Properties

Label 114.2.e
Level $114$
Weight $2$
Character orbit 114.e
Rep. character $\chi_{114}(7,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $4$
Newform subspaces $2$
Sturm bound $40$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(40\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(114, [\chi])\).

Total New Old
Modular forms 48 4 44
Cusp forms 32 4 28
Eisenstein series 16 0 16

Trace form

\( 4 q + 2 q^{3} - 2 q^{4} + 4 q^{5} - 4 q^{7} - 2 q^{9} + 4 q^{10} - 4 q^{12} + 10 q^{13} + 4 q^{14} - 4 q^{15} - 2 q^{16} - 4 q^{17} - 8 q^{20} - 2 q^{21} - 4 q^{22} - 6 q^{25} - 8 q^{26} - 4 q^{27} + 2 q^{28}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(114, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
114.2.e.a 114.e 19.c $2$ $0.910$ \(\Q(\sqrt{-3}) \) None 114.2.e.a \(-1\) \(1\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
114.2.e.b 114.e 19.c $2$ $0.910$ \(\Q(\sqrt{-3}) \) None 114.2.e.b \(1\) \(1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(114, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(114, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)