Defining parameters
| Level: | \( N \) | \(=\) | \( 114 = 2 \cdot 3 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 114.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(40\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(114))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 24 | 3 | 21 |
| Cusp forms | 17 | 3 | 14 |
| Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(10\) | \(0\) | \(10\) | \(7\) | \(0\) | \(7\) | \(3\) | \(0\) | \(3\) | |||||
| Minus space | \(-\) | \(14\) | \(3\) | \(11\) | \(10\) | \(3\) | \(7\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(114))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 19 | |||||||
| 114.2.a.a | $1$ | $0.910$ | \(\Q\) | None | \(-1\) | \(-1\) | \(0\) | \(4\) | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{6}+4q^{7}-q^{8}+\cdots\) | |
| 114.2.a.b | $1$ | $0.910$ | \(\Q\) | None | \(1\) | \(-1\) | \(2\) | \(0\) | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}+q^{8}+\cdots\) | |
| 114.2.a.c | $1$ | $0.910$ | \(\Q\) | None | \(1\) | \(1\) | \(0\) | \(-4\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{6}-4q^{7}+q^{8}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(114))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(114)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 2}\)