ −1.00000 1.41421i −0.0444116 0.0628074i
$$508$$ 9.00000 5.19615i 0.399310 0.230542i
$$509$$ 8.69694 15.0635i 0.385485 0.667680i −0.606351 0.795197i $$-0.707367\pi$$
0.991836 + 0.127517i $$0.0407008\pi$$
$$510$$ 1.55051 0.142865i 0.0686577 0.00632615i
$$511$$ 1.97730 + 3.42478i 0.0874704 + 0.151503i
$$512$$ −1.00000 −0.0441942
$$513$$ 20.0959 + 10.4477i 0.887256 + 0.461276i
$$514$$ −15.0000 −0.661622
$$515$$ 3.55051 + 6.14966i 0.156454 + 0.270987i
$$516$$ −15.3485 + 1.41421i −0.675679 + 0.0622573i
$$517$$ 21.0227 36.4124i 0.924577 1.60142i
$$518$$ −3.00000 + 1.73205i −0.131812 + 0.0761019i
$$519$$ 1.10102 + 1.55708i 0.0483294 + 0.0683481i
$$520$$ −4.89898 −0.214834
$$521$$ −25.8990 −1.13465 −0.567327 0.823492i $$-0.692023\pi$$
−0.567327 + 0.823492i $$0.692023\pi$$
$$522$$ 7.22474 1.34278i 0.316218 0.0587719i
$$523$$ −5.69694 3.28913i −0.249110 0.143824i 0.370247 0.928933i $$-0.379273\pi$$
−0.619357 + 0.785110i $$0.712606\pi$$
$$524$$ 2.22486i 0.0971935i
$$525$$ 0.977296 2.12132i 0.0426527 0.0925820i
$$526$$ 7.77526 + 4.48905i 0.339017 + 0.195732i
$$527$$ −1.34847 2.33562i −0.0587402 0.101741i
$$528$$ −4.44949 + 3.14626i −0.193639 + 0.136924i
$$529$$ 13.5000 + 23.3827i 0.586957 + 1.01664i
$$530$$ 13.3485 7.70674i 0.579820 0.334759i
$$531$$ 22.3207 + 26.1076i 0.968634 + 1.13297i
$$532$$ 1.87628 0.564242i 0.0813469 0.0244630i
$$533$$ 10.3923i 0.450141i
$$534$$ 12.2474 1.12848i 0.529999 0.0488343i
$$535$$ 6.00000 3.46410i 0.259403 0.149766i
$$536$$ −2.17423 1.25529i −0.0939126 0.0542205i
$$537$$ −13.1969 + 1.21597i −0.569490 + 0.0524730i
$$538$$ −12.2474 + 21.2132i −0.528025 + 0.914566i
$$539$$ 21.3882i 0.921254i
$$540$$ −2.00000 7.07107i −0.0860663 0.304290i
$$541$$ −5.34847 + 9.26382i −0.229949 + 0.398283i −0.957793 0.287460i $$-0.907189\pi$$
0.727844 + 0.685743i $$0.240522\pi$$
$$542$$ −10.0227 + 17.3598i −0.430512 + 0.745669i
$$543$$ 33.9217 + 15.6278i 1.45572 + 0.670652i
$$544$$ 0.635674i 0.0272543i
$$545$$ 0 0
$$546$$ 0.247449 + 2.68556i 0.0105898 + 0.114931i
$$547$$ −32.3939 18.7026i −1.38506 0.799666i −0.392309 0.919834i $$-0.628323\pi$$
−0.992754 + 0.120168i $$0.961657\pi$$
$$548$$ −3.39898 + 1.96240i −0.145197 + 0.0838296i
$$549$$ 1.55051 4.38551i 0.0661742 0.187169i
$$550$$ 9.43879i 0.402471i
$$551$$ 10.2247 3.07483i 0.435589 0.130992i
$$552$$ 11.1237 + 5.12472i 0.473457 + 0.218123i
$$553$$ 3.30306 1.90702i 0.140460 0.0810949i
$$554$$ 10.1237 + 17.5348i 0.430116 + 0.744982i
