Properties

Label 114.2.h.f.107.1
Level $114$
Weight $2$
Character 114.107
Analytic conductor $0.910$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.910294583043\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 114.107
Dual form 114.2.h.f.65.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.724745 - 1.57313i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.22474 - 0.707107i) q^{5} +(1.00000 - 1.41421i) q^{6} +4.44949 q^{7} -1.00000 q^{8} +(-1.94949 + 2.28024i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.724745 - 1.57313i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.22474 - 0.707107i) q^{5} +(1.00000 - 1.41421i) q^{6} +4.44949 q^{7} -1.00000 q^{8} +(-1.94949 + 2.28024i) q^{9} +(1.22474 + 0.707107i) q^{10} -0.317837i q^{11} +(1.72474 + 0.158919i) q^{12} +(-3.00000 - 1.73205i) q^{13} +(2.22474 + 3.85337i) q^{14} +(-2.00000 - 1.41421i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-5.44949 + 3.14626i) q^{17} +(-2.94949 - 0.548188i) q^{18} +(-4.17423 - 1.25529i) q^{19} +1.41421i q^{20} +(-3.22474 - 6.99964i) q^{21} +(0.275255 - 0.158919i) q^{22} +(6.12372 + 3.53553i) q^{23} +(0.724745 + 1.57313i) q^{24} +(-1.50000 + 2.59808i) q^{25} -3.46410i q^{26} +(5.00000 + 1.41421i) q^{27} +(-2.22474 + 3.85337i) q^{28} +(-1.22474 + 2.12132i) q^{29} +(0.224745 - 2.43916i) q^{30} -4.24264i q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.500000 + 0.230351i) q^{33} +(-5.44949 - 3.14626i) q^{34} +(5.44949 - 3.14626i) q^{35} +(-1.00000 - 2.82843i) q^{36} +0.778539i q^{37} +(-1.00000 - 4.24264i) q^{38} +(-0.550510 + 5.97469i) q^{39} +(-1.22474 + 0.707107i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(4.44949 - 6.29253i) q^{42} +(-0.449490 - 0.778539i) q^{43} +(0.275255 + 0.158919i) q^{44} +(-0.775255 + 4.17121i) q^{45} +7.07107i q^{46} +(-5.57321 - 3.21770i) q^{47} +(-1.00000 + 1.41421i) q^{48} +12.7980 q^{49} -3.00000 q^{50} +(8.89898 + 6.29253i) q^{51} +(3.00000 - 1.73205i) q^{52} +(-0.550510 + 0.953512i) q^{53} +(1.27526 + 5.03723i) q^{54} +(-0.224745 - 0.389270i) q^{55} -4.44949 q^{56} +(1.05051 + 7.47639i) q^{57} -2.44949 q^{58} +(3.27526 + 5.67291i) q^{59} +(2.22474 - 1.02494i) q^{60} +(3.22474 - 5.58542i) q^{61} +(3.67423 - 2.12132i) q^{62} +(-8.67423 + 10.1459i) q^{63} +1.00000 q^{64} -4.89898 q^{65} +(-0.449490 - 0.317837i) q^{66} +(-5.17423 - 2.98735i) q^{67} -6.29253i q^{68} +(1.12372 - 12.1958i) q^{69} +(5.44949 + 3.14626i) q^{70} +(3.00000 + 5.19615i) q^{71} +(1.94949 - 2.28024i) q^{72} +(5.39898 + 9.35131i) q^{73} +(-0.674235 + 0.389270i) q^{74} +(5.17423 + 0.476756i) q^{75} +(3.17423 - 2.98735i) q^{76} -1.41421i q^{77} +(-5.44949 + 2.51059i) q^{78} +(7.34847 - 4.24264i) q^{79} +(-1.22474 - 0.707107i) q^{80} +(-1.39898 - 8.89060i) q^{81} +(1.50000 - 2.59808i) q^{82} -14.1742i q^{83} +(7.67423 + 0.707107i) q^{84} +(-4.44949 + 7.70674i) q^{85} +(0.449490 - 0.778539i) q^{86} +(4.22474 + 0.389270i) q^{87} +0.317837i q^{88} +(8.44949 - 14.6349i) q^{89} +(-4.00000 + 1.41421i) q^{90} +(-13.3485 - 7.70674i) q^{91} +(-6.12372 + 3.53553i) q^{92} +(-6.67423 + 3.07483i) q^{93} -6.43539i q^{94} +(-6.00000 + 1.41421i) q^{95} +(-1.72474 - 0.158919i) q^{96} +(-11.8485 + 6.84072i) q^{97} +(6.39898 + 11.0834i) q^{98} +(0.724745 + 0.619620i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 4q^{6} + 8q^{7} - 4q^{8} + 2q^{9} + 2q^{12} - 12q^{13} + 4q^{14} - 8q^{15} - 2q^{16} - 12q^{17} - 2q^{18} - 2q^{19} - 8q^{21} + 6q^{22} - 2q^{24} - 6q^{25} + 20q^{27} - 4q^{28} - 4q^{30} + 2q^{32} - 2q^{33} - 12q^{34} + 12q^{35} - 4q^{36} - 4q^{38} - 12q^{39} - 6q^{41} + 8q^{42} + 8q^{43} + 6q^{44} - 8q^{45} + 12q^{47} - 4q^{48} + 12q^{49} - 12q^{50} + 16q^{51} + 12q^{52} - 12q^{53} + 10q^{54} + 4q^{55} - 8q^{56} + 14q^{57} + 18q^{59} + 4q^{60} + 8q^{61} - 20q^{63} + 4q^{64} + 8q^{66} - 6q^{67} - 20q^{69} + 12q^{70} + 12q^{71} - 2q^{72} + 2q^{73} + 12q^{74} + 6q^{75} - 2q^{76} - 12q^{78} + 14q^{81} + 6q^{82} + 16q^{84} - 8q^{85} - 8q^{86} + 12q^{87} + 24q^{89} - 16q^{90} - 24q^{91} - 12q^{93} - 24q^{95} - 2q^{96} - 18q^{97} + 6q^{98} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.724745 1.57313i −0.418432 0.908248i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.22474 0.707107i 0.547723 0.316228i −0.200480 0.979698i \(-0.564250\pi\)
0.748203 + 0.663470i \(0.230917\pi\)
\(6\) 1.00000 1.41421i 0.408248 0.577350i
\(7\) 4.44949 1.68175 0.840875 0.541230i \(-0.182041\pi\)
0.840875 + 0.541230i \(0.182041\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.94949 + 2.28024i −0.649830 + 0.760080i
\(10\) 1.22474 + 0.707107i 0.387298 + 0.223607i
\(11\) 0.317837i 0.0958315i −0.998851 0.0479158i \(-0.984742\pi\)
0.998851 0.0479158i \(-0.0152579\pi\)
\(12\) 1.72474 + 0.158919i 0.497891 + 0.0458759i
\(13\) −3.00000 1.73205i −0.832050 0.480384i 0.0225039 0.999747i \(-0.492836\pi\)
−0.854554 + 0.519362i \(0.826170\pi\)
\(14\) 2.22474 + 3.85337i 0.594588 + 1.02986i
\(15\) −2.00000 1.41421i −0.516398 0.365148i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −5.44949 + 3.14626i −1.32170 + 0.763081i −0.983999 0.178174i \(-0.942981\pi\)
−0.337696 + 0.941255i \(0.609648\pi\)
\(18\) −2.94949 0.548188i −0.695201 0.129209i
\(19\) −4.17423 1.25529i −0.957635 0.287984i
\(20\) 1.41421i 0.316228i
\(21\) −3.22474 6.99964i −0.703697 1.52745i
\(22\) 0.275255 0.158919i 0.0586846 0.0338816i
\(23\) 6.12372 + 3.53553i 1.27688 + 0.737210i 0.976274 0.216537i \(-0.0694763\pi\)
0.300610 + 0.953747i \(0.402810\pi\)
\(24\) 0.724745 + 1.57313i 0.147938 + 0.321114i
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 3.46410i 0.679366i
\(27\) 5.00000 + 1.41421i 0.962250 + 0.272166i
\(28\) −2.22474 + 3.85337i −0.420437 + 0.728219i
\(29\) −1.22474 + 2.12132i −0.227429 + 0.393919i −0.957046 0.289938i \(-0.906365\pi\)
0.729616 + 0.683857i \(0.239699\pi\)
\(30\) 0.224745 2.43916i 0.0410326 0.445327i
