Properties

Label 114.2.h.b.107.1
Level $114$
Weight $2$
Character 114.107
Analytic conductor $0.910$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [114,2,Mod(65,114)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(114, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("114.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.h (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.910294583043\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 114.107
Dual form 114.2.h.b.65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(3.00000 - 1.73205i) q^{5} +(1.50000 + 0.866025i) q^{6} +1.00000 q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(3.00000 - 1.73205i) q^{5} +(1.50000 + 0.866025i) q^{6} +1.00000 q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(-3.00000 - 1.73205i) q^{10} -3.46410i q^{11} -1.73205i q^{12} +(4.50000 + 2.59808i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(-3.00000 + 5.19615i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.00000 + 1.73205i) q^{17} -3.00000 q^{18} +(-4.00000 + 1.73205i) q^{19} +3.46410i q^{20} +(-1.50000 + 0.866025i) q^{21} +(-3.00000 + 1.73205i) q^{22} +(-1.50000 + 0.866025i) q^{24} +(3.50000 - 6.06218i) q^{25} -5.19615i q^{26} +5.19615i q^{27} +(-0.500000 + 0.866025i) q^{28} +(-3.00000 + 5.19615i) q^{29} +6.00000 q^{30} +1.73205i q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.00000 + 5.19615i) q^{33} +(3.00000 + 1.73205i) q^{34} +(3.00000 - 1.73205i) q^{35} +(1.50000 + 2.59808i) q^{36} -5.19615i q^{37} +(3.50000 + 2.59808i) q^{38} -9.00000 q^{39} +(3.00000 - 1.73205i) q^{40} +(-6.00000 - 10.3923i) q^{41} +(1.50000 + 0.866025i) q^{42} +(0.500000 + 0.866025i) q^{43} +(3.00000 + 1.73205i) q^{44} -10.3923i q^{45} +(6.00000 + 3.46410i) q^{47} +(1.50000 + 0.866025i) q^{48} -6.00000 q^{49} -7.00000 q^{50} +(3.00000 - 5.19615i) q^{51} +(-4.50000 + 2.59808i) q^{52} +(-6.00000 + 10.3923i) q^{53} +(4.50000 - 2.59808i) q^{54} +(-6.00000 - 10.3923i) q^{55} +1.00000 q^{56} +(4.50000 - 6.06218i) q^{57} +6.00000 q^{58} +(-3.00000 - 5.19615i) q^{60} +(-3.50000 + 6.06218i) q^{61} +(1.50000 - 0.866025i) q^{62} +(1.50000 - 2.59808i) q^{63} +1.00000 q^{64} +18.0000 q^{65} +(3.00000 - 5.19615i) q^{66} +(7.50000 + 4.33013i) q^{67} -3.46410i q^{68} +(-3.00000 - 1.73205i) q^{70} +(-3.00000 - 5.19615i) q^{71} +(1.50000 - 2.59808i) q^{72} +(3.50000 + 6.06218i) q^{73} +(-4.50000 + 2.59808i) q^{74} +12.1244i q^{75} +(0.500000 - 4.33013i) q^{76} -3.46410i q^{77} +(4.50000 + 7.79423i) q^{78} +(4.50000 - 2.59808i) q^{79} +(-3.00000 - 1.73205i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-6.00000 + 10.3923i) q^{82} +10.3923i q^{83} -1.73205i q^{84} +(-6.00000 + 10.3923i) q^{85} +(0.500000 - 0.866025i) q^{86} -10.3923i q^{87} -3.46410i q^{88} +(-9.00000 + 5.19615i) q^{90} +(4.50000 + 2.59808i) q^{91} +(-1.50000 - 2.59808i) q^{93} -6.92820i q^{94} +(-9.00000 + 12.1244i) q^{95} -1.73205i q^{96} +(6.00000 - 3.46410i) q^{97} +(3.00000 + 5.19615i) q^{98} +(-9.00000 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 3 q^{3} - q^{4} + 6 q^{5} + 3 q^{6} + 2 q^{7} + 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - 3 q^{3} - q^{4} + 6 q^{5} + 3 q^{6} + 2 q^{7} + 2 q^{8} + 3 q^{9} - 6 q^{10} + 9 q^{13} - q^{14} - 6 q^{15} - q^{16} - 6 q^{17} - 6 q^{18} - 8 q^{19} - 3 q^{21} - 6 q^{22} - 3 q^{24} + 7 q^{25} - q^{28} - 6 q^{29} + 12 q^{30} - q^{32} + 6 q^{33} + 6 q^{34} + 6 q^{35} + 3 q^{36} + 7 q^{38} - 18 q^{39} + 6 q^{40} - 12 q^{41} + 3 q^{42} + q^{43} + 6 q^{44} + 12 q^{47} + 3 q^{48} - 12 q^{49} - 14 q^{50} + 6 q^{51} - 9 q^{52} - 12 q^{53} + 9 q^{54} - 12 q^{55} + 2 q^{56} + 9 q^{57} + 12 q^{58} - 6 q^{60} - 7 q^{61} + 3 q^{62} + 3 q^{63} + 2 q^{64} + 36 q^{65} + 6 q^{66} + 15 q^{67} - 6 q^{70} - 6 q^{71} + 3 q^{72} + 7 q^{73} - 9 q^{74} + q^{76} + 9 q^{78} + 9 q^{79} - 6 q^{80} - 9 q^{81} - 12 q^{82} - 12 q^{85} + q^{86} - 18 q^{90} + 9 q^{91} - 3 q^{93} - 18 q^{95} + 12 q^{97} + 6 q^{98} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/114\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 3.00000 1.73205i 1.34164 0.774597i 0.354593 0.935021i \(-0.384620\pi\)
0.987048 + 0.160424i \(0.0512862\pi\)
\(6\) 1.50000 + 0.866025i 0.612372 + 0.353553i
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) −3.00000 1.73205i −0.948683 0.547723i
\(11\) 3.46410i 1.04447i −0.852803 0.522233i \(-0.825099\pi\)
0.852803 0.522233i \(-0.174901\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 4.50000 + 2.59808i 1.24808 + 0.720577i 0.970725 0.240192i \(-0.0772105\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −0.500000 0.866025i −0.133631 0.231455i
\(15\) −3.00000 + 5.19615i −0.774597 + 1.34164i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.00000 + 1.73205i −0.727607 + 0.420084i −0.817546 0.575863i \(-0.804666\pi\)
0.0899392 + 0.995947i \(0.471333\pi\)
\(18\) −3.00000 −0.707107
\(19\) −4.00000 + 1.73205i −0.917663 + 0.397360i
\(20\) 3.46410i 0.774597i
\(21\) −1.50000 + 0.866025i −0.327327 + 0.188982i
\(22\) −3.00000 + 1.73205i −0.639602 + 0.369274i
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) −1.50000 + 0.866025i −0.306186 + 0.176777i
\(25\) 3.50000 6.06218i 0.700000 1.21244i
\(26\) 5.19615i 1.01905i
\(27\) 5.19615i 1.00000i
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 6.00000 1.09545
\(31\) 1.73205i 0.311086i 0.987829 + 0.155543i \(0.0497126\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 3.00000 + 5.19615i 0.522233 + 0.904534i
\(34\) 3.00000 + 1.73205i 0.514496 + 0.297044i
\(35\) 3.00000 1.73205i 0.507093 0.292770i
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) 5.19615i 0.854242i −0.904194 0.427121i \(-0.859528\pi\)
0.904194 0.427121i \(-0.140472\pi\)
\(38\) 3.50000 + 2.59808i 0.567775 + 0.421464i
\(39\) −9.00000 −1.44115
\(40\) 3.00000 1.73205i 0.474342 0.273861i
\(41\) −6.00000 10.3923i −0.937043 1.62301i −0.770950 0.636895i \(-0.780218\pi\)
−0.166092 0.986110i \(-0.553115\pi\)
\(42\) 1.50000 + 0.866025i 0.231455 + 0.133631i
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 3.00000 + 1.73205i 0.452267 + 0.261116i
\(45\) 10.3923i 1.54919i
\(46\) 0 0
\(47\) 6.00000 + 3.46410i 0.875190 + 0.505291i 0.869069 0.494690i \(-0.164718\pi\)
0.00612051 + 0.999981i \(0.498052\pi\)
\(48\) 1.50000 + 0.866025i 0.216506 + 0.125000i
\(49\) −6.00000 −0.857143
\(50\) −7.00000 −0.989949
\(51\) 3.00000 5.19615i 0.420084 0.727607i
\(52\) −4.50000 + 2.59808i −0.624038 + 0.360288i
\(53\) −6.00000 + 10.3923i −0.824163 + 1.42749i 0.0783936 + 0.996922i \(0.475021\pi\)
