Properties

Label 114.2.a
Level $114$
Weight $2$
Character orbit 114.a
Rep. character $\chi_{114}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $40$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 114.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(114))\).

Total New Old
Modular forms 24 3 21
Cusp forms 17 3 14
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(19\)FrickeDim
\(+\)\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(3\)

Trace form

\( 3 q + q^{2} - q^{3} + 3 q^{4} + 2 q^{5} + q^{6} + q^{8} + 3 q^{9} + 2 q^{10} - q^{12} - 2 q^{13} - 8 q^{14} - 2 q^{15} + 3 q^{16} - 2 q^{17} + q^{18} + q^{19} + 2 q^{20} - 8 q^{21} - 8 q^{22} - 12 q^{23}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(114))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 19
114.2.a.a 114.a 1.a $1$ $0.910$ \(\Q\) None 114.2.a.a \(-1\) \(-1\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+4q^{7}-q^{8}+\cdots\)
114.2.a.b 114.a 1.a $1$ $0.910$ \(\Q\) None 114.2.a.b \(1\) \(-1\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}+q^{8}+\cdots\)
114.2.a.c 114.a 1.a $1$ $0.910$ \(\Q\) None 114.2.a.c \(1\) \(1\) \(0\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}-4q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(114))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(114)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 2}\)