$$555$$ 10.8990 + 15.4135i 0.462636 + 0.654266i
$$556$$ 7.17423 + 12.4261i 0.304255 + 0.526986i
$$557$$ 0.247449 + 0.142865i 0.0104847 + 0.00605337i 0.505233 0.862983i $$-0.331406\pi$$
−0.494748 + 0.869036i $$0.664740\pi$$
$$558$$ −9.67423 + 8.27098i −0.409543 + 0.350139i
$$559$$ 30.8270i 1.30384i
$$560$$ −0.550510 0.317837i −0.0232633 0.0134311i
$$561$$ 2.00000 + 2.82843i 0.0844401 + 0.119416i
$$562$$ 22.5959 0.953151
$$563$$ 40.8434 1.72134 0.860671 0.509161i $$-0.170044\pi$$
0.860671 + 0.509161i $$0.170044\pi$$
$$564$$ −18.8990 + 13.3636i −0.795791 + 0.562709i
$$565$$ 23.0227 13.2922i 0.968572 0.559206i
$$566$$ −4.72474 + 8.18350i −0.198596 + 0.343978i
$$567$$ −3.77526 + 1.45354i −0.158546 + 0.0610428i
$$568$$ −3.00000 5.19615i −0.125877 0.218026i
$$569$$ −34.2929 −1.43763 −0.718816 0.695201i $$-0.755315\pi$$
−0.718816 + 0.695201i $$0.755315\pi$$
$$570$$ −4.00000 9.89949i −0.167542 0.414644i
$$571$$ 33.0454 1.38291 0.691454 0.722421i $$-0.256971\pi$$
0.691454 + 0.722421i $$0.256971\pi$$
$$572$$ −5.44949 9.43879i −0.227855 0.394656i
$$573$$ 1.30306 + 14.1421i 0.0544362 + 0.590796i
$$574$$ −0.674235 + 1.16781i −0.0281420 + 0.0487434i
$$575$$ 18.3712 10.6066i 0.766131 0.442326i
$$576$$ 2.94949 0.548188i 0.122895 0.0228412i
$$577$$ 18.5959 0.774158 0.387079 0.922047i $$-0.373484\pi$$
0.387079 + 0.922047i $$0.373484\pi$$
$$578$$ −16.5959 −0.690299
$$579$$ −36.4949 + 25.8058i −1.51668 + 1.07245i
$$580$$ −3.00000 1.73205i −0.124568 0.0719195i
$$581$$ 7.64253i 0.317065i
$$582$$ 5.17423 + 2.38378i 0.214479 + 0.0988108i
$$583$$ 29.6969 + 17.1455i 1.22992 + 0.710096i
$$584$$ 4.39898 + 7.61926i 0.182031 + 0.315287i
$$585$$ 14.4495 2.68556i 0.597413 0.111034i
$$586$$ −9.67423 16.7563i −0.399639 0.692195i
$$587$$ −13.8990 + 8.02458i −0.573672 + 0.331210i −0.758615 0.651540i $$-0.774123\pi$$
0.184942 + 0.982749i $$0.440790\pi$$
$$588$$ 4.92679 10.6941i 0.203177 0.441017i
$$589$$ −12.6742 + 13.4671i −0.522233 + 0.554904i
$$590$$ 16.1920i 0.666615i
$$591$$ −3.22474 34.9982i −0.132648 1.43963i
$$592$$ −6.67423 + 3.85337i −0.274309 + 0.158373i
$$593$$ 15.0959 + 8.71563i 0.619915 + 0.357908i 0.776836 0.629703i $$-0.216823\pi$$
−0.156921 + 0.987611i $$0.550157\pi$$
$$594$$ 11.3990 11.7190i 0.467706 0.480838i
$$595$$ −0.202041 + 0.349945i −0.00828287 + 0.0143464i
$$596$$ 2.04989i 0.0839667i
$$597$$ 2.10102 4.56048i 0.0859890 0.186648i
$$598$$ −12.2474 + 21.2132i −0.500835 + 0.867472i