−0.902557 + 0.430570i \(0.858312\pi\)
\(54\) 4.50000 2.59808i 0.612372 0.353553i
\(55\) −6.00000 10.3923i −0.809040 1.40130i
\(56\) 1.00000 0.133631
\(57\) 4.50000 6.06218i 0.596040 0.802955i
\(58\) 6.00000 0.787839
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) −3.00000 5.19615i −0.387298 0.670820i
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 1.50000 0.866025i 0.190500 0.109985i
\(63\) 1.50000 2.59808i 0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) 18.0000 2.23263
\(66\) 3.00000 5.19615i 0.369274 0.639602i
\(67\) 7.50000 + 4.33013i 0.916271 + 0.529009i 0.882443 0.470418i \(-0.155897\pi\)
0.0338274 + 0.999428i \(0.489230\pi\)
\(68\) 3.46410i 0.420084i
\(69\) 0 0
\(70\) −3.00000 1.73205i −0.358569 0.207020i
\(71\) −3.00000 5.19615i −0.356034 0.616670i 0.631260 0.775571i \(-0.282538\pi\)
−0.987294 + 0.158901i \(0.949205\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) 3.50000 + 6.06218i 0.409644 + 0.709524i 0.994850 0.101361i \(-0.0323196\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −4.50000 + 2.59808i −0.523114 + 0.302020i
\(75\) 12.1244i 1.40000i
\(76\) 0.500000 4.33013i 0.0573539 0.496700i
\(77\) 3.46410i 0.394771i
\(78\) 4.50000 + 7.79423i 0.509525 + 0.882523i
\(79\) 4.50000 2.59808i 0.506290 0.292306i −0.225018 0.974355i \(-0.572244\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) −3.00000 1.73205i −0.335410 0.193649i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −6.00000 + 10.3923i −0.662589 + 1.14764i
\(83\) 10.3923i 1.14070i 0.821401 + 0.570352i \(0.193193\pi\)
−0.821401 + 0.570352i \(0.806807\pi\)
\(84\) 1.73205i 0.188982i
\(85\) −6.00000 + 10.3923i −0.650791 + 1.12720i
\(86\) 0.500000 0.866025i 0.0539164 0.0933859i
\(87\) 10.3923i 1.11417i
\(88\) 3.46410i 0.369274i
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) −9.00000 + 5.19615i −0.948683 + 0.547723i
\(91\) 4.50000 + 2.59808i 0.471728 + 0.272352i
\(92\) 0 0
\(93\) −1.50000 2.59808i −0.155543 0.269408i
\(94\) 6.92820i 0.714590i
\(95\) −9.00000 + 12.1244i −0.923381 + 1.24393i
\(96\) 1.73205i 0.176777i
\(97\) 6.00000 3.46410i 0.609208 0.351726i −0.163448 0.986552i \(-0.552261\pi\)
0.772655 + 0.634826i \(0.218928\pi\)
\(98\) 3.00000 + 5.19615i 0.303046 + 0.524891i
\(99\) −9.00000 5.19615i −0.904534 0.522233i
\(100\) 3.50000 + 6.06218i 0.350000 + 0.606218i
\(101\) 9.00000 + 5.19615i 0.895533 + 0.517036i 0.875748 0.482768i \(-0.160368\pi\)
0.0197851 + 0.999804i \(0.493702\pi\)
\(102\) −6.00000 −0.594089
\(103\) 8.66025i 0.853320i −0.904412 0.426660i \(-0.859690\pi\)
0.904412 0.426660i \(-0.140310\pi\)
\(104\) 4.50000 + 2.59808i 0.441261 + 0.254762i
\(105\) −3.00000 + 5.19615i −0.292770 + 0.507093i
\(106\) 12.0000 1.16554
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) −4.50000 2.59808i −0.433013 0.250000i
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) −6.00000 + 10.3923i −0.572078 + 0.990867i
\(111\) 4.50000 + 7.79423i 0.427121 + 0.739795i
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) −7.50000 0.866025i −0.702439 0.0811107i
\(115\) 0 0
\(116\) −3.00000 5.19615i −0.278543 0.482451i
\(117\) 13.5000 7.79423i 1.24808 0.720577i
\(118\) 0 0
\(119\) −3.00000 + 1.73205i −0.275010 + 0.158777i
\(120\) −3.00000 + 5.19615i −0.273861 + 0.474342i
\(121\) −1.00000 −0.0909091
\(122\) 7.00000 0.633750
\(123\) 18.0000 + 10.3923i 1.62301 + 0.937043i
\(124\) −1.50000 0.866025i −0.134704 0.0777714i
\(125\) 6.92820i 0.619677i
\(126\) −3.00000 −0.267261
\(127\) −9.00000 5.19615i −0.798621 0.461084i 0.0443678 0.999015i \(-0.485873\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −1.50000 0.866025i −0.132068 0.0762493i
\(130\) −9.00000 15.5885i −0.789352 1.36720i
\(131\) 3.00000 1.73205i 0.262111 0.151330i −0.363186 0.931717i \(-0.618311\pi\)
0.625297 + 0.780387i \(0.284978\pi\)
\(132\) −6.00000 −0.522233
\(133\) −4.00000 + 1.73205i −0.346844 + 0.150188i
\(134\) 8.66025i 0.748132i
\(135\) 9.00000 + 15.5885i 0.774597 + 1.34164i
\(136\) −3.00000 + 1.73205i −0.257248 + 0.148522i
\(137\) −3.00000 1.73205i −0.256307 0.147979i 0.366342 0.930480i \(-0.380610\pi\)
−0.622649 + 0.782501i \(0.713943\pi\)
\(138\) 0 0
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 3.46410i 0.292770i
\(141\) −12.0000 −1.01058
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) 9.00000 15.5885i 0.752618 1.30357i
\(144\) −3.00000 −0.250000
\(145\) 20.7846i 1.72607i
\(146\) 3.50000 6.06218i 0.289662 0.501709i
\(147\) 9.00000 5.19615i 0.742307 0.428571i
\(148\) 4.50000 + 2.59808i 0.369898 + 0.213561i
\(149\) 15.0000 8.66025i 1.22885 0.709476i 0.262059 0.965052i \(-0.415599\pi\)
0.966789 + 0.255576i \(0.0822652\pi\)
\(150\) 10.5000 6.06218i 0.857321 0.494975i
\(151\) 3.46410i 0.281905i −0.990016 0.140952i \(-0.954984\pi\)
0.990016 0.140952i \(-0.0450164\pi\)
\(152\) −4.00000 + 1.73205i −0.324443 + 0.140488i
\(153\) 10.3923i 0.840168i
\(154\) −3.00000 + 1.73205i −0.241747 + 0.139573i
\(155\) 3.00000 + 5.19615i 0.240966 + 0.417365i
\(156\) 4.50000 7.79423i 0.360288 0.624038i
\(157\) −3.50000 6.06218i −0.279330 0.483814i 0.691888 0.722005i \(-0.256779\pi\)
−0.971219 + 0.238190i \(0.923446\pi\)
\(158\) −4.50000 2.59808i −0.358001 0.206692i
\(159\) 20.7846i 1.64833i
\(160\) 3.46410i 0.273861i
\(161\) 0 0
\(162\) −4.50000 + 7.79423i −0.353553 + 0.612372i
\(163\) −11.0000 −0.861586 −0.430793 0.902451i \(-0.641766\pi\)
−0.430793 + 0.902451i \(0.641766\pi\)
\(164\) 12.0000 0.937043
\(165\) 18.0000 + 10.3923i 1.40130 + 0.809040i
\(166\) 9.00000 5.19615i 0.698535 0.403300i
\(167\) 6.00000 10.3923i 0.464294 0.804181i −0.534875 0.844931i \(-0.679641\pi\)
0.999169 + 0.0407502i \(0.0129748\pi\)
\(168\) −1.50000 + 0.866025i −0.115728 + 0.0668153i
\(169\) 7.00000 + 12.1244i 0.538462 + 0.932643i
\(170\) 12.0000 0.920358
\(171\) −1.50000 + 12.9904i −0.114708 + 0.993399i
\(172\) −1.00000 −0.0762493
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) −9.00000 + 5.19615i −0.682288 + 0.393919i
\(175\) 3.50000 6.06218i 0.264575 0.458258i
\(176\) −3.00000 + 1.73205i −0.226134 + 0.130558i
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 9.00000 + 5.19615i 0.670820 + 0.387298i
\(181\) −6.00000 3.46410i −0.445976 0.257485i 0.260153 0.965567i \(-0.416227\pi\)
−0.706129 + 0.708083i \(0.749560\pi\)
\(182\) 5.19615i 0.385164i
\(183\) 12.1244i 0.896258i
\(184\) 0 0
\(185\) −9.00000 15.5885i −0.661693 1.14609i
\(186\) −1.50000 + 2.59808i −0.109985 + 0.190500i
\(187\) 6.00000 + 10.3923i 0.438763 + 0.759961i
\(188\) −6.00000 + 3.46410i −0.437595 + 0.252646i
\(189\) 5.19615i 0.377964i
\(190\) 15.0000 + 1.73205i 1.08821 + 0.125656i