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −0.500000 + 0.230351i −0.0870388 + 0.0400989i
\(34\) −5.44949 3.14626i −0.934580 0.539580i
\(35\) 5.44949 3.14626i 0.921132 0.531816i
\(36\) −1.00000 2.82843i −0.166667 0.471405i
\(37\) 0.778539i 0.127991i 0.997950 + 0.0639955i \(0.0203843\pi\)
−0.997950 + 0.0639955i \(0.979616\pi\)
\(38\) −1.00000 4.24264i −0.162221 0.688247i
\(39\) −0.550510 + 5.97469i −0.0881522 + 0.956716i
\(40\) −1.22474 + 0.707107i −0.193649 + 0.111803i
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 4.44949 6.29253i 0.686571 0.970958i
\(43\) −0.449490 0.778539i −0.0685465 0.118726i 0.829715 0.558187i \(-0.188503\pi\)
−0.898262 + 0.439461i \(0.855169\pi\)
\(44\) 0.275255 + 0.158919i 0.0414963 + 0.0239579i
\(45\) −0.775255 + 4.17121i −0.115568 + 0.621807i
\(46\) 7.07107i 1.04257i
\(47\) −5.57321 3.21770i −0.812937 0.469349i 0.0350379 0.999386i \(-0.488845\pi\)
−0.847975 + 0.530037i \(0.822178\pi\)
\(48\) −1.00000 + 1.41421i −0.144338 + 0.204124i
\(49\) 12.7980 1.82828
\(50\) −3.00000 −0.424264
\(51\) 8.89898 + 6.29253i 1.24611 + 0.881130i
\(52\) 3.00000 1.73205i 0.416025 0.240192i
\(53\) −0.550510 + 0.953512i −0.0756184 + 0.130975i −0.901355 0.433081i \(-0.857426\pi\)
0.825737 + 0.564056i \(0.190760\pi\)
\(54\) 1.27526 + 5.03723i 0.173540 + 0.685481i
\(55\) −0.224745 0.389270i −0.0303046 0.0524891i
\(56\) −4.44949 −0.594588
\(57\) 1.05051 + 7.47639i 0.139143 + 0.990272i
\(58\) −2.44949 −0.321634
\(59\) 3.27526 + 5.67291i 0.426402 + 0.738550i 0.996550 0.0829920i \(-0.0264476\pi\)
−0.570148 + 0.821542i \(0.693114\pi\)
\(60\) 2.22474 1.02494i 0.287213 0.132320i
\(61\) 3.22474 5.58542i 0.412886 0.715140i −0.582318 0.812961i \(-0.697854\pi\)
0.995204 + 0.0978213i \(0.0311874\pi\)
\(62\) 3.67423 2.12132i 0.466628 0.269408i
\(63\) −8.67423 + 10.1459i −1.09285 + 1.27826i
\(64\) 1.00000 0.125000
\(65\) −4.89898 −0.607644
\(66\) −0.449490 0.317837i −0.0553284 0.0391231i
\(67\) −5.17423 2.98735i −0.632133 0.364962i 0.149444 0.988770i \(-0.452251\pi\)
−0.781578 + 0.623808i \(0.785585\pi\)
\(68\) 6.29253i 0.763081i
\(69\) 1.12372 12.1958i 0.135281 1.46820i
\(70\) 5.44949 + 3.14626i 0.651339 + 0.376051i
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 1.94949 2.28024i 0.229750 0.268729i
\(73\) 5.39898 + 9.35131i 0.631903 + 1.09449i 0.987162 + 0.159720i \(0.0510591\pi\)
−0.355260 + 0.934768i \(0.615608\pi\)
\(74\) −0.674235 + 0.389270i −0.0783782 + 0.0452517i
\(75\) 5.17423 + 0.476756i 0.597469 + 0.0550510i
\(76\) 3.17423 2.98735i 0.364110 0.342672i
\(77\) 1.41421i 0.161165i
\(78\) −5.44949 + 2.51059i −0.617033 + 0.284268i
\(79\) 7.34847 4.24264i 0.826767 0.477334i −0.0259772 0.999663i \(-0.508270\pi\)
0.852745 + 0.522328i \(0.174936\pi\)
\(80\) −1.22474 0.707107i −0.136931 0.0790569i
\(81\) −1.39898 8.89060i −0.155442 0.987845i
\(82\) 1.50000 2.59808i 0.165647 0.286910i
\(83\) 14.1742i 1.55583i −0.628372 0.777913i \(-0.716279\pi\)
0.628372 0.777913i \(-0.283721\pi\)
\(84\) 7.67423 + 0.707107i 0.837328 + 0.0771517i
\(85\) −4.44949 + 7.70674i −0.482615 + 0.835914i
\(86\) 0.449490 0.778539i 0.0484697 0.0839520i
\(87\) 4.22474 + 0.389270i 0.452940 + 0.0417341i
\(88\) 0.317837i 0.0338816i
\(89\) 8.44949 14.6349i 0.895644 1.55130i 0.0626387 0.998036i \(-0.480048\pi\)
0.833005 0.553265i \(-0.186618\pi\)
\(90\) −4.00000 + 1.41421i −0.421637 + 0.149071i
\(91\) −13.3485 7.70674i −1.39930 0.807886i
\(92\) −6.12372 + 3.53553i −0.638442 + 0.368605i
\(93\) −6.67423 + 3.07483i −0.692086 + 0.318845i
\(94\) 6.43539i 0.663760i
\(95\) −6.00000 + 1.41421i −0.615587 + 0.145095i
\(96\) −1.72474 0.158919i −0.176031 0.0162196i
\(97\) −11.8485 + 6.84072i −1.20303 + 0.694570i −0.961228 0.275756i \(-0.911072\pi\)
−0.241802 + 0.970326i \(0.577738\pi\)
\(98\) 6.39898 + 11.0834i 0.646395 + 1.11959i
\(99\) 0.724745 + 0.619620i 0.0728396 + 0.0622742i
\(100\) −1.50000 2.59808i −0.150000 0.259808i
\(101\) −8.57321 4.94975i −0.853067 0.492518i 0.00861771 0.999963i \(-0.497257\pi\)
−0.861684 + 0.507445i \(0.830590\pi\)
\(102\) −1.00000 + 10.8530i −0.0990148 + 1.07461i
\(103\) 11.9494i 1.17741i 0.808349 + 0.588704i \(0.200362\pi\)
−0.808349 + 0.588704i \(0.799638\pi\)
\(104\) 3.00000 + 1.73205i 0.294174 + 0.169842i
\(105\) −8.89898 6.29253i −0.868451 0.614088i
\(106\) −1.10102 −0.106941
\(107\) 4.89898 0.473602 0.236801 0.971558i \(-0.423901\pi\)
0.236801 + 0.971558i \(0.423901\pi\)
\(108\) −3.72474 + 3.62302i −0.358414 + 0.348625i
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0.224745 0.389270i 0.0214286 0.0371154i
\(111\) 1.22474 0.564242i 0.116248 0.0535555i
\(112\) −2.22474 3.85337i −0.210219 0.364109i
\(113\) 0.797959 0.0750657 0.0375328 0.999295i \(-0.488050\pi\)
0.0375328 + 0.999295i \(0.488050\pi\)
\(114\) −5.94949 + 4.64796i −0.557221 + 0.435322i
\(115\) 10.0000 0.932505
\(116\) −1.22474 2.12132i −0.113715 0.196960i
\(117\) 9.79796 3.46410i 0.905822 0.320256i
\(118\) −3.27526 + 5.67291i −0.301512 + 0.522234i
\(119\) −24.2474 + 13.9993i −2.22276 + 1.28331i
\(120\) 2.00000 + 1.41421i 0.182574 + 0.129099i
\(121\) 10.8990 0.990816
\(122\) 6.44949 0.583909
\(123\) −3.00000 + 4.24264i −0.270501 + 0.382546i
\(124\) 3.67423 + 2.12132i 0.329956 + 0.190500i
\(125\) 11.3137i 1.01193i
\(126\) −13.1237 2.43916i −1.16915 0.217297i
\(127\) −9.00000 5.19615i −0.798621 0.461084i 0.0443678 0.999015i \(-0.485873\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −0.898979 + 1.27135i −0.0791507 + 0.111936i
\(130\) −2.44949 4.24264i −0.214834 0.372104i
\(131\) 19.0732 11.0119i 1.66643 0.962116i 0.696898 0.717171i \(-0.254563\pi\)
0.969537 0.244946i \(-0.0787702\pi\)
\(132\) 0.0505103 0.548188i 0.00439635 0.0477137i
\(133\) −18.5732 5.58542i −1.61050 0.484318i
\(134\) 5.97469i 0.516135i
\(135\) 7.12372 1.80348i 0.613113 0.155219i
\(136\) 5.44949 3.14626i 0.467290 0.269790i
\(137\) −6.39898 3.69445i −0.546702 0.315638i 0.201089 0.979573i \(-0.435552\pi\)