$$599$$ −2.57321 + 4.45694i −0.105139 + 0.182106i −0.913795 0.406176i $$-0.866862\pi$$
0.808656 + 0.588282i $$0.200195\pi$$
$$600$$ 2.17423 4.71940i 0.0887628 0.192669i
$$601$$ 14.0314i 0.572352i −0.958177 0.286176i $$-0.907616\pi$$
0.958177 0.286176i $$-0.0923842\pi$$
$$602$$ 2.00000 3.46410i 0.0815139 0.141186i
$$603$$ 7.10102 + 2.51059i 0.289176 + 0.102239i
$$604$$ 8.32577 + 4.80688i 0.338771 + 0.195589i
$$605$$ −1.34847 + 0.778539i −0.0548231 + 0.0316521i
$$606$$ 1.57321 + 17.0741i 0.0639075 + 0.693588i
$$607$$ 11.5208i 0.467614i 0.972283 + 0.233807i $$0.0751185\pi$$
−0.972283 + 0.233807i $$0.924882\pi$$
$$608$$ 4.17423 1.25529i 0.169288 0.0509089i
$$609$$ −0.797959 + 1.73205i −0.0323349 + 0.0701862i
$$610$$ −1.89898 + 1.09638i −0.0768874 + 0.0443910i
$$611$$ −23.1464 40.0908i −0.936404 1.62190i
$$612$$ −0.348469 1.87492i −0.0140860 0.0757890i
$$613$$ −23.8990 41.3942i −0.965271 1.67190i −0.708886 0.705323i $$-0.750802\pi$$
−0.256385 0.966575i $$-0.582531\pi$$
$$614$$ 18.5227 + 10.6941i 0.747515 + 0.431578i
$$615$$ 6.67423 + 3.07483i 0.269131 + 0.123989i
$$616$$ 1.41421i 0.0569803i
$$617$$ 8.05051 + 4.64796i 0.324101 + 0.187120i 0.653219 0.757169i $$-0.273418\pi$$
−0.329118 + 0.944289i $$0.606751\pi$$
$$618$$ 7.10102 5.02118i 0.285645 0.201981i
$$619$$ −30.6969 −1.23381 −0.616907 0.787036i $$-0.711615\pi$$
−0.616907 + 0.787036i $$0.711615\pi$$
$$620$$ 6.00000 0.240966
$$621$$ −35.6186 9.01742i −1.42933 0.361856i
$$622$$ −13.4722 + 7.77817i −0.540186 + 0.311876i
$$623$$ −1.59592 + 2.76421i −0.0639391 + 0.110746i
$$624$$ 0.550510 + 5.97469i 0.0220380 + 0.239179i
$$625$$ 0.500000 + 0.866025i 0.0200000 + 0.0346410i
$$626$$ 19.0000 0.759393
$$627$$ 14.6237 18.7187i 0.584015 0.747552i
$$628$$ 10.6969 0.426854
$$629$$ 2.44949 + 4.24264i 0.0976676 + 0.169165i
$$630$$ 1.79796 + 0.635674i 0.0716324 + 0.0253259i
$$631$$ 17.1237 29.6592i 0.681685 1.18071i −0.292782 0.956179i $$-0.594581\pi$$
0.974466 0.224533i $$-0.0720857\pi$$
$$632$$ 7.34847 4.24264i 0.292306 0.168763i
$$633$$ −2.20204 + 1.55708i −0.0875233 + 0.0618883i
$$634$$ −6.00000 −0.238290
$$635$$ 14.6969 0.583230
$$636$$ −10.8990 15.4135i −0.432173 0.611184i
$$637$$ 20.3939 + 11.7744i 0.808035 + 0.466519i
$$638$$ 7.70674i 0.305113i
$$639$$ 11.6969 + 13.6814i 0.462724 + 0.541229i
$$640$$ −1.22474 0.707107i −0.0484123 0.0279508i
$$641$$ −13.1969 22.8578i −0.521248 0.902828i −0.999695 0.0247111i $$-0.992133\pi$$
0.478447 0.878116i $$-0.341200\pi$$