\(191\) 17.3205i 1.25327i −0.779314 0.626634i \(-0.784432\pi\)
0.779314 0.626634i \(-0.215568\pi\)
\(192\) −1.50000 + 0.866025i −0.108253 + 0.0625000i
\(193\) −10.5000 + 6.06218i −0.755807 + 0.436365i −0.827788 0.561041i \(-0.810401\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −6.00000 3.46410i −0.430775 0.248708i
\(195\) −27.0000 + 15.5885i −1.93351 + 1.11631i
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 10.3923i 0.738549i
\(199\) 12.5000 21.6506i 0.886102 1.53477i 0.0416556 0.999132i \(-0.486737\pi\)
0.844446 0.535641i \(-0.179930\pi\)
\(200\) 3.50000 6.06218i 0.247487 0.428661i
\(201\) −15.0000 −1.05802
\(202\) 10.3923i 0.731200i
\(203\) −3.00000 + 5.19615i −0.210559 + 0.364698i
\(204\) 3.00000 + 5.19615i 0.210042 + 0.363803i
\(205\) −36.0000 20.7846i −2.51435 1.45166i
\(206\) −7.50000 + 4.33013i −0.522550 + 0.301694i
\(207\) 0 0
\(208\) 5.19615i 0.360288i
\(209\) 6.00000 + 13.8564i 0.415029 + 0.958468i
\(210\) 6.00000 0.414039
\(211\) −19.5000 + 11.2583i −1.34244 + 0.775055i −0.987164 0.159708i \(-0.948945\pi\)
−0.355271 + 0.934763i \(0.615611\pi\)
\(212\) −6.00000 10.3923i −0.412082 0.713746i
\(213\) 9.00000 + 5.19615i 0.616670 + 0.356034i
\(214\) 9.00000 + 15.5885i 0.615227 + 1.06561i
\(215\) 3.00000 + 1.73205i 0.204598 + 0.118125i
\(216\) 5.19615i 0.353553i
\(217\) 1.73205i 0.117579i
\(218\) 0 0
\(219\) −10.5000 6.06218i −0.709524 0.409644i
\(220\) 12.0000 0.809040
\(221\) −18.0000 −1.21081
\(222\) 4.50000 7.79423i 0.302020 0.523114i
\(223\) 16.5000 9.52628i 1.10492 0.637927i 0.167412 0.985887i \(-0.446459\pi\)
0.937509 + 0.347960i \(0.113126\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) −10.5000 18.1865i −0.700000 1.21244i
\(226\) 6.00000 + 10.3923i 0.399114 + 0.691286i
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 3.00000 + 6.92820i 0.198680 + 0.458831i
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) 3.00000 + 5.19615i 0.197386 + 0.341882i
\(232\) −3.00000 + 5.19615i −0.196960 + 0.341144i
\(233\) 15.0000 8.66025i 0.982683 0.567352i 0.0796037 0.996827i \(-0.474635\pi\)
0.903079 + 0.429474i \(0.141301\pi\)
\(234\) −13.5000 7.79423i −0.882523 0.509525i
\(235\) 24.0000 1.56559
\(236\) 0 0
\(237\) −4.50000 + 7.79423i −0.292306 + 0.506290i
\(238\) 3.00000 + 1.73205i 0.194461 + 0.112272i
\(239\) 24.2487i 1.56852i 0.620433 + 0.784259i \(0.286957\pi\)
−0.620433 + 0.784259i \(0.713043\pi\)
\(240\) 6.00000 0.387298
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0.500000 + 0.866025i 0.0321412 + 0.0556702i
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) −3.50000 6.06218i −0.224065 0.388091i
\(245\) −18.0000 + 10.3923i −1.14998 + 0.663940i
\(246\) 20.7846i 1.32518i
\(247\) −22.5000 2.59808i −1.43164 0.165312i
\(248\) 1.73205i 0.109985i
\(249\) −9.00000 15.5885i −0.570352 0.987878i
\(250\) −6.00000 + 3.46410i −0.379473 + 0.219089i
\(251\) −6.00000 3.46410i −0.378717 0.218652i 0.298543 0.954396i \(-0.403499\pi\)
−0.677260 + 0.735744i \(0.736833\pi\)
\(252\) 1.50000 + 2.59808i 0.0944911 + 0.163663i
\(253\) 0 0
\(254\) 10.3923i 0.652071i
\(255\) 20.7846i 1.30158i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 1.73205i 0.107833i
\(259\) 5.19615i 0.322873i
\(260\) −9.00000 + 15.5885i −0.558156 + 0.966755i
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) −3.00000 1.73205i −0.185341 0.107006i
\(263\) −21.0000 + 12.1244i −1.29492 + 0.747620i −0.979521 0.201341i \(-0.935470\pi\)
−0.315394 + 0.948961i \(0.602137\pi\)
\(264\) 3.00000 + 5.19615i 0.184637 + 0.319801i
\(265\) 41.5692i 2.55358i
\(266\) 3.50000 + 2.59808i 0.214599 + 0.159298i
\(267\) 0 0
\(268\) −7.50000 + 4.33013i −0.458135 + 0.264505i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 9.00000 15.5885i 0.547723 0.948683i
\(271\) −4.00000 6.92820i −0.242983 0.420858i 0.718580 0.695444i \(-0.244792\pi\)
−0.961563 + 0.274586i \(0.911459\pi\)
\(272\) 3.00000 + 1.73205i 0.181902 + 0.105021i
\(273\) −9.00000 −0.544705
\(274\) 3.46410i 0.209274i
\(275\) −21.0000 12.1244i −1.26635 0.731126i
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −5.00000 −0.299880
\(279\) 4.50000 + 2.59808i 0.269408 + 0.155543i
\(280\) 3.00000 1.73205i 0.179284 0.103510i
\(281\) −3.00000 + 5.19615i −0.178965 + 0.309976i −0.941526 0.336939i \(-0.890608\pi\)
0.762561 + 0.646916i \(0.223942\pi\)
\(282\) 6.00000 + 10.3923i 0.357295 + 0.618853i
\(283\) 14.0000 + 24.2487i 0.832214 + 1.44144i 0.896279 + 0.443491i \(0.146260\pi\)
−0.0640654 + 0.997946i \(0.520407\pi\)
\(284\) 6.00000 0.356034
\(285\) 3.00000 25.9808i 0.177705 1.53897i
\(286\) −18.0000 −1.06436
\(287\) −6.00000 10.3923i −0.354169 0.613438i
\(288\) 1.50000 + 2.59808i 0.0883883 + 0.153093i
\(289\) −2.50000 + 4.33013i −0.147059 + 0.254713i
\(290\) 18.0000 10.3923i 1.05700 0.610257i
\(291\) −6.00000 + 10.3923i −0.351726 + 0.609208i
\(292\) −7.00000 −0.409644
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −9.00000 5.19615i −0.524891 0.303046i
\(295\) 0 0
\(296\) 5.19615i 0.302020i
\(297\) 18.0000 1.04447
\(298\) −15.0000 8.66025i −0.868927 0.501675i
\(299\) 0 0
\(300\) −10.5000 6.06218i −0.606218 0.350000i
\(301\) 0.500000 + 0.866025i 0.0288195 + 0.0499169i
\(302\) −3.00000 + 1.73205i −0.172631 + 0.0996683i
\(303\) −18.0000 −1.03407
\(304\) 3.50000 + 2.59808i 0.200739 + 0.149010i
\(305\) 24.2487i 1.38848i
\(306\) 9.00000 5.19615i 0.514496 0.297044i
\(307\) 27.0000 15.5885i 1.54097 0.889680i 0.542194 0.840254i \(-0.317594\pi\)
0.998778 0.0494267i \(-0.0157394\pi\)
\(308\) 3.00000 + 1.73205i 0.170941 + 0.0986928i
\(309\) 7.50000 + 12.9904i 0.426660 + 0.738997i
\(310\) 3.00000 5.19615i 0.170389 0.295122i
\(311\) 13.8564i 0.785725i 0.919597 + 0.392862i \(0.128515\pi\)
−0.919597 + 0.392862i \(0.871485\pi\)
\(312\) −9.00000 −0.509525
\(313\) 7.00000 12.1244i 0.395663 0.685309i −0.597522 0.801852i \(-0.703848\pi\)
0.993186 + 0.116543i \(0.0371814\pi\)
\(314\) −3.50000 + 6.06218i −0.197516 + 0.342108i
\(315\) 10.3923i 0.585540i
\(316\) 5.19615i 0.292306i
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) −18.0000 + 10.3923i −1.00939 + 0.582772i
\(319\) 18.0000 + 10.3923i 1.00781 + 0.581857i
\(320\) 3.00000 1.73205i 0.167705 0.0968246i
\(321\) 27.0000 15.5885i 1.50699 0.870063i
\(322\) 0 0
\(323\) 9.00000 12.1244i 0.500773 0.674617i
\(324\) 9.00000 0.500000
\(325\) 31.5000 18.1865i 1.74731 1.00881i
\(326\) 5.50000 + 9.52628i 0.304617 + 0.527612i
\(327\) 0 0
\(328\) −6.00000 10.3923i −0.331295 0.573819i
\(329\) 6.00000 + 3.46410i 0.330791 + 0.190982i
\(330\) 20.7846i 1.14416i
\(331\) 5.19615i 0.285606i −0.989751 0.142803i \(-0.954388\pi\)