−0.747791 + 0.663935i \(0.768885\pi\)
\(138\) 11.1237 5.12472i 0.946914 0.436245i
\(139\) −0.174235 + 0.301783i −0.0147784 + 0.0255969i −0.873320 0.487147i \(-0.838038\pi\)
0.858542 + 0.512744i \(0.171371\pi\)
\(140\) 6.29253i 0.531816i
\(141\) −1.02270 + 11.0994i −0.0861272 + 0.934739i
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) −0.550510 + 0.953512i −0.0460360 + 0.0797367i
\(144\) 2.94949 + 0.548188i 0.245791 + 0.0456823i
\(145\) 3.46410i 0.287678i
\(146\) −5.39898 + 9.35131i −0.446823 + 0.773920i
\(147\) −9.27526 20.1329i −0.765010 1.66053i
\(148\) −0.674235 0.389270i −0.0554217 0.0319978i
\(149\) 4.22474 2.43916i 0.346105 0.199824i −0.316864 0.948471i \(-0.602630\pi\)
0.662968 + 0.748648i \(0.269296\pi\)
\(150\) 2.17423 + 4.71940i 0.177526 + 0.385337i
\(151\) 18.0990i 1.47288i −0.676503 0.736440i \(-0.736505\pi\)
0.676503 0.736440i \(-0.263495\pi\)
\(152\) 4.17423 + 1.25529i 0.338575 + 0.101818i
\(153\) 3.44949 18.5597i 0.278875 1.50047i
\(154\) 1.22474 0.707107i 0.0986928 0.0569803i
\(155\) −3.00000 5.19615i −0.240966 0.417365i
\(156\) −4.89898 3.46410i −0.392232 0.277350i
\(157\) 9.34847 + 16.1920i 0.746089 + 1.29226i 0.949684 + 0.313209i \(0.101404\pi\)
−0.203595 + 0.979055i \(0.565263\pi\)
\(158\) 7.34847 + 4.24264i 0.584613 + 0.337526i
\(159\) 1.89898 + 0.174973i 0.150599 + 0.0138762i
\(160\) 1.41421i 0.111803i
\(161\) 27.2474 + 15.7313i 2.14740 + 1.23980i
\(162\) 7.00000 5.65685i 0.549972 0.444444i
\(163\) 3.65153 0.286010 0.143005 0.989722i \(-0.454324\pi\)
0.143005 + 0.989722i \(0.454324\pi\)
\(164\) 3.00000 0.234261
\(165\) −0.449490 + 0.635674i −0.0349927 + 0.0494872i
\(166\) 12.2753 7.08712i 0.952745 0.550067i
\(167\) 2.44949 4.24264i 0.189547 0.328305i −0.755552 0.655089i \(-0.772631\pi\)
0.945099 + 0.326783i \(0.105965\pi\)
\(168\) 3.22474 + 6.99964i 0.248794 + 0.540034i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −8.89898 −0.682521
\(171\) 11.0000 7.07107i 0.841191 0.540738i
\(172\) 0.898979 0.0685465
\(173\) 5.44949 + 9.43879i 0.414317 + 0.717618i 0.995356 0.0962572i \(-0.0306871\pi\)
−0.581039 + 0.813875i \(0.697354\pi\)
\(174\) 1.77526 + 3.85337i 0.134582 + 0.292123i
\(175\) −6.67423 + 11.5601i −0.504525 + 0.873862i
\(176\) −0.275255 + 0.158919i −0.0207481 + 0.0119789i
\(177\) 6.55051 9.26382i 0.492367 0.696311i
\(178\) 16.8990 1.26663
\(179\) −22.3485 −1.67040 −0.835202 0.549944i \(-0.814649\pi\)
−0.835202 + 0.549944i \(0.814649\pi\)
\(180\) −3.22474 2.75699i −0.240358 0.205494i
\(181\) 11.3258 + 6.53893i 0.841838 + 0.486035i 0.857888 0.513836i \(-0.171776\pi\)
−0.0160509 + 0.999871i \(0.505109\pi\)
\(182\) 15.4135i 1.14252i
\(183\) −11.1237 1.02494i −0.822289 0.0757660i
\(184\) −6.12372 3.53553i −0.451447 0.260643i
\(185\) 0.550510 + 0.953512i 0.0404743 + 0.0701036i
\(186\) −6.00000 4.24264i −0.439941 0.311086i
\(187\) 1.00000 + 1.73205i 0.0731272 + 0.126660i
\(188\) 5.57321 3.21770i 0.406468 0.234675i
\(189\) 22.2474 + 6.29253i 1.61826 + 0.457714i
\(190\) −4.22474 4.48905i −0.306495 0.325670i
\(191\) 19.5133i 1.41193i 0.708247 + 0.705965i \(0.249486\pi\)
−0.708247 + 0.705965i \(0.750514\pi\)
\(192\) −0.724745 1.57313i −0.0523040 0.113531i
\(193\) −7.65153 + 4.41761i −0.550769 + 0.317987i −0.749432 0.662081i \(-0.769673\pi\)
0.198663 + 0.980068i \(0.436340\pi\)
\(194\) −11.8485 6.84072i −0.850671 0.491135i
\(195\) 3.55051 + 7.70674i 0.254257 + 0.551891i
\(196\) −6.39898 + 11.0834i −0.457070 + 0.791668i
\(197\) 0.492810i 0.0351113i −0.999846 0.0175556i \(-0.994412\pi\)
0.999846 0.0175556i \(-0.00558842\pi\)
\(198\) −0.174235 + 0.937458i −0.0123823 + 0.0666222i
\(199\) −3.44949 + 5.97469i −0.244528 + 0.423535i −0.961999 0.273054i \(-0.911966\pi\)
0.717471 + 0.696588i \(0.245300\pi\)
\(200\) 1.50000 2.59808i 0.106066 0.183712i
\(201\) −0.949490 + 10.3048i −0.0669718 + 0.726846i
\(202\) 9.89949i 0.696526i
\(203\) −5.44949 + 9.43879i −0.382479 + 0.662473i
\(204\) −9.89898 + 4.56048i −0.693067 + 0.319297i
\(205\) −3.67423 2.12132i −0.256620 0.148159i
\(206\) −10.3485 + 5.97469i −0.721012 + 0.416276i
\(207\) −20.0000 + 7.07107i −1.39010 + 0.491473i
\(208\) 3.46410i 0.240192i
\(209\) −0.398979 + 1.32673i −0.0275980 + 0.0917716i
\(210\) 1.00000 10.8530i 0.0690066 0.748929i
\(211\) 13.3485 7.70674i 0.918947 0.530554i 0.0356477 0.999364i \(-0.488651\pi\)
0.883299 + 0.468810i \(0.155317\pi\)
\(212\) −0.550510 0.953512i −0.0378092 0.0654875i
\(213\) 6.00000 8.48528i 0.411113 0.581402i
\(214\) 2.44949 + 4.24264i 0.167444 + 0.290021i
\(215\) −1.10102 0.635674i −0.0750890 0.0433526i
\(216\) −5.00000 1.41421i −0.340207 0.0962250i
\(217\) 18.8776i 1.28149i
\(218\) 0 0
\(219\) 10.7980 15.2706i 0.729658 1.03189i
\(220\) 0.449490 0.0303046
\(221\) 21.7980 1.46629
\(222\) 1.10102 + 0.778539i 0.0738957 + 0.0522521i
\(223\) −8.32577 + 4.80688i −0.557534 + 0.321893i −0.752155 0.658986i \(-0.770986\pi\)
0.194621 + 0.980879i \(0.437652\pi\)
\(224\) 2.22474 3.85337i 0.148647 0.257464i
\(225\) −3.00000 8.48528i −0.200000 0.565685i
\(226\) 0.398979 + 0.691053i 0.0265397 + 0.0459681i
\(227\) 5.44949 0.361695 0.180848 0.983511i \(-0.442116\pi\)
0.180848 + 0.983511i \(0.442116\pi\)
\(228\) −7.00000 2.82843i −0.463586 0.187317i
\(229\) −8.89898 −0.588061 −0.294031 0.955796i \(-0.594997\pi\)
−0.294031 + 0.955796i \(0.594997\pi\)
\(230\) 5.00000 + 8.66025i 0.329690 + 0.571040i
\(231\) −2.22474 + 1.02494i −0.146377 + 0.0674364i
\(232\) 1.22474 2.12132i 0.0804084 0.139272i
\(233\) −5.60102 + 3.23375i −0.366935 + 0.211850i −0.672119 0.740443i \(-0.734616\pi\)
0.305184 + 0.952294i \(0.401282\pi\)
\(234\) 7.89898 + 6.75323i 0.516372 + 0.441472i
\(235\) −9.10102 −0.593685
\(236\) −6.55051 −0.426402
\(237\) −12.0000 8.48528i −0.779484 0.551178i
\(238\) −24.2474 13.9993i −1.57173 0.907438i
\(239\) 7.21393i 0.466630i 0.972401 + 0.233315i \(0.0749574\pi\)
−0.972401 + 0.233315i \(0.925043\pi\)