$$642$$ −4.89898 6.92820i −0.193347 0.273434i
$$643$$ −5.07321 8.78706i −0.200068 0.346528i 0.748482 0.663155i $$-0.230783\pi$$
−0.948550 + 0.316627i $$0.897450\pi$$
$$644$$ −2.75255 + 1.58919i −0.108466 + 0.0626227i
$$645$$ −19.7980 9.12096i −0.779544 0.359137i
$$646$$ −0.797959 2.65345i −0.0313953 0.104399i
$$647$$ 14.7778i 0.580976i 0.956879 + 0.290488i $$0.0938176\pi$$
−0.956879 + 0.290488i $$0.906182\pi$$
$$648$$ −8.39898 + 3.23375i −0.329943 + 0.127034i
$$649$$ 31.1969 18.0116i 1.22459 0.707016i
$$650$$ 9.00000 + 5.19615i 0.353009 + 0.203810i
$$651$$ −0.303062 3.28913i −0.0118779 0.128911i
$$652$$ −9.17423 + 15.8902i −0.359291 + 0.622310i
$$653$$ 8.19955i 0.320873i 0.987046 + 0.160437i $$0.0512902\pi$$
−0.987046 + 0.160437i $$0.948710\pi$$
$$654$$ 0 0
$$655$$ −1.57321 + 2.72489i −0.0614706 + 0.106470i
$$656$$ −1.50000 + 2.59808i −0.0585652 + 0.101438i
$$657$$ −17.1515 20.0614i −0.669145 0.782672i
$$658$$ 6.00680i 0.234169i
$$659$$ −12.0000 + 20.7846i −0.467454 + 0.809653i −0.999309 0.0371821i $$-0.988162\pi$$
0.531855 + 0.846836i $$0.321495\pi$$
$$660$$ −7.67423 + 0.707107i −0.298719 + 0.0275241i
$$661$$ 25.7196 + 14.8492i 1.00038 + 0.577569i 0.908360 0.418189i $$-0.137335\pi$$
0.0920180 + 0.995757i $$0.470668\pi$$
$$662$$ −20.1742 + 11.6476i −0.784094 + 0.452697i
$$663$$ 3.79796 0.349945i 0.147501 0.0135908i
$$664$$ 17.0027i 0.659832i
$$665$$ 2.69694 + 0.635674i 0.104583 + 0.0246504i
$$666$$ 17.5732 15.0242i 0.680948 0.582177i
$$667$$ −15.0000 + 8.66025i −0.580802 + 0.335326i
$$668$$ −2.44949 4.24264i −0.0947736 0.164153i
$$669$$ −25.5959 + 18.0990i −0.989595 + 0.699750i
$$670$$ −1.77526 3.07483i −0.0685841 0.118791i
$$671$$ −4.22474 2.43916i −0.163094 0.0941626i
$$672$$ −0.325765 + 0.707107i −0.0125667 + 0.0272772i
$$673$$ 3.46410i 0.133531i 0.997769 + 0.0667657i $$0.0212680\pi$$
−0.997769 + 0.0667657i $$0.978732\pi$$
$$674$$ −17.8485 10.3048i −0.687497 0.396927i
$$675$$ −3.82577 + 15.1117i −0.147254 + 0.581650i
$$676$$ 1.00000 0.0384615
$$677$$ −32.6969 −1.25665 −0.628323 0.777953i $$-0.716258\pi$$
−0.628323 + 0.777953i $$0.716258\pi$$
$$678$$ −18.7980 26.5843i −0.721931 1.02096i
$$679$$ −1.28036 + 0.739215i −0.0491356 + 0.0283685i
$$680$$ −0.449490 + 0.778539i −0.0172371 + 0.0298556i
$$681$$ 0.949490 0.0874863i 0.0363845 0.00335248i
$$682$$ 6.67423 + 11.5601i 0.255570 + 0.442660i
$$683$$ 17.3939 0.665558 0.332779 0.943005i $$-0.392014\pi$$