0.989751 0.142803i \(-0.0456116\pi\)
\(332\) −9.00000 5.19615i −0.493939 0.285176i
\(333\) −13.5000 7.79423i −0.739795 0.427121i
\(334\) −12.0000 −0.656611
\(335\) 30.0000 1.63908
\(336\) 1.50000 + 0.866025i 0.0818317 + 0.0472456i
\(337\) 1.50000 0.866025i 0.0817102 0.0471754i −0.458588 0.888649i \(-0.651645\pi\)
0.540298 + 0.841473i \(0.318311\pi\)
\(338\) 7.00000 12.1244i 0.380750 0.659478i
\(339\) 18.0000 10.3923i 0.977626 0.564433i
\(340\) −6.00000 10.3923i −0.325396 0.563602i
\(341\) 6.00000 0.324918
\(342\) 12.0000 5.19615i 0.648886 0.280976i
\(343\) −13.0000 −0.701934
\(344\) 0.500000 + 0.866025i 0.0269582 + 0.0466930i
\(345\) 0 0
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) 21.0000 12.1244i 1.12734 0.650870i 0.184075 0.982912i \(-0.441071\pi\)
0.943264 + 0.332043i \(0.107738\pi\)
\(348\) 9.00000 + 5.19615i 0.482451 + 0.278543i
\(349\) −7.00000 −0.374701 −0.187351 0.982293i \(-0.559990\pi\)
−0.187351 + 0.982293i \(0.559990\pi\)
\(350\) −7.00000 −0.374166
\(351\) −13.5000 + 23.3827i −0.720577 + 1.24808i
\(352\) 3.00000 + 1.73205i 0.159901 + 0.0923186i
\(353\) 10.3923i 0.553127i −0.960996 0.276563i \(-0.910804\pi\)
0.960996 0.276563i \(-0.0891955\pi\)
\(354\) 0 0
\(355\) −18.0000 10.3923i −0.955341 0.551566i
\(356\) 0 0
\(357\) 3.00000 5.19615i 0.158777 0.275010i
\(358\) −6.00000 10.3923i −0.317110 0.549250i
\(359\) −6.00000 + 3.46410i −0.316668 + 0.182828i −0.649906 0.760014i \(-0.725192\pi\)
0.333238 + 0.942843i \(0.391859\pi\)
\(360\) 10.3923i 0.547723i
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 6.92820i 0.364138i
\(363\) 1.50000 0.866025i 0.0787296 0.0454545i
\(364\) −4.50000 + 2.59808i −0.235864 + 0.136176i
\(365\) 21.0000 + 12.1244i 1.09919 + 0.634618i
\(366\) −10.5000 + 6.06218i −0.548844 + 0.316875i
\(367\) −8.50000 + 14.7224i −0.443696 + 0.768505i −0.997960 0.0638362i \(-0.979666\pi\)
0.554264 + 0.832341i \(0.313000\pi\)
\(368\) 0 0
\(369\) −36.0000 −1.87409
\(370\) −9.00000 + 15.5885i −0.467888 + 0.810405i
\(371\) −6.00000 + 10.3923i −0.311504 + 0.539542i
\(372\) 3.00000 0.155543
\(373\) 6.92820i 0.358729i 0.983783 + 0.179364i \(0.0574041\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) 6.00000 10.3923i 0.310253 0.537373i
\(375\) 6.00000 + 10.3923i 0.309839 + 0.536656i
\(376\) 6.00000 + 3.46410i 0.309426 + 0.178647i
\(377\) −27.0000 + 15.5885i −1.39057 + 0.802846i
\(378\) 4.50000 2.59808i 0.231455 0.133631i
\(379\) 12.1244i 0.622786i −0.950281 0.311393i \(-0.899204\pi\)
0.950281 0.311393i \(-0.100796\pi\)
\(380\) −6.00000 13.8564i −0.307794 0.710819i
\(381\) 18.0000 0.922168
\(382\) −15.0000 + 8.66025i −0.767467 + 0.443097i
\(383\) 3.00000 + 5.19615i 0.153293 + 0.265511i 0.932436 0.361335i \(-0.117679\pi\)
−0.779143 + 0.626846i \(0.784346\pi\)
\(384\) 1.50000 + 0.866025i 0.0765466 + 0.0441942i
\(385\) −6.00000 10.3923i −0.305788 0.529641i
\(386\) 10.5000 + 6.06218i 0.534436 + 0.308557i
\(387\) 3.00000 0.152499
\(388\) 6.92820i 0.351726i
\(389\) −24.0000 13.8564i −1.21685 0.702548i −0.252606 0.967569i \(-0.581288\pi\)
−0.964242 + 0.265022i \(0.914621\pi\)
\(390\) 27.0000 + 15.5885i 1.36720 + 0.789352i
\(391\) 0 0
\(392\) −6.00000 −0.303046
\(393\) −3.00000 + 5.19615i −0.151330 + 0.262111i
\(394\) 0 0
\(395\) 9.00000 15.5885i 0.452839 0.784340i
\(396\) 9.00000 5.19615i 0.452267 0.261116i
\(397\) −14.5000 25.1147i −0.727734 1.26047i −0.957839 0.287307i \(-0.907240\pi\)
0.230105 0.973166i \(-0.426093\pi\)
\(398\) −25.0000 −1.25314
\(399\) 4.50000 6.06218i 0.225282 0.303488i
\(400\) −7.00000 −0.350000
\(401\) −12.0000 20.7846i −0.599251 1.03793i −0.992932 0.118686i \(-0.962132\pi\)
0.393680 0.919247i \(-0.371202\pi\)
\(402\) 7.50000 + 12.9904i 0.374066 + 0.647901i
\(403\) −4.50000 + 7.79423i −0.224161 + 0.388258i
\(404\) −9.00000 + 5.19615i −0.447767 + 0.258518i
\(405\) −27.0000 15.5885i −1.34164 0.774597i
\(406\) 6.00000 0.297775
\(407\) −18.0000 −0.892227
\(408\) 3.00000 5.19615i 0.148522 0.257248i
\(409\) 30.0000 + 17.3205i 1.48340 + 0.856444i 0.999822 0.0188549i \(-0.00600205\pi\)
0.483582 + 0.875299i \(0.339335\pi\)
\(410\) 41.5692i 2.05296i
\(411\) 6.00000 0.295958
\(412\) 7.50000 + 4.33013i 0.369498 + 0.213330i
\(413\) 0 0
\(414\) 0 0
\(415\) 18.0000 + 31.1769i 0.883585 + 1.53041i
\(416\) −4.50000 + 2.59808i −0.220631 + 0.127381i
\(417\) 8.66025i 0.424094i
\(418\) 9.00000 12.1244i 0.440204 0.593022i
\(419\) 10.3923i 0.507697i 0.967244 + 0.253849i \(0.0816965\pi\)
−0.967244 + 0.253849i \(0.918303\pi\)
\(420\) −3.00000 5.19615i −0.146385 0.253546i
\(421\) 12.0000 6.92820i 0.584844 0.337660i −0.178212 0.983992i \(-0.557031\pi\)
0.763056 + 0.646332i \(0.223698\pi\)
\(422\) 19.5000 + 11.2583i 0.949245 + 0.548047i
\(423\) 18.0000 10.3923i 0.875190 0.505291i
\(424\) −6.00000 + 10.3923i −0.291386 + 0.504695i
\(425\) 24.2487i 1.17624i
\(426\) 10.3923i 0.503509i
\(427\) −3.50000 + 6.06218i −0.169377 + 0.293369i
\(428\) 9.00000 15.5885i 0.435031 0.753497i
\(429\) 31.1769i 1.50524i
\(430\) 3.46410i 0.167054i
\(431\) −6.00000 + 10.3923i −0.289010 + 0.500580i −0.973574 0.228373i \(-0.926659\pi\)
0.684564 + 0.728953i \(0.259993\pi\)
\(432\) 4.50000 2.59808i 0.216506 0.125000i
\(433\) −16.5000 9.52628i −0.792939 0.457804i 0.0480569 0.998845i \(-0.484697\pi\)
−0.840996 + 0.541041i \(0.818030\pi\)
\(434\) 1.50000 0.866025i 0.0720023 0.0415705i
\(435\) −18.0000 31.1769i −0.863034 1.49482i
\(436\) 0 0
\(437\) 0 0
\(438\) 12.1244i 0.579324i
\(439\) −7.50000 + 4.33013i −0.357955 + 0.206666i −0.668184 0.743996i \(-0.732928\pi\)
0.310228 + 0.950662i \(0.399595\pi\)
\(440\) −6.00000 10.3923i −0.286039 0.495434i
\(441\) −9.00000 + 15.5885i −0.428571 + 0.742307i
\(442\) 9.00000 + 15.5885i 0.428086 + 0.741467i
\(443\) −21.0000 12.1244i −0.997740 0.576046i −0.0901612 0.995927i \(-0.528738\pi\)
−0.907579 + 0.419882i \(0.862072\pi\)
\(444\) −9.00000 −0.427121
\(445\) 0 0
\(446\) −16.5000 9.52628i −0.781298 0.451082i
\(447\) −15.0000 + 25.9808i −0.709476 + 1.22885i
\(448\) 1.00000 0.0472456
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) −10.5000 + 18.1865i −0.494975 + 0.857321i
\(451\) −36.0000 + 20.7846i −1.69517 + 0.978709i
\(452\) 6.00000 10.3923i 0.282216 0.488813i
\(453\) 3.00000 + 5.19615i 0.140952 + 0.244137i
\(454\) −9.00000 15.5885i −0.422391 0.731603i
\(455\) 18.0000 0.843853
\(456\) 4.50000 6.06218i 0.210732 0.283887i
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) −6.50000 11.2583i −0.303725 0.526067i
\(459\) −9.00000 15.5885i −0.420084 0.727607i
\(460\) 0 0