\(240\) −0.224745 + 2.43916i −0.0145072 + 0.157447i
\(241\) 8.84847 + 5.10867i 0.569980 + 0.329078i 0.757141 0.653251i \(-0.226595\pi\)
−0.187161 + 0.982329i \(0.559929\pi\)
\(242\) 5.44949 + 9.43879i 0.350306 + 0.606749i
\(243\) −12.9722 + 8.64420i −0.832167 + 0.554526i
\(244\) 3.22474 + 5.58542i 0.206443 + 0.357570i
\(245\) 15.6742 9.04952i 1.00139 0.578153i
\(246\) −5.17423 0.476756i −0.329897 0.0303968i
\(247\) 10.3485 + 10.9959i 0.658457 + 0.699651i
\(248\) 4.24264i 0.269408i
\(249\) −22.2980 + 10.2727i −1.41308 + 0.651007i
\(250\) −9.79796 + 5.65685i −0.619677 + 0.357771i
\(251\) −5.72474 3.30518i −0.361343 0.208621i 0.308327 0.951280i \(-0.400231\pi\)
−0.669670 + 0.742659i \(0.733564\pi\)
\(252\) −4.44949 12.5851i −0.280292 0.792784i
\(253\) 1.12372 1.94635i 0.0706479 0.122366i
\(254\) 10.3923i 0.652071i
\(255\) 15.3485 + 1.41421i 0.961158 + 0.0885615i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.50000 + 12.9904i −0.467837 + 0.810318i −0.999325 0.0367485i \(-0.988300\pi\)
0.531487 + 0.847066i \(0.321633\pi\)
\(258\) −1.55051 0.142865i −0.0965306 0.00889436i
\(259\) 3.46410i 0.215249i
\(260\) 2.44949 4.24264i 0.151911 0.263117i
\(261\) −2.44949 6.92820i −0.151620 0.428845i
\(262\) 19.0732 + 11.0119i 1.17835 + 0.680319i
\(263\) 10.2247 5.90326i 0.630485 0.364011i −0.150455 0.988617i \(-0.548074\pi\)
0.780940 + 0.624606i \(0.214741\pi\)
\(264\) 0.500000 0.230351i 0.0307729 0.0141771i
\(265\) 1.55708i 0.0956506i
\(266\) −4.44949 18.8776i −0.272816 1.15746i
\(267\) −29.1464 2.68556i −1.78373 0.164354i
\(268\) 5.17423 2.98735i 0.316067 0.182481i
\(269\) −12.2474 21.2132i −0.746740 1.29339i −0.949377 0.314138i \(-0.898285\pi\)
0.202637 0.979254i \(-0.435049\pi\)
\(270\) 5.12372 + 5.26758i 0.311820 + 0.320575i
\(271\) −12.0227 20.8239i −0.730327 1.26496i −0.956743 0.290933i \(-0.906034\pi\)
0.226416 0.974031i \(-0.427299\pi\)
\(272\) 5.44949 + 3.14626i 0.330424 + 0.190770i
\(273\) −2.44949 + 26.5843i −0.148250 + 1.60896i
\(274\) 7.38891i 0.446380i
\(275\) 0.825765 + 0.476756i 0.0497955 + 0.0287495i
\(276\) 10.0000 + 7.07107i 0.601929 + 0.425628i
\(277\) −4.24745 −0.255204 −0.127602 0.991825i \(-0.540728\pi\)
−0.127602 + 0.991825i \(0.540728\pi\)
\(278\) −0.348469 −0.0208998
\(279\) 9.67423 + 8.27098i 0.579181 + 0.495171i
\(280\) −5.44949 + 3.14626i −0.325669 + 0.188025i
\(281\) −8.29796 + 14.3725i −0.495015 + 0.857391i −0.999983 0.00574696i \(-0.998171\pi\)
0.504969 + 0.863138i \(0.331504\pi\)
\(282\) −10.1237 + 4.66402i −0.602859 + 0.277738i
\(283\) 2.27526 + 3.94086i 0.135250 + 0.234260i 0.925693 0.378276i \(-0.123483\pi\)
−0.790443 + 0.612536i \(0.790150\pi\)
\(284\) −6.00000 −0.356034
\(285\) 6.57321 + 8.41385i 0.389364 + 0.498393i
\(286\) −1.10102 −0.0651047
\(287\) −6.67423 11.5601i −0.393968 0.682372i
\(288\) 1.00000 + 2.82843i 0.0589256 + 0.166667i
\(289\) 11.2980 19.5686i 0.664586 1.15110i
\(290\) −3.00000 + 1.73205i −0.176166 + 0.101710i
\(291\) 19.3485 + 13.6814i 1.13423 + 0.802020i
\(292\) −10.7980 −0.631903
\(293\) −4.65153 −0.271745 −0.135873 0.990726i \(-0.543384\pi\)
−0.135873 + 0.990726i \(0.543384\pi\)
\(294\) 12.7980 18.0990i 0.746392 1.05556i
\(295\) 8.02270 + 4.63191i 0.467100 + 0.269680i
\(296\) 0.778539i 0.0452517i
\(297\) 0.449490 1.58919i 0.0260820 0.0922139i
\(298\) 4.22474 + 2.43916i 0.244733 + 0.141297i
\(299\) −12.2474 21.2132i −0.708288 1.22679i
\(300\) −3.00000 + 4.24264i −0.173205 + 0.244949i
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 15.6742 9.04952i 0.901951 0.520742i
\(303\) −1.57321 + 17.0741i −0.0903788 + 0.980882i
\(304\) 1.00000 + 4.24264i 0.0573539 + 0.243332i
\(305\) 9.12096i 0.522264i
\(306\) 17.7980 6.29253i 1.01744 0.359720i
\(307\) −3.52270 + 2.03383i −0.201051 + 0.116077i −0.597146 0.802133i \(-0.703699\pi\)
0.396094 + 0.918210i \(0.370365\pi\)
\(308\) 1.22474 + 0.707107i 0.0697863 + 0.0402911i
\(309\) 18.7980 8.66025i 1.06938 0.492665i
\(310\) 3.00000 5.19615i 0.170389 0.295122i
\(311\) 15.5563i 0.882120i −0.897478 0.441060i \(-0.854603\pi\)
0.897478 0.441060i \(-0.145397\pi\)
\(312\) 0.550510 5.97469i 0.0311665 0.338250i
\(313\) 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i \(-0.652902\pi\)
0.999065 0.0432311i \(-0.0137652\pi\)
\(314\) −9.34847 + 16.1920i −0.527565 + 0.913769i
\(315\) −3.44949 + 18.5597i −0.194357 + 1.04572i
\(316\) 8.48528i 0.477334i
\(317\) −3.00000 + 5.19615i −0.168497 + 0.291845i −0.937892 0.346929i \(-0.887225\pi\)
0.769395 + 0.638774i \(0.220558\pi\)
\(318\) 0.797959 + 1.73205i 0.0447473 + 0.0971286i
\(319\) 0.674235 + 0.389270i 0.0377499 + 0.0217949i
\(320\) 1.22474 0.707107i 0.0684653 0.0395285i
\(321\) −3.55051 7.70674i −0.198170 0.430148i
\(322\) 31.4626i 1.75334i
\(323\) 26.6969 6.29253i 1.48546 0.350126i
\(324\) 8.39898 + 3.23375i 0.466610 + 0.179653i
\(325\) 9.00000 5.19615i 0.499230 0.288231i
\(326\) 1.82577 + 3.16232i 0.101120 + 0.175145i
\(327\) 0 0
\(328\) 1.50000 + 2.59808i 0.0828236 + 0.143455i
\(329\) −24.7980 14.3171i −1.36716 0.789328i
\(330\) −0.775255 0.0714323i −0.0426764 0.00393222i
\(331\) 14.8099i 0.814027i 0.913422 + 0.407013i \(0.133430\pi\)
−0.913422 + 0.407013i \(0.866570\pi\)
\(332\) 12.2753 + 7.08712i 0.673692 + 0.388956i
\(333\) −1.77526 1.51775i −0.0972834 0.0831724i
\(334\) 4.89898 0.268060
\(335\) −8.44949 −0.461645
\(336\) −4.44949 + 6.29253i −0.242740 + 0.343286i
\(337\) −3.15153 + 1.81954i −0.171675 + 0.0991165i −0.583375 0.812203i \(-0.698268\pi\)
0.411701 + 0.911319i \(0.364935\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) −0.578317 1.25529i −0.0314099 0.0681783i
\(340\) −4.44949 7.70674i −0.241307 0.417957i
\(341\) −1.34847 −0.0730237
\(342\) 11.6237 + 5.99075i 0.628539 + 0.323942i
\(343\) 25.7980 1.39296
\(344\) 0.449490 + 0.778539i 0.0242349 + 0.0419760i
\(345\) −7.24745 15.7313i −0.390190 0.846946i
\(346\) −5.44949 + 9.43879i −0.292966 + 0.507433i