0.332779 + 0.943005i $$0.392014\pi$$
$$684$$ −11.6237 + 5.99075i −0.444444 + 0.229062i
$$685$$ −5.55051 −0.212074
$$686$$ 3.10102 + 5.37113i 0.118398 + 0.205071i
$$687$$ 1.55051 0.142865i 0.0591557 0.00545062i
$$688$$ 4.44949 7.70674i 0.169635 0.293817i
$$689$$ 32.6969 18.8776i 1.24565 0.719179i
$$690$$ 10.0000 + 14.1421i 0.380693 + 0.538382i
$$691$$ −40.0000 −1.52167 −0.760836 0.648944i $$-0.775211\pi$$
−0.760836 + 0.648944i $$0.775211\pi$$
$$692$$ −1.10102 −0.0418545
$$693$$ 0.775255 + 4.17121i 0.0294495 + 0.158451i
$$694$$ 3.27526 + 1.89097i 0.124327 + 0.0717802i
$$695$$ 20.2918i 0.769712i
$$696$$ −1.77526 + 3.85337i −0.0672909 + 0.146062i
$$697$$ 1.65153 + 0.953512i 0.0625562 + 0.0361168i
$$698$$ 16.2474 + 28.1414i 0.614975 + 1.06517i
$$699$$ −25.1464 + 17.7812i −0.951125 + 0.672547i
$$700$$ 0.674235 + 1.16781i 0.0254837 + 0.0441390i
$$701$$ −8.57321 + 4.94975i −0.323806 + 0.186949i −0.653088 0.757282i $$-0.726527\pi$$
0.329282 + 0.944232i $$0.393193\pi$$
$$702$$ −4.89898 17.3205i −0.184900 0.653720i
$$703$$ 23.0227 24.4630i 0.868318 0.922640i
$$704$$ 3.14626i 0.118579i
$$705$$ −32.5959 + 3.00340i −1.22763 + 0.113115i
$$706$$ −21.6464 + 12.4976i −0.814674 + 0.470352i
$$707$$ −3.85357 2.22486i −0.144928 0.0836745i
$$708$$ −19.7474 + 1.81954i −0.742155 + 0.0683824i
$$709$$ 8.67423 15.0242i 0.325768 0.564246i −0.655900 0.754848i $$-0.727711\pi$$
0.981667 + 0.190602i $$0.0610439\pi$$
$$710$$ 8.48528i 0.318447i
$$711$$ −19.3485 + 16.5420i −0.725624 + 0.620372i
$$712$$ −3.55051 + 6.14966i −0.133061 + 0.230468i
$$713$$ 15.0000 25.9808i 0.561754 0.972987i
$$714$$ 0.449490 + 0.207081i 0.0168217 + 0.00774980i
$$715$$ 15.4135i 0.576432i
$$716$$ 3.82577 6.62642i 0.142976 0.247641i
$$717$$ −3.34847 36.3410i −0.125051 1.35718i
$$718$$ 20.8207 + 12.0208i 0.777020 + 0.448613i
$$719$$ 26.1464 15.0956i 0.975097 0.562973i 0.0743109 0.997235i $$-0.476324\pi$$
0.900786 + 0.434262i $$0.142991\pi$$
$$720$$ 4.00000 + 1.41421i 0.149071 + 0.0527046i
$$721$$ 2.25697i 0.0840539i
$$722$$ −15.8485 + 10.4798i −0.589819 + 0.390017i
$$723$$ −10.6237 4.89437i −0.395101 0.182024i
$$724$$ −18.6742 + 10.7816i −0.694022 + 0.400694i
$$725$$ 3.67423 + 6.36396i 0.136458 + 0.236352i
$$726$$ 1.10102 + 1.55708i 0.0408627 + 0.0577886i
$$727$$ −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i $$-0.214063\pi$$
−0.930618 + 0.365991i $$0.880730\pi$$
$$728$$ −1.34847 0.778539i −0.0499776 0.0288546i
$$729$$ 23.0000 14.1421i 0.851852 0.523783i