\(461\) 6.00000 3.46410i 0.279448 0.161339i −0.353726 0.935349i \(-0.615085\pi\)
0.633173 + 0.774010i \(0.281752\pi\)
\(462\) 3.00000 5.19615i 0.139573 0.241747i
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 6.00000 0.278543
\(465\) −9.00000 5.19615i −0.417365 0.240966i
\(466\) −15.0000 8.66025i −0.694862 0.401179i
\(467\) 27.7128i 1.28240i 0.767375 + 0.641198i \(0.221562\pi\)
−0.767375 + 0.641198i \(0.778438\pi\)
\(468\) 15.5885i 0.720577i
\(469\) 7.50000 + 4.33013i 0.346318 + 0.199947i
\(470\) −12.0000 20.7846i −0.553519 0.958723i
\(471\) 10.5000 + 6.06218i 0.483814 + 0.279330i
\(472\) 0 0
\(473\) 3.00000 1.73205i 0.137940 0.0796398i
\(474\) 9.00000 0.413384
\(475\) −3.50000 + 30.3109i −0.160591 + 1.39076i
\(476\) 3.46410i 0.158777i
\(477\) 18.0000 + 31.1769i 0.824163 + 1.42749i
\(478\) 21.0000 12.1244i 0.960518 0.554555i
\(479\) 9.00000 + 5.19615i 0.411220 + 0.237418i 0.691314 0.722554i \(-0.257032\pi\)
−0.280094 + 0.959973i \(0.590365\pi\)
\(480\) −3.00000 5.19615i −0.136931 0.237171i
\(481\) 13.5000 23.3827i 0.615547 1.06616i
\(482\) 1.73205i 0.0788928i
\(483\) 0 0
\(484\) 0.500000 0.866025i 0.0227273 0.0393648i
\(485\) 12.0000 20.7846i 0.544892 0.943781i
\(486\) 15.5885i 0.707107i
\(487\) 3.46410i 0.156973i −0.996915 0.0784867i \(-0.974991\pi\)
0.996915 0.0784867i \(-0.0250088\pi\)
\(488\) −3.50000 + 6.06218i −0.158438 + 0.274422i
\(489\) 16.5000 9.52628i 0.746156 0.430793i
\(490\) 18.0000 + 10.3923i 0.813157 + 0.469476i
\(491\) −9.00000 + 5.19615i −0.406164 + 0.234499i −0.689140 0.724628i \(-0.742012\pi\)
0.282976 + 0.959127i \(0.408678\pi\)
\(492\) −18.0000 + 10.3923i −0.811503 + 0.468521i
\(493\) 20.7846i 0.936092i
\(494\) 9.00000 + 20.7846i 0.404929 + 0.935144i
\(495\) −36.0000 −1.61808
\(496\) 1.50000 0.866025i 0.0673520 0.0388857i
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) −9.00000 + 15.5885i −0.403300 + 0.698535i
\(499\) −15.5000 26.8468i −0.693875 1.20183i −0.970558 0.240866i \(-0.922569\pi\)
0.276683 0.960961i \(-0.410765\pi\)
\(500\) 6.00000 + 3.46410i 0.268328 + 0.154919i
\(501\) 20.7846i 0.928588i
\(502\) 6.92820i 0.309221i
\(503\) −27.0000 15.5885i −1.20387 0.695055i −0.242457 0.970162i \(-0.577953\pi\)
−0.961414 + 0.275107i \(0.911287\pi\)
\(504\) 1.50000 2.59808i 0.0668153 0.115728i
\(505\) 36.0000 1.60198
\(506\) 0 0
\(507\) −21.0000 12.1244i −0.932643 0.538462i
\(508\) 9.00000 5.19615i 0.399310 0.230542i
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) −18.0000 + 10.3923i −0.797053 + 0.460179i
\(511\) 3.50000 + 6.06218i 0.154831 + 0.268175i
\(512\) 1.00000 0.0441942
\(513\) −9.00000 20.7846i −0.397360 0.917663i
\(514\) 0 0
\(515\) −15.0000 25.9808i −0.660979 1.14485i
\(516\) 1.50000 0.866025i 0.0660338 0.0381246i
\(517\) 12.0000 20.7846i 0.527759 0.914106i
\(518\) −4.50000 + 2.59808i −0.197719 + 0.114153i
\(519\) −9.00000 5.19615i −0.395056 0.228086i
\(520\) 18.0000 0.789352
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 9.00000 15.5885i 0.393919 0.682288i
\(523\) −4.50000 2.59808i −0.196771 0.113606i 0.398377 0.917222i \(-0.369573\pi\)
−0.595149 + 0.803616i \(0.702907\pi\)
\(524\) 3.46410i 0.151330i
\(525\) 12.1244i 0.529150i
\(526\) 21.0000 + 12.1244i 0.915644 + 0.528647i
\(527\) −3.00000 5.19615i −0.130682 0.226348i
\(528\) 3.00000 5.19615i 0.130558 0.226134i
\(529\) −11.5000 19.9186i −0.500000 0.866025i
\(530\) 36.0000 20.7846i 1.56374 0.902826i
\(531\) 0 0
\(532\) 0.500000 4.33013i 0.0216777 0.187735i
\(533\) 62.3538i 2.70084i
\(534\) 0 0
\(535\) −54.0000 + 31.1769i −2.33462 + 1.34790i
\(536\) 7.50000 + 4.33013i 0.323951 + 0.187033i
\(537\) −18.0000 + 10.3923i −0.776757 + 0.448461i
\(538\) 0 0
\(539\) 20.7846i 0.895257i
\(540\) −18.0000 −0.774597
\(541\) 6.50000 11.2583i 0.279457 0.484033i −0.691793 0.722096i \(-0.743179\pi\)
0.971250 + 0.238062i \(0.0765123\pi\)
\(542\) −4.00000 + 6.92820i −0.171815 + 0.297592i
\(543\) 12.0000 0.514969
\(544\) 3.46410i 0.148522i
\(545\) 0 0
\(546\) 4.50000 + 7.79423i 0.192582 + 0.333562i
\(547\) 22.5000 + 12.9904i 0.962031 + 0.555429i 0.896797 0.442441i \(-0.145888\pi\)
0.0652331 + 0.997870i \(0.479221\pi\)
\(548\) 3.00000 1.73205i 0.128154 0.0739895i
\(549\) 10.5000 + 18.1865i 0.448129 + 0.776182i
\(550\) 24.2487i 1.03397i
\(551\) 3.00000 25.9808i 0.127804 1.10682i
\(552\) 0 0
\(553\) 4.50000 2.59808i 0.191359 0.110481i
\(554\) 1.00000 + 1.73205i 0.0424859 + 0.0735878i
\(555\) 27.0000 + 15.5885i 1.14609 + 0.661693i
\(556\) 2.50000 + 4.33013i 0.106024 + 0.183638i
\(557\) −3.00000 1.73205i −0.127114 0.0733893i 0.435095 0.900385i \(-0.356715\pi\)
−0.562209 + 0.826995i \(0.690048\pi\)
\(558\) 5.19615i 0.219971i
\(559\) 5.19615i 0.219774i
\(560\) −3.00000 1.73205i −0.126773 0.0731925i
\(561\) −18.0000 10.3923i −0.759961 0.438763i
\(562\) 6.00000 0.253095
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 6.00000 10.3923i 0.252646 0.437595i
\(565\) −36.0000 + 20.7846i −1.51453 + 0.874415i
\(566\) 14.0000 24.2487i 0.588464 1.01925i
\(567\) −4.50000 7.79423i −0.188982 0.327327i
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) −24.0000 + 10.3923i −1.00525 + 0.435286i
\(571\) 5.00000 0.209243 0.104622 0.994512i \(-0.466637\pi\)
0.104622 + 0.994512i \(0.466637\pi\)
\(572\) 9.00000 + 15.5885i 0.376309 + 0.651786i
\(573\) 15.0000 + 25.9808i 0.626634 + 1.08536i
\(574\) −6.00000 + 10.3923i −0.250435 + 0.433766i
\(575\) 0 0
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 5.00000 0.207973
\(579\) 10.5000 18.1865i 0.436365 0.755807i
\(580\) −18.0000 10.3923i −0.747409 0.431517i
\(581\) 10.3923i 0.431145i
\(582\) 12.0000 0.497416
\(583\) 36.0000 + 20.7846i 1.49097 + 0.860811i
\(584\) 3.50000 + 6.06218i 0.144831 + 0.250855i
\(585\) 27.0000 46.7654i 1.11631 1.93351i
\(586\) 0 0
\(587\) 6.00000 3.46410i 0.247647 0.142979i −0.371040 0.928617i \(-0.620999\pi\)
0.618686 + 0.785638i \(0.287665\pi\)
\(588\) 10.3923i 0.428571i
\(589\) −3.00000 6.92820i −0.123613 0.285472i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.50000 + 2.59808i −0.184949 + 0.106780i
\(593\) −36.0000 20.7846i −1.47834 0.853522i −0.478643 0.878010i \(-0.658871\pi\)
−0.999700 + 0.0244882i \(0.992204\pi\)
\(594\) −9.00000 15.5885i −0.369274 0.639602i
\(595\) −6.00000 + 10.3923i −0.245976 + 0.426043i
\(596\) 17.3205i 0.709476i
\(597\) 43.3013i 1.77220i
\(598\) 0 0
\(599\) 15.0000 25.9808i 0.612883 1.06155i −0.377869 0.925859i \(-0.623343\pi\)
0.990752 0.135686i \(-0.0433238\pi\)
\(600\) 12.1244i 0.494975i
\(601\) 1.73205i 0.0706518i −0.999376 0.0353259i \(-0.988753\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0.500000 0.866025i 0.0203785 0.0352966i