\(347\) 5.72474 3.30518i 0.307320 0.177432i −0.338406 0.941000i \(-0.609888\pi\)
0.645727 + 0.763569i \(0.276555\pi\)
\(348\) −2.44949 + 3.46410i −0.131306 + 0.185695i
\(349\) −16.4949 −0.882952 −0.441476 0.897273i \(-0.645545\pi\)
−0.441476 + 0.897273i \(0.645545\pi\)
\(350\) −13.3485 −0.713506
\(351\) −12.5505 12.9029i −0.669897 0.688706i
\(352\) −0.275255 0.158919i −0.0146711 0.00847039i
\(353\) 14.6028i 0.777231i −0.921400 0.388615i \(-0.872954\pi\)
0.921400 0.388615i \(-0.127046\pi\)
\(354\) 11.2980 + 1.04100i 0.600480 + 0.0553284i
\(355\) 7.34847 + 4.24264i 0.390016 + 0.225176i
\(356\) 8.44949 + 14.6349i 0.447822 + 0.775651i
\(357\) 39.5959 + 27.9985i 2.09564 + 1.48184i
\(358\) −11.1742 19.3543i −0.590577 1.02291i
\(359\) −20.8207 + 12.0208i −1.09887 + 0.634434i −0.935925 0.352200i \(-0.885434\pi\)
−0.162948 + 0.986635i \(0.552100\pi\)
\(360\) 0.775255 4.17121i 0.0408595 0.219842i
\(361\) 15.8485 + 10.4798i 0.834130 + 0.551568i
\(362\) 13.0779i 0.687357i
\(363\) −7.89898 17.1455i −0.414589 0.899907i
\(364\) 13.3485 7.70674i 0.699650 0.403943i
\(365\) 13.2247 + 7.63531i 0.692215 + 0.399650i
\(366\) −4.67423 10.1459i −0.244326 0.530335i
\(367\) 11.6742 20.2204i 0.609390 1.05549i −0.381951 0.924183i \(-0.624748\pi\)
0.991341 0.131312i \(-0.0419190\pi\)
\(368\) 7.07107i 0.368605i
\(369\) 8.84847 + 1.64456i 0.460633 + 0.0856126i
\(370\) −0.550510 + 0.953512i −0.0286197 + 0.0495707i
\(371\) −2.44949 + 4.24264i −0.127171 + 0.220267i
\(372\) 0.674235 7.31747i 0.0349574 0.379393i
\(373\) 25.4558i 1.31805i 0.752119 + 0.659027i \(0.229032\pi\)
−0.752119 + 0.659027i \(0.770968\pi\)
\(374\) −1.00000 + 1.73205i −0.0517088 + 0.0895622i
\(375\) 17.7980 8.19955i 0.919083 0.423423i
\(376\) 5.57321 + 3.21770i 0.287417 + 0.165940i
\(377\) 7.34847 4.24264i 0.378465 0.218507i
\(378\) 5.67423 + 22.4131i 0.291851 + 1.15281i
\(379\) 15.4135i 0.791738i −0.918307 0.395869i \(-0.870444\pi\)
0.918307 0.395869i \(-0.129556\pi\)
\(380\) 1.77526 5.90326i 0.0910687 0.302831i
\(381\) −1.65153 + 17.9241i −0.0846105 + 0.918278i
\(382\) −16.8990 + 9.75663i −0.864627 + 0.499193i
\(383\) 7.77526 + 13.4671i 0.397297 + 0.688139i 0.993391 0.114776i \(-0.0366150\pi\)
−0.596094 + 0.802914i \(0.703282\pi\)
\(384\) 1.00000 1.41421i 0.0510310 0.0721688i
\(385\) −1.00000 1.73205i −0.0509647 0.0882735i
\(386\) −7.65153 4.41761i −0.389453 0.224851i
\(387\) 2.65153 + 0.492810i 0.134785 + 0.0250509i
\(388\) 13.6814i 0.694570i
\(389\) −22.8990 13.2207i −1.16102 0.670318i −0.209475 0.977814i \(-0.567176\pi\)
−0.951549 + 0.307496i \(0.900509\pi\)
\(390\) −4.89898 + 6.92820i −0.248069 + 0.350823i
\(391\) −44.4949 −2.25020
\(392\) −12.7980 −0.646395
\(393\) −31.1464 22.0239i −1.57113 1.11096i
\(394\) 0.426786 0.246405i 0.0215012 0.0124137i
\(395\) 6.00000 10.3923i 0.301893 0.522894i
\(396\) −0.898979 + 0.317837i −0.0451754 + 0.0159719i
\(397\) −4.67423 8.09601i −0.234593 0.406327i 0.724561 0.689210i \(-0.242042\pi\)
−0.959154 + 0.282883i \(0.908709\pi\)
\(398\) −6.89898 −0.345815
\(399\) 4.67423 + 33.2661i 0.234004 + 1.66539i
\(400\) 3.00000 0.150000
\(401\) 6.39898 + 11.0834i 0.319550 + 0.553476i 0.980394 0.197047i \(-0.0631350\pi\)
−0.660844 + 0.750523i \(0.729802\pi\)
\(402\) −9.39898 + 4.33013i −0.468778 + 0.215967i
\(403\) −7.34847 + 12.7279i −0.366053 + 0.634023i
\(404\) 8.57321 4.94975i 0.426533 0.246259i
\(405\) −8.00000 9.89949i −0.397523 0.491910i
\(406\) −10.8990 −0.540907
\(407\) 0.247449 0.0122656
\(408\) −8.89898 6.29253i −0.440565 0.311527i
\(409\) 17.8485 + 10.3048i 0.882550 + 0.509540i 0.871498 0.490398i \(-0.163149\pi\)
0.0110517 + 0.999939i \(0.496482\pi\)
\(410\) 4.24264i 0.209529i
\(411\) −1.17423 + 12.7440i −0.0579207 + 0.628614i
\(412\) −10.3485 5.97469i −0.509832 0.294352i
\(413\) 14.5732 + 25.2415i 0.717101 + 1.24206i
\(414\) −16.1237 13.7850i −0.792438 0.677495i
\(415\) −10.0227 17.3598i −0.491995 0.852161i
\(416\) −3.00000 + 1.73205i −0.147087 + 0.0849208i
\(417\) 0.601021 + 0.0553782i 0.0294321 + 0.00271188i
\(418\) −1.34847 + 0.317837i −0.0659558 + 0.0155459i
\(419\) 3.74983i 0.183191i 0.995796 + 0.0915956i \(0.0291967\pi\)
−0.995796 + 0.0915956i \(0.970803\pi\)
\(420\) 9.89898 4.56048i 0.483021 0.222529i
\(421\) −26.0227 + 15.0242i −1.26827 + 0.732235i −0.974660 0.223690i \(-0.928190\pi\)
−0.293609 + 0.955926i \(0.594856\pi\)
\(422\) 13.3485 + 7.70674i 0.649793 + 0.375158i
\(423\) 18.2020 6.43539i 0.885014 0.312900i
\(424\) 0.550510 0.953512i 0.0267351 0.0463066i
\(425\) 18.8776i 0.915697i
\(426\) 10.3485 + 0.953512i 0.501385 + 0.0461978i
\(427\) 14.3485 24.8523i 0.694371 1.20269i
\(428\) −2.44949 + 4.24264i −0.118401 + 0.205076i
\(429\) 1.89898 + 0.174973i 0.0916836 + 0.00844776i
\(430\) 1.27135i 0.0613099i
\(431\) 16.3485 28.3164i 0.787478 1.36395i −0.140029 0.990147i \(-0.544720\pi\)
0.927507 0.373805i \(-0.121947\pi\)
\(432\) −1.27526 5.03723i −0.0613557 0.242354i
\(433\) 11.6969 + 6.75323i 0.562119 + 0.324540i 0.753996 0.656880i \(-0.228124\pi\)
−0.191877 + 0.981419i \(0.561457\pi\)
\(434\) 16.3485 9.43879i 0.784752 0.453077i
\(435\) 5.44949 2.51059i 0.261283 0.120374i
\(436\) 0 0
\(437\) −21.1237 22.4452i −1.01048 1.07370i
\(438\) 18.6237 + 1.71600i 0.889876 + 0.0819935i
\(439\) −2.32577 + 1.34278i −0.111003 + 0.0640875i −0.554474 0.832201i \(-0.687080\pi\)
0.443471 + 0.896289i \(0.353747\pi\)
\(440\) 0.224745 + 0.389270i 0.0107143 + 0.0185577i
\(441\) −24.9495 + 29.1824i −1.18807 + 1.38964i
\(442\) 10.8990 + 18.8776i 0.518412 + 0.897915i
\(443\) 25.3207 + 14.6189i 1.20302 + 0.694564i 0.961226 0.275763i \(-0.0889304\pi\)
0.241795 + 0.970327i \(0.422264\pi\)
\(444\) −0.123724 + 1.34278i −0.00587170 + 0.0637256i
\(445\) 23.8988i 1.13291i
\(446\) −8.32577 4.80688i −0.394236 0.227613i
\(447\) −6.89898 4.87832i −0.326311 0.230736i
\(448\) 4.44949 0.210219
\(449\) 11.2020 0.528657 0.264329 0.964433i \(-0.414850\pi\)
0.264329 + 0.964433i \(0.414850\pi\)