$$730$$ 12.4422i 0.460506i
$$731$$ −4.89898 2.82843i −0.181195 0.104613i
$$732$$ 1.55051 + 2.19275i 0.0573085 + 0.0810465i
$$733$$ −20.0454 −0.740394 −0.370197 0.928953i $$-0.620710\pi$$
−0.370197 + 0.928953i $$0.620710\pi$$
$$734$$ 8.65153 0.319334
$$735$$ 13.5959 9.61377i 0.501493 0.354609i
$$736$$ −6.12372 + 3.53553i −0.225723 + 0.130322i
$$737$$ 3.94949 6.84072i 0.145481 0.251981i
$$738$$ 3.00000 8.48528i 0.110432 0.312348i
$$739$$ −12.1742 21.0864i −0.447836 0.775676i 0.550408 0.834895i $$-0.314472\pi$$
−0.998245 + 0.0592200i $$0.981139\pi$$
$$740$$ −10.8990 −0.400654
$$741$$ −9.79796 24.2487i −0.359937 0.890799i
$$742$$ 4.89898 0.179847
$$743$$ −2.32577 4.02834i −0.0853241 0.147786i 0.820205 0.572069i $$-0.193859\pi$$
−0.905529 + 0.424284i $$0.860526\pi$$
$$744$$ −0.674235 7.31747i −0.0247186 0.268272i
$$745$$ −1.44949 + 2.51059i −0.0531052 + 0.0919809i
$$746$$ 22.0454 12.7279i 0.807140 0.466002i
$$747$$ −9.32066 50.1492i −0.341025 1.83486i
$$748$$ −2.00000 −0.0731272
$$749$$ 2.20204 0.0804608
$$750$$ 16.0000 11.3137i 0.584237 0.413118i
$$751$$ 17.6969 + 10.2173i 0.645770 + 0.372836i 0.786834 0.617165i $$-0.211719\pi$$
−0.141063 + 0.990001i $$0.545052\pi$$
$$752$$ 13.3636i 0.487320i
$$753$$ −5.94949 2.74094i −0.216811 0.0998854i
$$754$$ −7.34847 4.24264i −0.267615 0.154508i
$$755$$ 6.79796 + 11.7744i 0.247403 + 0.428515i
$$756$$ 0.573214 2.26418i 0.0208476 0.0823476i
$$757$$ 19.6969 + 34.1161i 0.715897 + 1.23997i 0.962612 + 0.270883i $$0.0873155\pi$$
−0.246715 + 0.969088i $$0.579351\pi$$
$$758$$ −1.34847 + 0.778539i −0.0489786 + 0.0282778i
$$759$$ −16.1237 + 34.9982i −0.585254 + 1.27035i
$$760$$ 6.00000 + 1.41421i 0.217643 + 0.0512989i
$$761$$ 31.5734i 1.14453i 0.820067 + 0.572267i $$0.193936\pi$$
−0.820067 + 0.572267i $$0.806064\pi$$
$$762$$ −1.65153 17.9241i −0.0598286 0.649321i
$$763$$ 0 0
$$764$$ −7.10102 4.09978i −0.256906 0.148325i
$$765$$ 0.898979 2.54270i 0.0325027 0.0919314i
$$766$$ −10.2247 + 17.7098i −0.369435 + 0.639880i
$$767$$ 39.6622i 1.43212i
$$768$$ −0.724745 + 1.57313i −0.0261520 + 0.0567655i
$$769$$ −1.79796 + 3.11416i −0.0648361 + 0.112299i −0.896621 0.442798i $$-0.853986\pi$$
0.831785 + 0.555098i $$0.187319\pi$$
$$770$$ 1.00000 1.73205i 0.0360375 0.0624188i
$$771$$ −10.8712 + 23.5970i −0.391516 + 0.849825i
$$772$$ 25.8058i 0.928771i
$$773$$ −1.22474 + 2.12132i −0.0440510 + 0.0762986i −0.887210 0.461365i $$-0.847360\pi$$
0.843159 +