\(603\) 22.5000 12.9904i 0.916271 0.529009i
\(604\) 3.00000 + 1.73205i 0.122068 + 0.0704761i
\(605\) −3.00000 + 1.73205i −0.121967 + 0.0704179i
\(606\) 9.00000 + 15.5885i 0.365600 + 0.633238i
\(607\) 32.9090i 1.33573i −0.744281 0.667867i \(-0.767208\pi\)
0.744281 0.667867i \(-0.232792\pi\)
\(608\) 0.500000 4.33013i 0.0202777 0.175610i
\(609\) 10.3923i 0.421117i
\(610\) 21.0000 12.1244i 0.850265 0.490901i
\(611\) 18.0000 + 31.1769i 0.728202 + 1.26128i
\(612\) −9.00000 5.19615i −0.363803 0.210042i
\(613\) 19.0000 + 32.9090i 0.767403 + 1.32918i 0.938967 + 0.344008i \(0.111785\pi\)
−0.171564 + 0.985173i \(0.554882\pi\)
\(614\) −27.0000 15.5885i −1.08963 0.629099i
\(615\) 72.0000 2.90332
\(616\) 3.46410i 0.139573i
\(617\) 33.0000 + 19.0526i 1.32853 + 0.767027i 0.985072 0.172141i \(-0.0550685\pi\)
0.343458 + 0.939168i \(0.388402\pi\)
\(618\) 7.50000 12.9904i 0.301694 0.522550i
\(619\) −17.0000 −0.683288 −0.341644 0.939829i \(-0.610984\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(620\) −6.00000 −0.240966
\(621\) 0 0
\(622\) 12.0000 6.92820i 0.481156 0.277796i
\(623\) 0 0
\(624\) 4.50000 + 7.79423i 0.180144 + 0.312019i
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) −14.0000 −0.559553
\(627\) −21.0000 15.5885i −0.838659 0.622543i
\(628\) 7.00000 0.279330
\(629\) 9.00000 + 15.5885i 0.358854 + 0.621552i
\(630\) −9.00000 + 5.19615i −0.358569 + 0.207020i
\(631\) −6.50000 + 11.2583i −0.258761 + 0.448187i −0.965910 0.258877i \(-0.916648\pi\)
0.707149 + 0.707064i \(0.249981\pi\)
\(632\) 4.50000 2.59808i 0.179000 0.103346i
\(633\) 19.5000 33.7750i 0.775055 1.34244i
\(634\) −6.00000 −0.238290
\(635\) −36.0000 −1.42862
\(636\) 18.0000 + 10.3923i 0.713746 + 0.412082i
\(637\) −27.0000 15.5885i −1.06978 0.617637i
\(638\) 20.7846i 0.822871i
\(639\) −18.0000 −0.712069
\(640\) −3.00000 1.73205i −0.118585 0.0684653i
\(641\) 12.0000 + 20.7846i 0.473972 + 0.820943i 0.999556 0.0297987i \(-0.00948663\pi\)
−0.525584 + 0.850741i \(0.676153\pi\)
\(642\) −27.0000 15.5885i −1.06561 0.615227i
\(643\) −2.50000 4.33013i −0.0985904 0.170764i 0.812511 0.582946i \(-0.198100\pi\)
−0.911101 + 0.412182i \(0.864767\pi\)
\(644\) 0 0
\(645\) −6.00000 −0.236250
\(646\) −15.0000 1.73205i −0.590167 0.0681466i
\(647\) 38.1051i 1.49807i 0.662532 + 0.749033i \(0.269482\pi\)
−0.662532 + 0.749033i \(0.730518\pi\)
\(648\) −4.50000 7.79423i −0.176777 0.306186i
\(649\) 0 0
\(650\) −31.5000 18.1865i −1.23553 0.713335i
\(651\) −1.50000 2.59808i −0.0587896 0.101827i
\(652\) 5.50000 9.52628i 0.215397 0.373078i
\(653\) 17.3205i 0.677804i −0.940822 0.338902i \(-0.889945\pi\)
0.940822 0.338902i \(-0.110055\pi\)
\(654\) 0 0
\(655\) 6.00000 10.3923i 0.234439 0.406061i
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) 21.0000 0.819288
\(658\) 6.92820i 0.270089i
\(659\) −3.00000 + 5.19615i −0.116863 + 0.202413i −0.918523 0.395367i \(-0.870617\pi\)
0.801660 + 0.597781i \(0.203951\pi\)
\(660\) −18.0000 + 10.3923i −0.700649 + 0.404520i
\(661\) −12.0000 6.92820i −0.466746 0.269476i 0.248131 0.968727i \(-0.420184\pi\)
−0.714877 + 0.699251i \(0.753517\pi\)
\(662\) −4.50000 + 2.59808i −0.174897 + 0.100977i
\(663\) 27.0000 15.5885i 1.04859 0.605406i
\(664\) 10.3923i 0.403300i
\(665\) −9.00000 + 12.1244i −0.349005 + 0.470162i
\(666\) 15.5885i 0.604040i
\(667\) 0 0
\(668\) 6.00000 + 10.3923i 0.232147 + 0.402090i
\(669\) −16.5000 + 28.5788i −0.637927 + 1.10492i
\(670\) −15.0000 25.9808i −0.579501 1.00372i
\(671\) 21.0000 + 12.1244i 0.810696 + 0.468056i
\(672\) 1.73205i 0.0668153i
\(673\) 12.1244i 0.467360i 0.972314 + 0.233680i \(0.0750767\pi\)
−0.972314 + 0.233680i \(0.924923\pi\)
\(674\) −1.50000 0.866025i −0.0577778 0.0333581i
\(675\) 31.5000 + 18.1865i 1.21244 + 0.700000i
\(676\) −14.0000 −0.538462
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) −18.0000 10.3923i −0.691286 0.399114i
\(679\) 6.00000 3.46410i 0.230259 0.132940i
\(680\) −6.00000 + 10.3923i −0.230089 + 0.398527i
\(681\) −27.0000 + 15.5885i −1.03464 + 0.597351i
\(682\) −3.00000 5.19615i −0.114876 0.198971i
\(683\) −30.0000 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(684\) −10.5000 7.79423i −0.401478 0.298020i
\(685\) −12.0000 −0.458496
\(686\) 6.50000 + 11.2583i 0.248171 + 0.429845i
\(687\) −19.5000 + 11.2583i −0.743971 + 0.429532i
\(688\) 0.500000 0.866025i 0.0190623 0.0330169i
\(689\) −54.0000 + 31.1769i −2.05724 + 1.18775i
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −6.00000 −0.228086
\(693\) −9.00000 5.19615i −0.341882 0.197386i
\(694\) −21.0000 12.1244i −0.797149 0.460234i
\(695\) 17.3205i 0.657004i
\(696\) 10.3923i 0.393919i
\(697\) 36.0000 + 20.7846i 1.36360 + 0.787273i
\(698\) 3.50000 + 6.06218i 0.132477 + 0.229457i
\(699\) −15.0000 + 25.9808i −0.567352 + 0.982683i
\(700\) 3.50000 + 6.06218i 0.132288 + 0.229129i
\(701\) −9.00000 + 5.19615i −0.339925 + 0.196256i −0.660239 0.751056i \(-0.729545\pi\)
0.320314 + 0.947312i \(0.396212\pi\)
\(702\) 27.0000 1.01905
\(703\) 9.00000 + 20.7846i 0.339441 + 0.783906i
\(704\) 3.46410i 0.130558i
\(705\) −36.0000 + 20.7846i −1.35584 + 0.782794i
\(706\) −9.00000 + 5.19615i −0.338719 + 0.195560i
\(707\) 9.00000 + 5.19615i 0.338480 + 0.195421i
\(708\) 0 0
\(709\) 6.50000 11.2583i 0.244113 0.422815i −0.717769 0.696281i \(-0.754837\pi\)
0.961882 + 0.273466i \(0.0881700\pi\)
\(710\) 20.7846i 0.780033i
\(711\) 15.5885i 0.584613i
\(712\) 0 0
\(713\) 0 0
\(714\) −6.00000 −0.224544
\(715\) 62.3538i 2.33190i
\(716\) −6.00000 + 10.3923i −0.224231 + 0.388379i
\(717\) −21.0000 36.3731i −0.784259 1.35838i
\(718\) 6.00000 + 3.46410i 0.223918 + 0.129279i
\(719\) 24.0000 13.8564i 0.895049 0.516757i 0.0194584 0.999811i \(-0.493806\pi\)
0.875591 + 0.483054i \(0.160472\pi\)
\(720\) −9.00000 + 5.19615i −0.335410 + 0.193649i
\(721\) 8.66025i 0.322525i
\(722\) −18.5000 4.33013i −0.688499 0.161151i
\(723\) 3.00000 0.111571
\(724\) 6.00000 3.46410i 0.222988 0.128742i
\(725\) 21.0000 + 36.3731i 0.779920 + 1.35086i
\(726\) −1.50000 0.866025i −0.0556702 0.0321412i
\(727\) 18.5000 + 32.0429i 0.686127 + 1.18841i 0.973081 + 0.230463i \(0.0740239\pi\)
−0.286954 + 0.957944i \(0.592643\pi\)
\(728\) 4.50000 + 2.59808i 0.166781 + 0.0962911i
\(729\) −27.0000 −1.00000
\(730\) 24.2487i 0.897485i
\(731\) −3.00000 1.73205i −0.110959 0.0640622i
\(732\) 10.5000 + 6.06218i 0.388091 + 0.224065i
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 17.0000 0.627481
\(735\) 18.0000 31.1769i 0.663940 1.14998i
\(736\) 0 0
\(737\) 15.0000 25.9808i 0.552532 0.957014i
\(738\) 18.0000 + 31.1769i 0.662589 + 1.14764i