\(450\) 5.84847 6.84072i 0.275699 0.322474i
\(451\) −0.825765 + 0.476756i −0.0388838 + 0.0224496i
\(452\) −0.398979 + 0.691053i −0.0187664 + 0.0325044i
\(453\) −28.4722 + 13.1172i −1.33774 + 0.616299i
\(454\) 2.72474 + 4.71940i 0.127879 + 0.221492i
\(455\) −21.7980 −1.02190
\(456\) −1.05051 7.47639i −0.0491947 0.350114i
\(457\) −13.0000 −0.608114 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(458\) −4.44949 7.70674i −0.207911 0.360112i
\(459\) −31.6969 + 8.02458i −1.47949 + 0.374555i
\(460\) −5.00000 + 8.66025i −0.233126 + 0.403786i
\(461\) −8.75255 + 5.05329i −0.407647 + 0.235355i −0.689778 0.724021i \(-0.742292\pi\)
0.282131 + 0.959376i \(0.408959\pi\)
\(462\) −2.00000 1.41421i −0.0930484 0.0657952i
\(463\) −0.202041 −0.00938964 −0.00469482 0.999989i \(-0.501494\pi\)
−0.00469482 + 0.999989i \(0.501494\pi\)
\(464\) 2.44949 0.113715
\(465\) −6.00000 + 8.48528i −0.278243 + 0.393496i
\(466\) −5.60102 3.23375i −0.259462 0.149801i
\(467\) 32.4162i 1.50004i 0.661415 + 0.750020i \(0.269956\pi\)
−0.661415 + 0.750020i \(0.730044\pi\)
\(468\) −1.89898 + 10.2173i −0.0877804 + 0.472296i
\(469\) −23.0227 13.2922i −1.06309 0.613775i
\(470\) −4.55051 7.88171i −0.209899 0.363556i
\(471\) 18.6969 26.4415i 0.861509 1.21836i
\(472\) −3.27526 5.67291i −0.150756 0.261117i
\(473\) −0.247449 + 0.142865i −0.0113777 + 0.00656892i
\(474\) 1.34847 14.6349i 0.0619372 0.672205i
\(475\) 9.52270 8.96204i 0.436932 0.411206i
\(476\) 27.9985i 1.28331i
\(477\) −1.10102 3.11416i −0.0504123 0.142587i
\(478\) −6.24745 + 3.60697i −0.285752 + 0.164979i
\(479\) 35.1464 + 20.2918i 1.60588 + 0.927156i 0.990278 + 0.139099i \(0.0444208\pi\)
0.615603 + 0.788057i \(0.288913\pi\)
\(480\) −2.22474 + 1.02494i −0.101545 + 0.0467821i
\(481\) 1.34847 2.33562i 0.0614849 0.106495i
\(482\) 10.2173i 0.465387i
\(483\) 5.00000 54.2650i 0.227508 2.46914i
\(484\) −5.44949 + 9.43879i −0.247704 + 0.429036i
\(485\) −9.67423 + 16.7563i −0.439284 + 0.760863i
\(486\) −13.9722 6.91215i −0.633792 0.313541i
\(487\) 16.5420i 0.749588i 0.927108 + 0.374794i \(0.122287\pi\)
−0.927108 + 0.374794i \(0.877713\pi\)
\(488\) −3.22474 + 5.58542i −0.145977 + 0.252840i
\(489\) −2.64643 5.74434i −0.119676 0.259768i
\(490\) 15.6742 + 9.04952i 0.708090 + 0.408816i
\(491\) −4.10102 + 2.36773i −0.185076 + 0.106854i −0.589676 0.807640i \(-0.700744\pi\)
0.404599 + 0.914494i \(0.367411\pi\)
\(492\) −2.17423 4.71940i −0.0980221 0.212767i
\(493\) 15.4135i 0.694188i
\(494\) −4.34847 + 14.4600i −0.195647 + 0.650585i
\(495\) 1.32577 + 0.246405i 0.0595887 + 0.0110751i
\(496\) −3.67423 + 2.12132i −0.164978 + 0.0952501i
\(497\) 13.3485 + 23.1202i 0.598761 + 1.03708i
\(498\) −20.0454 14.1742i −0.898256 0.635163i
\(499\) −1.27526 2.20881i −0.0570883 0.0988798i 0.836069 0.548624i \(-0.184848\pi\)
−0.893157 + 0.449745i \(0.851515\pi\)
\(500\) −9.79796 5.65685i −0.438178 0.252982i
\(501\) −8.44949 0.778539i −0.377495 0.0347826i
\(502\) 6.61037i 0.295035i
\(503\) 13.4722 + 7.77817i 0.600695 + 0.346812i 0.769315 0.638870i \(-0.220598\pi\)
−0.168620 + 0.985681i \(0.553931\pi\)
\(504\) 8.67423 10.1459i 0.386381 0.451934i
\(505\) −14.0000 −0.622992
\(506\) 2.24745 0.0999113
\(507\) −1.00000 + 1.41421i −0.0444116 + 0.0628074i
\(508\) 9.00000 5.19615i 0.399310 0.230542i
\(509\) −20.6969 + 35.8481i −0.917376 + 1.58894i −0.113990 + 0.993482i \(0.536363\pi\)
−0.803385 + 0.595459i \(0.796970\pi\)
\(510\) 6.44949 + 13.9993i 0.285588 + 0.619898i
\(511\) 24.0227 + 41.6085i 1.06270 + 1.84065i
\(512\) −1.00000 −0.0441942
\(513\) −19.0959 12.1797i −0.843105 0.537748i
\(514\) −15.0000 −0.661622
\(515\) 8.44949 + 14.6349i 0.372329 + 0.644893i
\(516\) −0.651531 1.41421i −0.0286820 0.0622573i
\(517\) −1.02270 + 1.77138i −0.0449785 + 0.0779050i
\(518\) −3.00000 + 1.73205i −0.131812 + 0.0761019i
\(519\) 10.8990 15.4135i 0.478412 0.676577i
\(520\) 4.89898 0.214834
\(521\) −16.1010 −0.705399 −0.352699 0.935737i \(-0.614736\pi\)
−0.352699 + 0.935737i \(0.614736\pi\)
\(522\) 4.77526 5.58542i 0.209007 0.244467i
\(523\) 23.6969 + 13.6814i 1.03619 + 0.598247i 0.918753 0.394832i \(-0.129197\pi\)
0.117442 + 0.993080i \(0.462531\pi\)
\(524\) 22.0239i 0.962116i
\(525\) 23.0227 + 2.12132i 1.00479 + 0.0925820i
\(526\) 10.2247 + 5.90326i 0.445820 + 0.257394i
\(527\) 13.3485 + 23.1202i 0.581468 + 1.00713i
\(528\) 0.449490 + 0.317837i 0.0195615 + 0.0138321i
\(529\) 13.5000 + 23.3827i 0.586957 + 1.01664i
\(530\) −1.34847 + 0.778539i −0.0585738 + 0.0338176i
\(531\) −19.3207 3.59091i −0.838445 0.155832i
\(532\) 14.1237 13.2922i 0.612341 0.576288i
\(533\) 10.3923i 0.450141i
\(534\) −12.2474 26.5843i −0.529999 1.15042i
\(535\) 6.00000 3.46410i 0.259403 0.149766i
\(536\) 5.17423 + 2.98735i 0.223493 + 0.129034i
\(537\) 16.1969 + 35.1571i 0.698949 + 1.51714i
\(538\) 12.2474 21.2132i 0.528025 0.914566i
\(539\) 4.06767i 0.175207i
\(540\) −2.00000 + 7.07107i −0.0860663 + 0.304290i
\(541\) 9.34847 16.1920i 0.401922 0.696149i −0.592036 0.805912i \(-0.701676\pi\)
0.993958 + 0.109762i \(0.0350089\pi\)
\(542\) 12.0227 20.8239i 0.516419 0.894465i
\(543\) 2.07832 22.5560i 0.0891891 0.967970i
\(544\) 6.29253i 0.269790i
\(545\) 0 0
\(546\) −24.2474 + 11.1708i −1.03770 + 0.478068i
\(547\) 26.3939 + 15.2385i 1.12852 + 0.651552i 0.943562 0.331195i \(-0.107452\pi\)
0.184958 + 0.982746i \(0.440785\pi\)
\(548\) 6.39898 3.69445i 0.273351 0.157819i
\(549\) 6.44949 + 18.2419i 0.275258 + 0.778546i
\(550\) 0.953512i 0.0406579i
\(551\) 7.77526 7.31747i 0.331237 0.311735i
\(552\) −1.12372 + 12.1958i −0.0478289 + 0.519087i
\(553\) 32.6969 18.8776i 1.39042 0.802757i
\(554\) −2.12372 3.67840i −0.0902284 0.156280i
\(555\) 1.10102 1.55708i 0.0467357 0.0660943i
\(556\) −0.174235 0.301783i −0.00738919 0.0127985i
\(557\) −24.2474 13.9993i −1.02740 0.593168i −0.111159 0.993803i \(-0.535456\pi\)
−0.916238 + 0.400634i \(0.868790\pi\)
\(558\) −2.32577 + 12.5136i −0.0984575 + 0.529744i
