Defining parameters
Level: | \( N \) | \(=\) | \( 114 = 2 \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 114.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(114, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 8 | 16 |
Cusp forms | 16 | 8 | 8 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(114, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
114.2.b.a | $2$ | $0.910$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(-2\) | \(0\) | \(-8\) | \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(1+\cdots)q^{6}+\cdots\) |
114.2.b.b | $2$ | $0.910$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(3\) | \(0\) | \(2\) | \(q-q^{2}+(1+\zeta_{6})q^{3}+q^{4}+(2-4\zeta_{6})q^{5}+\cdots\) |
114.2.b.c | $2$ | $0.910$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(-3\) | \(0\) | \(2\) | \(q+q^{2}+(-1-\zeta_{6})q^{3}+q^{4}+(2-4\zeta_{6})q^{5}+\cdots\) |
114.2.b.d | $2$ | $0.910$ | \(\Q(\sqrt{-2}) \) | None | \(2\) | \(2\) | \(0\) | \(-8\) | \(q+q^{2}+(1+\beta )q^{3}+q^{4}-\beta q^{5}+(1+\beta )q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(114, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(114, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)