\(739\) −12.5000 21.6506i −0.459820 0.796431i 0.539131 0.842222i \(-0.318753\pi\)
−0.998951 + 0.0457903i \(0.985419\pi\)
\(740\) 18.0000 0.661693
\(741\) 36.0000 15.5885i 1.32249 0.572656i
\(742\) 12.0000 0.440534
\(743\) −3.00000 5.19615i −0.110059 0.190628i 0.805735 0.592277i \(-0.201771\pi\)
−0.915794 + 0.401648i \(0.868437\pi\)
\(744\) −1.50000 2.59808i −0.0549927 0.0952501i
\(745\) 30.0000 51.9615i 1.09911 1.90372i
\(746\) 6.00000 3.46410i 0.219676 0.126830i
\(747\) 27.0000 + 15.5885i 0.987878 + 0.570352i
\(748\) −12.0000 −0.438763
\(749\) −18.0000 −0.657706
\(750\) 6.00000 10.3923i 0.219089 0.379473i
\(751\) 31.5000 + 18.1865i 1.14945 + 0.663636i 0.948753 0.316017i \(-0.102346\pi\)
0.200698 + 0.979653i \(0.435679\pi\)
\(752\) 6.92820i 0.252646i
\(753\) 12.0000 0.437304
\(754\) 27.0000 + 15.5885i 0.983282 + 0.567698i
\(755\) −6.00000 10.3923i −0.218362 0.378215i
\(756\) −4.50000 2.59808i −0.163663 0.0944911i
\(757\) −6.50000 11.2583i −0.236247 0.409191i 0.723388 0.690442i \(-0.242584\pi\)
−0.959634 + 0.281251i \(0.909251\pi\)
\(758\) −10.5000 + 6.06218i −0.381377 + 0.220188i
\(759\) 0 0
\(760\) −9.00000 + 12.1244i −0.326464 + 0.439797i
\(761\) 27.7128i 1.00459i 0.864697 + 0.502294i \(0.167511\pi\)
−0.864697 + 0.502294i \(0.832489\pi\)
\(762\) −9.00000 15.5885i −0.326036 0.564710i
\(763\) 0 0
\(764\) 15.0000 + 8.66025i 0.542681 + 0.313317i
\(765\) 18.0000 + 31.1769i 0.650791 + 1.12720i
\(766\) 3.00000 5.19615i 0.108394 0.187745i
\(767\) 0 0
\(768\) 1.73205i 0.0625000i
\(769\) −18.5000 + 32.0429i −0.667127 + 1.15550i 0.311577 + 0.950221i \(0.399143\pi\)
−0.978704 + 0.205277i \(0.934190\pi\)
\(770\) −6.00000 + 10.3923i −0.216225 + 0.374513i
\(771\) 0 0
\(772\) 12.1244i 0.436365i
\(773\) −12.0000 + 20.7846i −0.431610 + 0.747570i −0.997012 0.0772449i \(-0.975388\pi\)
0.565402 + 0.824815i \(0.308721\pi\)
\(774\) −1.50000 2.59808i −0.0539164 0.0933859i
\(775\) 10.5000 + 6.06218i 0.377171 + 0.217760i
\(776\) 6.00000 3.46410i 0.215387 0.124354i
\(777\) 4.50000 + 7.79423i 0.161437 + 0.279616i
\(778\) 27.7128i 0.993552i
\(779\) 42.0000 + 31.1769i 1.50481 + 1.11703i
\(780\) 31.1769i 1.11631i
\(781\) −18.0000 + 10.3923i −0.644091 + 0.371866i
\(782\) 0 0
\(783\) −27.0000 15.5885i −0.964901 0.557086i
\(784\) 3.00000 + 5.19615i 0.107143 + 0.185577i
\(785\) −21.0000 12.1244i −0.749522 0.432737i
\(786\) 6.00000 0.214013
\(787\) 25.9808i 0.926114i 0.886328 + 0.463057i \(0.153248\pi\)
−0.886328 + 0.463057i \(0.846752\pi\)
\(788\) 0 0
\(789\) 21.0000 36.3731i 0.747620 1.29492i
\(790\) −18.0000 −0.640411
\(791\) −12.0000 −0.426671
\(792\) −9.00000 5.19615i −0.319801 0.184637i
\(793\) −31.5000 + 18.1865i −1.11860 + 0.645823i
\(794\) −14.5000 + 25.1147i −0.514586 + 0.891289i
\(795\) −36.0000 62.3538i −1.27679 2.21146i
\(796\) 12.5000 + 21.6506i 0.443051 + 0.767386i
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) −7.50000 0.866025i −0.265497 0.0306570i
\(799\) −24.0000 −0.849059
\(800\) 3.50000 + 6.06218i 0.123744 + 0.214330i
\(801\) 0 0
\(802\) −12.0000 + 20.7846i −0.423735 + 0.733930i
\(803\) 21.0000 12.1244i 0.741074 0.427859i
\(804\) 7.50000 12.9904i 0.264505 0.458135i
\(805\) 0 0
\(806\) 9.00000 0.317011
\(807\) 0 0
\(808\) 9.00000 + 5.19615i 0.316619 + 0.182800i
\(809\) 3.46410i 0.121791i −0.998144 0.0608957i \(-0.980604\pi\)
0.998144 0.0608957i \(-0.0193957\pi\)
\(810\) 31.1769i 1.09545i
\(811\) −27.0000 15.5885i −0.948098 0.547385i −0.0556086 0.998453i \(-0.517710\pi\)
−0.892490 + 0.451068i \(0.851043\pi\)
\(812\) −3.00000 5.19615i −0.105279 0.182349i
\(813\) 12.0000 + 6.92820i 0.420858 + 0.242983i
\(814\) 9.00000 + 15.5885i 0.315450 + 0.546375i
\(815\) −33.0000 + 19.0526i −1.15594 + 0.667382i
\(816\) −6.00000 −0.210042
\(817\) −3.50000 2.59808i −0.122449 0.0908952i
\(818\) 34.6410i 1.21119i
\(819\) 13.5000 7.79423i 0.471728 0.272352i
\(820\) 36.0000 20.7846i 1.25717 0.725830i
\(821\) −21.0000 12.1244i −0.732905 0.423143i 0.0865789 0.996245i \(-0.472407\pi\)
−0.819484 + 0.573102i \(0.805740\pi\)
\(822\) −3.00000 5.19615i −0.104637 0.181237i
\(823\) −20.0000 + 34.6410i −0.697156 + 1.20751i 0.272292 + 0.962215i \(0.412218\pi\)
−0.969448 + 0.245295i \(0.921115\pi\)
\(824\) 8.66025i 0.301694i
\(825\) 42.0000 1.46225
\(826\) 0 0
\(827\) −3.00000 + 5.19615i −0.104320 + 0.180688i −0.913460 0.406928i \(-0.866600\pi\)
0.809140 + 0.587616i \(0.199933\pi\)
\(828\) 0 0
\(829\) 50.2295i 1.74454i 0.489023 + 0.872271i \(0.337353\pi\)
−0.489023 + 0.872271i \(0.662647\pi\)
\(830\) 18.0000 31.1769i 0.624789 1.08217i
\(831\) 3.00000 1.73205i 0.104069 0.0600842i
\(832\) 4.50000 + 2.59808i 0.156009 + 0.0900721i
\(833\) 18.0000 10.3923i 0.623663 0.360072i
\(834\) 7.50000 4.33013i 0.259704 0.149940i
\(835\) 41.5692i 1.43856i
\(836\) −15.0000 1.73205i −0.518786 0.0599042i
\(837\) −9.00000 −0.311086
\(838\) 9.00000 5.19615i 0.310900 0.179498i
\(839\) −27.0000 46.7654i −0.932144 1.61452i −0.779650 0.626215i \(-0.784603\pi\)
−0.152493 0.988304i \(-0.548730\pi\)
\(840\) −3.00000 + 5.19615i −0.103510 + 0.179284i
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −12.0000 6.92820i −0.413547 0.238762i
\(843\) 10.3923i 0.357930i
\(844\) 22.5167i 0.775055i
\(845\) 42.0000 + 24.2487i 1.44484 + 0.834181i
\(846\) −18.0000 10.3923i −0.618853 0.357295i
\(847\) −1.00000 −0.0343604
\(848\) 12.0000 0.412082
\(849\) −42.0000 24.2487i −1.44144 0.832214i
\(850\) 21.0000 12.1244i 0.720294 0.415862i
\(851\) 0 0
\(852\) −9.00000 + 5.19615i −0.308335 + 0.178017i
\(853\) −2.50000 4.33013i −0.0855984 0.148261i 0.820048 0.572295i \(-0.193947\pi\)
−0.905646 + 0.424034i \(0.860614\pi\)
\(854\) 7.00000 0.239535
\(855\) 18.0000 + 41.5692i 0.615587 + 1.42164i
\(856\) −18.0000 −0.615227
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 27.0000 15.5885i 0.921765 0.532181i
\(859\) 17.5000 30.3109i 0.597092 1.03419i −0.396156 0.918183i \(-0.629656\pi\)
0.993248 0.116011i \(-0.0370107\pi\)
\(860\) −3.00000 + 1.73205i −0.102299 + 0.0590624i
\(861\) 18.0000 + 10.3923i 0.613438 + 0.354169i
\(862\) 12.0000 0.408722
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) −4.50000 2.59808i −0.153093 0.0883883i
\(865\) 18.0000 + 10.3923i 0.612018 + 0.353349i
\(866\) 19.0526i 0.647432i
\(867\) 8.66025i 0.294118i
\(868\) −1.50000 0.866025i −0.0509133 0.0293948i
\(869\) −9.00000 15.5885i −0.305304 0.528802i
\(870\) −18.0000 + 31.1769i −0.610257 + 1.05700i
\(871\) 22.5000 + 38.9711i 0.762383 + 1.32049i
\(872\) 0 0
\(873\) 20.7846i 0.703452i
\(874\) 0 0
\(875\) 6.92820i 0.234216i
\(876\) 10.5000 6.06218i 0.354762 0.204822i