\(559\) 3.11416i 0.131715i
\(560\) −5.44949 3.14626i −0.230283 0.132954i
\(561\) 2.00000 2.82843i 0.0844401 0.119416i
\(562\) −16.5959 −0.700057
\(563\) −22.8434 −0.962733 −0.481367 0.876519i \(-0.659859\pi\)
−0.481367 + 0.876519i \(0.659859\pi\)
\(564\) −9.10102 6.43539i −0.383222 0.270979i
\(565\) 0.977296 0.564242i 0.0411152 0.0237378i
\(566\) −2.27526 + 3.94086i −0.0956361 + 0.165647i
\(567\) −6.22474 39.5587i −0.261415 1.66131i
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) 34.2929 1.43763 0.718816 0.695201i \(-0.244685\pi\)
0.718816 + 0.695201i \(0.244685\pi\)
\(570\) −4.00000 + 9.89949i −0.167542 + 0.414644i
\(571\) −11.0454 −0.462236 −0.231118 0.972926i \(-0.574238\pi\)
−0.231118 + 0.972926i \(0.574238\pi\)
\(572\) −0.550510 0.953512i −0.0230180 0.0398683i
\(573\) 30.6969 14.1421i 1.28238 0.590796i
\(574\) 6.67423 11.5601i 0.278577 0.482510i
\(575\) −18.3712 + 10.6066i −0.766131 + 0.442326i
\(576\) −1.94949 + 2.28024i −0.0812287 + 0.0950100i
\(577\) −20.5959 −0.857419 −0.428710 0.903442i \(-0.641032\pi\)
−0.428710 + 0.903442i \(0.641032\pi\)
\(578\) 22.5959 0.939866
\(579\) 12.4949 + 8.83523i 0.519270 + 0.367179i
\(580\) −3.00000 1.73205i −0.124568 0.0719195i
\(581\) 63.0682i 2.61651i
\(582\) −2.17423 + 23.5970i −0.0901249 + 0.978126i
\(583\) 0.303062 + 0.174973i 0.0125515 + 0.00724663i
\(584\) −5.39898 9.35131i −0.223411 0.386960i
\(585\) 9.55051 11.1708i 0.394865 0.461858i
\(586\) −2.32577 4.02834i −0.0960765 0.166409i
\(587\) −4.10102 + 2.36773i −0.169267 + 0.0977265i −0.582240 0.813017i \(-0.697824\pi\)
0.412973 + 0.910743i \(0.364490\pi\)
\(588\) 22.0732 + 2.03383i 0.910284 + 0.0838739i
\(589\) −5.32577 + 17.7098i −0.219444 + 0.729719i
\(590\) 9.26382i 0.381385i
\(591\) −0.775255 + 0.357161i −0.0318897 + 0.0146917i
\(592\) 0.674235 0.389270i 0.0277109 0.0159989i
\(593\) −24.0959 13.9118i −0.989501 0.571289i −0.0843757 0.996434i \(-0.526890\pi\)
−0.905125 + 0.425145i \(0.860223\pi\)
\(594\) 1.60102 0.405324i 0.0656907 0.0166306i
\(595\) −19.7980 + 34.2911i −0.811637 + 1.40580i
\(596\) 4.87832i 0.199824i
\(597\) 11.8990 + 1.09638i 0.486993 + 0.0448717i
\(598\) 12.2474 21.2132i 0.500835 0.867472i
\(599\) 14.5732 25.2415i 0.595445 1.03134i −0.398038 0.917369i \(-0.630309\pi\)
0.993484 0.113973i \(-0.0363577\pi\)
\(600\) −5.17423 0.476756i −0.211237 0.0194635i
\(601\) 31.0019i 1.26460i −0.774725 0.632298i \(-0.782112\pi\)
0.774725 0.632298i \(-0.217888\pi\)
\(602\) 2.00000 3.46410i 0.0815139 0.141186i
\(603\) 16.8990 5.97469i 0.688180 0.243308i
\(604\) 15.6742 + 9.04952i 0.637776 + 0.368220i
\(605\) 13.3485 7.70674i 0.542692 0.313324i
\(606\) −15.5732 + 7.17461i −0.632619 + 0.291449i
\(607\) 36.9766i 1.50084i 0.660964 + 0.750418i \(0.270148\pi\)
−0.660964 + 0.750418i \(0.729852\pi\)
\(608\) −3.17423 + 2.98735i −0.128732 + 0.121153i
\(609\) 18.7980 + 1.73205i 0.761732 + 0.0701862i
\(610\) 7.89898 4.56048i 0.319820 0.184648i
\(611\) 11.1464 + 19.3062i 0.450936 + 0.781044i
\(612\) 14.3485 + 12.2672i 0.580002 + 0.495873i
\(613\) −14.1010 24.4237i −0.569535 0.986463i −0.996612 0.0822481i \(-0.973790\pi\)
0.427077 0.904215i \(-0.359543\pi\)
\(614\) −3.52270 2.03383i −0.142165 0.0820789i
\(615\) −0.674235 + 7.31747i −0.0271878 + 0.295069i
\(616\) 1.41421i 0.0569803i
\(617\) 12.9495 + 7.47639i 0.521327 + 0.300988i 0.737477 0.675372i \(-0.236017\pi\)
−0.216151 + 0.976360i \(0.569350\pi\)
\(618\) 16.8990 + 11.9494i 0.679777 + 0.480675i
\(619\) −1.30306 −0.0523745 −0.0261872 0.999657i \(-0.508337\pi\)
−0.0261872 + 0.999657i \(0.508337\pi\)
\(620\) 6.00000 0.240966
\(621\) 25.6186 + 26.3379i 1.02804 + 1.05690i
\(622\) 13.4722 7.77817i 0.540186 0.311876i
\(623\) 37.5959 65.1180i 1.50625 2.60890i
\(624\) 5.44949 2.51059i 0.218154 0.100504i
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) 19.0000 0.759393
\(627\) 2.37628 0.333891i 0.0948993 0.0133343i
\(628\) −18.6969 −0.746089
\(629\) −2.44949 4.24264i −0.0976676 0.169165i
\(630\) −17.7980 + 6.29253i −0.709088 + 0.250700i
\(631\) 4.87628 8.44596i 0.194121 0.336228i −0.752491 0.658603i \(-0.771148\pi\)
0.946612 + 0.322375i \(0.104481\pi\)
\(632\) −7.34847 + 4.24264i −0.292306 + 0.168763i
\(633\) −21.7980 15.4135i −0.866391 0.612631i
\(634\) −6.00000 −0.238290
\(635\) −14.6969 −0.583230
\(636\) −1.10102 + 1.55708i −0.0436583 + 0.0617422i
\(637\) −38.3939 22.1667i −1.52122 0.878277i
\(638\) 0.778539i 0.0308227i
\(639\) −17.6969 3.28913i −0.700080 0.130116i
\(640\) 1.22474 + 0.707107i 0.0484123 + 0.0279508i
\(641\) 16.1969 + 28.0539i 0.639741 + 1.10806i 0.985490 + 0.169736i \(0.0542916\pi\)
−0.345749 + 0.938327i \(0.612375\pi\)
\(642\) 4.89898 6.92820i 0.193347 0.273434i
\(643\) 12.0732 + 20.9114i 0.476121 + 0.824666i 0.999626 0.0273569i \(-0.00870906\pi\)
−0.523505 + 0.852023i \(0.675376\pi\)
\(644\) −27.2474 + 15.7313i −1.07370 + 0.619901i
\(645\) −0.202041 + 2.19275i −0.00795536 + 0.0863396i
\(646\) 18.7980 + 19.9740i 0.739596 + 0.785865i
\(647\) 7.84961i 0.308600i −0.988024 0.154300i \(-0.950688\pi\)
0.988024 0.154300i \(-0.0493122\pi\)
\(648\) 1.39898 + 8.89060i 0.0549571 + 0.349256i
\(649\) 1.80306 1.04100i 0.0707764 0.0408627i
\(650\) 9.00000 + 5.19615i 0.353009 + 0.203810i
\(651\) −29.6969 + 13.6814i −1.16391 + 0.536218i
\(652\) −1.82577 + 3.16232i −0.0715025 + 0.123846i
\(653\) 19.5133i 0.763613i 0.924242 + 0.381806i \(0.124698\pi\)
−0.924242 + 0.381806i \(0.875302\pi\)
\(654\) 0 0
\(655\) 15.5732 26.9736i 0.608496 1.05395i
\(656\) −1.50000 + 2.59808i −0.0585652 + 0.101438i
\(657\) −31.8485 5.91931i −1.24253 0.230934i
\(658\) 28.6342i 1.11628i
\(659\) −12.0000 + 20.7846i −0.467454 + 0.809653i −0.999309 0.0371821i \(-0.988162\pi\)
0.531855 + 0.846836i \(0.321495\pi\)
\(660\) −0.325765 0.707107i −0.0126804 0.0275241i
\(661\) −25.7196 14.8492i −1.00038 0.577569i −0.0920180 0.995757i \(-0.529332\pi\)
−0.908360 + 0.418189i \(0.862665\pi\)
\(662\) −12.8258 + 7.40496i −0.498488 + 0.287802i