\(877\) 4.50000 2.59808i 0.151954 0.0877308i −0.422095 0.906552i \(-0.638705\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 7.50000 + 4.33013i 0.253113 + 0.146135i
\(879\) 0 0
\(880\) −6.00000 + 10.3923i −0.202260 + 0.350325i
\(881\) 38.1051i 1.28379i −0.766791 0.641897i \(-0.778148\pi\)
0.766791 0.641897i \(-0.221852\pi\)
\(882\) 18.0000 0.606092
\(883\) −6.50000 + 11.2583i −0.218742 + 0.378873i −0.954424 0.298455i \(-0.903529\pi\)
0.735681 + 0.677328i \(0.236862\pi\)
\(884\) 9.00000 15.5885i 0.302703 0.524297i
\(885\) 0 0
\(886\) 24.2487i 0.814651i
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 4.50000 + 7.79423i 0.151010 + 0.261557i
\(889\) −9.00000 5.19615i −0.301850 0.174273i
\(890\) 0 0
\(891\) −27.0000 + 15.5885i −0.904534 + 0.522233i
\(892\) 19.0526i 0.637927i
\(893\) −30.0000 3.46410i −1.00391 0.115922i
\(894\) 30.0000 1.00335
\(895\) 36.0000 20.7846i 1.20335 0.694753i
\(896\) −0.500000 0.866025i −0.0167038 0.0289319i
\(897\) 0 0
\(898\) −15.0000 25.9808i −0.500556 0.866989i
\(899\) −9.00000 5.19615i −0.300167 0.173301i
\(900\) 21.0000 0.700000
\(901\) 41.5692i 1.38487i
\(902\) 36.0000 + 20.7846i 1.19867 + 0.692052i
\(903\) −1.50000 0.866025i −0.0499169 0.0288195i
\(904\) −12.0000 −0.399114
\(905\) −24.0000 −0.797787
\(906\) 3.00000 5.19615i 0.0996683 0.172631i
\(907\) 21.0000 12.1244i 0.697294 0.402583i −0.109045 0.994037i \(-0.534779\pi\)
0.806339 + 0.591454i \(0.201446\pi\)
\(908\) −9.00000 + 15.5885i −0.298675 + 0.517321i
\(909\) 27.0000 15.5885i 0.895533 0.517036i
\(910\) −9.00000 15.5885i −0.298347 0.516752i
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) −7.50000 0.866025i −0.248350 0.0286770i
\(913\) 36.0000 1.19143
\(914\) −8.50000 14.7224i −0.281155 0.486975i
\(915\) −21.0000 36.3731i −0.694239 1.20246i
\(916\) −6.50000 + 11.2583i −0.214766 + 0.371986i
\(917\) 3.00000 1.73205i 0.0990687 0.0571974i
\(918\) −9.00000 + 15.5885i −0.297044 + 0.514496i
\(919\) −53.0000 −1.74831 −0.874154 0.485648i \(-0.838584\pi\)
−0.874154 + 0.485648i \(0.838584\pi\)
\(920\) 0 0
\(921\) −27.0000 + 46.7654i −0.889680 + 1.54097i
\(922\) −6.00000 3.46410i −0.197599 0.114084i
\(923\) 31.1769i 1.02620i
\(924\) −6.00000 −0.197386
\(925\) −31.5000 18.1865i −1.03571 0.597970i
\(926\) 9.50000 + 16.4545i 0.312189 + 0.540728i
\(927\) −22.5000 12.9904i −0.738997 0.426660i
\(928\) −3.00000 5.19615i −0.0984798 0.170572i
\(929\) 45.0000 25.9808i 1.47640 0.852401i 0.476757 0.879035i \(-0.341812\pi\)
0.999645 + 0.0266341i \(0.00847889\pi\)
\(930\) 10.3923i 0.340777i
\(931\) 24.0000 10.3923i 0.786568 0.340594i
\(932\) 17.3205i 0.567352i
\(933\) −12.0000 20.7846i −0.392862 0.680458i
\(934\) 24.0000 13.8564i 0.785304 0.453395i
\(935\) 36.0000 + 20.7846i 1.17733 + 0.679729i
\(936\) 13.5000 7.79423i 0.441261 0.254762i
\(937\) −11.5000 + 19.9186i −0.375689 + 0.650712i −0.990430 0.138017i \(-0.955927\pi\)
0.614741 + 0.788729i \(0.289260\pi\)
\(938\) 8.66025i 0.282767i
\(939\) 24.2487i 0.791327i
\(940\) −12.0000 + 20.7846i −0.391397 + 0.677919i
\(941\) −12.0000 + 20.7846i −0.391189 + 0.677559i −0.992607 0.121376i \(-0.961269\pi\)
0.601418 + 0.798935i \(0.294603\pi\)
\(942\) 12.1244i 0.395033i
\(943\) 0 0
\(944\) 0 0
\(945\) 9.00000 + 15.5885i 0.292770 + 0.507093i
\(946\) −3.00000 1.73205i −0.0975384 0.0563138i
\(947\) −27.0000 + 15.5885i −0.877382 + 0.506557i −0.869794 0.493414i \(-0.835749\pi\)
−0.00758776 + 0.999971i \(0.502415\pi\)
\(948\) −4.50000 7.79423i −0.146153 0.253145i
\(949\) 36.3731i 1.18072i
\(950\) 28.0000 12.1244i 0.908440 0.393366i
\(951\) 10.3923i 0.336994i
\(952\) −3.00000 + 1.73205i −0.0972306 + 0.0561361i
\(953\) −3.00000 5.19615i −0.0971795 0.168320i 0.813337 0.581793i \(-0.197649\pi\)
−0.910516 + 0.413473i \(0.864315\pi\)
\(954\) 18.0000 31.1769i 0.582772 1.00939i
\(955\) −30.0000 51.9615i −0.970777 1.68144i
\(956\) −21.0000 12.1244i −0.679189 0.392130i
\(957\) −36.0000 −1.16371
\(958\) 10.3923i 0.335760i
\(959\) −3.00000 1.73205i −0.0968751 0.0559308i
\(960\) −3.00000 + 5.19615i −0.0968246 + 0.167705i
\(961\) 28.0000 0.903226
\(962\) −27.0000 −0.870515
\(963\) −27.0000 + 46.7654i −0.870063 + 1.50699i
\(964\) 1.50000 0.866025i 0.0483117 0.0278928i
\(965\) −21.0000 + 36.3731i −0.676014 + 1.17089i
\(966\) 0 0
\(967\) 14.5000 + 25.1147i 0.466289 + 0.807635i 0.999259 0.0384986i \(-0.0122575\pi\)
−0.532970 + 0.846134i \(0.678924\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −3.00000 + 25.9808i −0.0963739 + 0.834622i
\(970\) −24.0000 −0.770594
\(971\) 24.0000 + 41.5692i 0.770197 + 1.33402i 0.937455 + 0.348107i \(0.113175\pi\)
−0.167258 + 0.985913i \(0.553491\pi\)
\(972\) −13.5000 + 7.79423i −0.433013 + 0.250000i
\(973\) 2.50000 4.33013i 0.0801463 0.138817i
\(974\) −3.00000 + 1.73205i −0.0961262 + 0.0554985i
\(975\) −31.5000 + 54.5596i −1.00881 + 1.74731i
\(976\) 7.00000 0.224065
\(977\) 12.0000 0.383914 0.191957 0.981403i \(-0.438517\pi\)
0.191957 + 0.981403i \(0.438517\pi\)
\(978\) −16.5000 9.52628i −0.527612 0.304617i
\(979\) 0 0
\(980\) 20.7846i 0.663940i
\(981\) 0 0
\(982\) 9.00000 + 5.19615i 0.287202 + 0.165816i
\(983\) 21.0000 + 36.3731i 0.669796 + 1.16012i 0.977961 + 0.208788i \(0.0669518\pi\)
−0.308165 + 0.951333i \(0.599715\pi\)
\(984\) 18.0000 + 10.3923i 0.573819 + 0.331295i
\(985\) 0 0
\(986\) −18.0000 + 10.3923i −0.573237 + 0.330958i
\(987\) −12.0000 −0.381964
\(988\) 13.5000 18.1865i 0.429492 0.578591i
\(989\) 0 0
\(990\) 18.0000 + 31.1769i 0.572078 + 0.990867i
\(991\) 31.5000 18.1865i 1.00063 0.577714i 0.0921957 0.995741i \(-0.470611\pi\)
0.908435 + 0.418027i \(0.137278\pi\)
\(992\) −1.50000 0.866025i −0.0476250 0.0274963i
\(993\) 4.50000 + 7.79423i 0.142803 + 0.247342i
\(994\) −3.00000 + 5.19615i −0.0951542 + 0.164812i
\(995\) 86.6025i 2.74549i
\(996\) 18.0000 0.570352
\(997\) 26.5000 45.8993i 0.839263 1.45365i −0.0512480 0.998686i \(-0.516320\pi\)
0.890511 0.454961i \(-0.150347\pi\)
\(998\) −15.5000 + 26.8468i −0.490644 + 0.849820i
\(999\) 27.0000 0.854242
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 114.2.h.b.107.1 yes 2
3.2 odd 2 114.2.h.c.107.1 yes 2
4.3 odd 2 912.2.bn.f.449.1 2
12.11 even 2 912.2.bn.c.449.1 2
19.8 odd 6 114.2.h.c.65.1 yes 2
57.8 even 6 inner 114.2.h.b.65.1 2
76.27 even 6 912.2.bn.c.65.1 2
228.179 odd 6 912.2.bn.f.65.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
114.2.h.b.65.1 2 57.8 even 6 inner
114.2.h.b.107.1 yes 2 1.1 even 1 trivial
114.2.h.c.65.1 yes 2 19.8 odd 6
114.2.h.c.107.1 yes 2 3.2 odd 2
912.2.bn.c.65.1 2 76.27 even 6
912.2.bn.c.449.1 2 12.11 even 2
912.2.bn.f.65.1 2 228.179 odd 6
912.2.bn.f.449.1 2 4.3 odd 2