\(663\) −15.7980 34.2911i −0.613542 1.33175i
\(664\) 14.1742i 0.550067i
\(665\) −26.6969 + 6.29253i −1.03526 + 0.244014i
\(666\) 0.426786 2.29629i 0.0165376 0.0889795i
\(667\) −15.0000 + 8.66025i −0.580802 + 0.335326i
\(668\) 2.44949 + 4.24264i 0.0947736 + 0.164153i
\(669\) 13.5959 + 9.61377i 0.525649 + 0.371690i
\(670\) −4.22474 7.31747i −0.163216 0.282699i
\(671\) −1.77526 1.02494i −0.0685330 0.0395675i
\(672\) −7.67423 0.707107i −0.296040 0.0272772i
\(673\) 3.46410i 0.133531i 0.997769 + 0.0667657i \(0.0212680\pi\)
−0.997769 + 0.0667657i \(0.978732\pi\)
\(674\) −3.15153 1.81954i −0.121392 0.0700860i
\(675\) −11.1742 + 10.8691i −0.430096 + 0.418350i
\(676\) 1.00000 0.0384615
\(677\) −3.30306 −0.126947 −0.0634735 0.997984i \(-0.520218\pi\)
−0.0634735 + 0.997984i \(0.520218\pi\)
\(678\) 0.797959 1.12848i 0.0306454 0.0433392i
\(679\) −52.7196 + 30.4377i −2.02319 + 1.16809i
\(680\) 4.44949 7.70674i 0.170630 0.295540i
\(681\) −3.94949 8.57277i −0.151345 0.328509i
\(682\) −0.674235 1.16781i −0.0258178 0.0447177i
\(683\) −41.3939 −1.58389 −0.791946 0.610591i \(-0.790932\pi\)
−0.791946 + 0.610591i \(0.790932\pi\)
\(684\) 0.623724 + 13.0618i 0.0238487 + 0.499431i
\(685\) −10.4495 −0.399254
\(686\) 12.8990 + 22.3417i 0.492485 + 0.853010i
\(687\) 6.44949 + 13.9993i 0.246063 + 0.534106i
\(688\) −0.449490 + 0.778539i −0.0171366 + 0.0296815i
\(689\) 3.30306 1.90702i 0.125837 0.0726518i
\(690\) 10.0000 14.1421i 0.380693 0.538382i
\(691\) −40.0000 −1.52167 −0.760836 0.648944i \(-0.775211\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(692\) −10.8990 −0.414317
\(693\) 3.22474 + 2.75699i 0.122498 + 0.104730i
\(694\) 5.72474 + 3.30518i 0.217308 + 0.125463i
\(695\) 0.492810i 0.0186933i
\(696\) −4.22474 0.389270i −0.160139 0.0147552i
\(697\) 16.3485 + 9.43879i 0.619242 + 0.357520i
\(698\) −8.24745 14.2850i −0.312171 0.540695i
\(699\) 9.14643 + 6.46750i 0.345950 + 0.244623i
\(700\) −6.67423 11.5601i −0.252262 0.436931i
\(701\) 8.57321 4.94975i 0.323806 0.186949i −0.329282 0.944232i \(-0.606807\pi\)
0.653088 + 0.757282i \(0.273473\pi\)
\(702\) 4.89898 17.3205i 0.184900 0.653720i
\(703\) 0.977296 3.24980i 0.0368594 0.122569i
\(704\) 0.317837i 0.0119789i
\(705\) 6.59592 + 14.3171i 0.248417 + 0.539213i
\(706\) 12.6464 7.30142i 0.475955 0.274793i
\(707\) −38.1464 22.0239i −1.43464 0.828292i
\(708\) 4.74745 + 10.3048i 0.178420 + 0.387279i
\(709\) 1.32577 2.29629i 0.0497902 0.0862391i −0.840056 0.542499i \(-0.817478\pi\)
0.889846 + 0.456260i \(0.150811\pi\)
\(710\) 8.48528i 0.318447i
\(711\) −4.65153 + 25.0273i −0.174446 + 0.938595i
\(712\) −8.44949 + 14.6349i −0.316658 + 0.548468i
\(713\) 15.0000 25.9808i 0.561754 0.972987i
\(714\) −4.44949 + 48.2903i −0.166518 + 1.80722i
\(715\) 1.55708i 0.0582314i
\(716\) 11.1742 19.3543i 0.417601 0.723306i
\(717\) 11.3485 5.22826i 0.423816 0.195253i
\(718\) −20.8207 12.0208i −0.777020 0.448613i
\(719\) −8.14643 + 4.70334i −0.303811 + 0.175405i −0.644153 0.764896i \(-0.722790\pi\)
0.340343 + 0.940301i \(0.389457\pi\)
\(720\) 4.00000 1.41421i 0.149071 0.0527046i
\(721\) 53.1687i 1.98010i
\(722\) −1.15153 + 18.9651i −0.0428555 + 0.705807i
\(723\) 1.62372 17.6223i 0.0603870 0.655380i
\(724\) −11.3258 + 6.53893i −0.420919 + 0.243018i
\(725\) −3.67423 6.36396i −0.136458 0.236352i
\(726\) 10.8990 15.4135i 0.404499 0.572048i
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) 13.3485 + 7.70674i 0.494727 + 0.285631i
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 15.2706i 0.565191i
\(731\) 4.89898 + 2.82843i 0.181195 + 0.104613i
\(732\) 6.44949 9.12096i 0.238380 0.337120i
\(733\) 24.0454 0.888137 0.444069 0.895993i \(-0.353535\pi\)
0.444069 + 0.895993i \(0.353535\pi\)
\(734\) 23.3485 0.861808
\(735\) −25.5959 18.0990i −0.944120 0.667593i
\(736\) 6.12372 3.53553i 0.225723 0.130322i
\(737\) −0.949490 + 1.64456i −0.0349749 + 0.0605783i
\(738\) 3.00000 + 8.48528i 0.110432 + 0.312348i
\(739\) −4.82577 8.35847i −0.177519 0.307471i 0.763511 0.645794i \(-0.223474\pi\)
−0.941030 + 0.338323i \(0.890140\pi\)
\(740\) −1.10102 −0.0404743
\(741\) 9.79796 24.2487i 0.359937 0.890799i
\(742\) −4.89898 −0.179847
\(743\) −9.67423 16.7563i −0.354913 0.614728i 0.632190 0.774814i \(-0.282156\pi\)
−0.987103 + 0.160086i \(0.948823\pi\)
\(744\) 6.67423 3.07483i 0.244689 0.112729i
\(745\) 3.44949 5.97469i 0.126380 0.218896i
\(746\) −22.0454 + 12.7279i −0.807140 + 0.466002i
\(747\) 32.3207 + 27.6325i 1.18255 + 1.01102i
\(748\) −2.00000 −0.0731272
\(749\) 21.7980 0.796480
\(750\) 16.0000 + 11.3137i 0.584237 + 0.413118i
\(751\) −11.6969 6.75323i −0.426827 0.246429i 0.271167 0.962532i \(-0.412591\pi\)
−0.697994 + 0.716103i \(0.745924\pi\)
\(752\) 6.43539i 0.234675i
\(753\) −1.05051 + 11.4012i −0.0382827 + 0.415483i
\(754\) 7.34847 + 4.24264i 0.267615 + 0.154508i
\(755\) −12.7980 22.1667i −0.465765 0.806729i
\(756\) −16.5732 + 16.1206i −0.602762 + 0.586300i
\(757\) −9.69694 16.7956i −0.352441 0.610446i 0.634235 0.773140i \(-0.281315\pi\)
−0.986677 + 0.162694i \(0.947982\pi\)
\(758\) 13.3485 7.70674i 0.484838 0.279921i
\(759\) −3.87628 0.357161i −0.140700 0.0129641i
\(760\) 6.00000 1.41421i 0.217643 0.0512989i
\(761\) 41.9657i 1.52126i −0.649188 0.760628i \(-0.724891\pi\)
0.649188 0.760628i \(-0.275109\pi\)
\(762\) −16.3485 + 7.53177i −0.592243 + 0.272847i
\(763\) 0 0
\(764\) −16.8990 9.75663i −0.611384 0.352982i
\(765\) −8.89898 25.1701i −0.321743 0.910027i
\(766\) −7.77526 + 13.4671i −0.280931 + 0.486587i
\(767\) 22.6916i 0.819347i
\(768\) 1.72474 + 0.158919i 0.0622364 + 0.00573448i
\(769\) 17.7980 30.8270i 0.641811 1.11165i −0.343217 0.939256i \(-0.611517\pi\)
0.985028 0.172393i \(-0.0551499\pi\)
\(770\) 1.00000 1.73205i 0.0360375 0.0624188i
\(771\) 25.8712 + 2.38378i 0.931728 + 0.0858497i
\(772\) 8.83523i 0.317987i
\(773\) 1.22474 2.12132i 0.0440510 0.0762986i −0.843159 0.537664i \(-0.819307\pi\)