Properties

Label 1134.2.k.b.647.4
Level $1134$
Weight $2$
Character 1134.647
Analytic conductor $9.055$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,2,Mod(647,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.647"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,-4,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 647.4
Root \(0.765614 + 1.55365i\) of defining polynomial
Character \(\chi\) \(=\) 1134.647
Dual form 1134.2.k.b.971.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.82207 + 3.15592i) q^{5} +(-1.04503 + 2.43062i) q^{7} +1.00000i q^{8} +(-3.15592 - 1.82207i) q^{10} +(4.38809 + 2.53346i) q^{11} +3.39934i q^{13} +(-0.310282 - 2.62749i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.774696 - 1.34181i) q^{17} +(-0.707140 + 0.408267i) q^{19} +3.64414 q^{20} -5.06693 q^{22} +(1.47275 - 0.850294i) q^{23} +(-4.13989 + 7.17050i) q^{25} +(-1.69967 - 2.94391i) q^{26} +(1.58246 + 2.12034i) q^{28} -4.16492i q^{29} +(1.87924 + 1.08498i) q^{31} +(0.866025 + 0.500000i) q^{32} +1.54939i q^{34} +(-9.57497 + 1.13071i) q^{35} +(-3.39979 - 5.88860i) q^{37} +(0.408267 - 0.707140i) q^{38} +(-3.15592 + 1.82207i) q^{40} +2.03363 q^{41} -6.12378 q^{43} +(4.38809 - 2.53346i) q^{44} +(-0.850294 + 1.47275i) q^{46} +(-3.37127 - 5.83922i) q^{47} +(-4.81580 - 5.08016i) q^{49} -8.27979i q^{50} +(2.94391 + 1.69967i) q^{52} +(11.4961 + 6.63726i) q^{53} +18.4646i q^{55} +(-2.43062 - 1.04503i) q^{56} +(2.08246 + 3.60693i) q^{58} +(-1.08816 + 1.88475i) q^{59} +(6.28199 - 3.62691i) q^{61} -2.16996 q^{62} -1.00000 q^{64} +(-10.7280 + 6.19384i) q^{65} +(-1.22820 + 2.12731i) q^{67} +(-0.774696 - 1.34181i) q^{68} +(7.72681 - 5.76671i) q^{70} -6.74272i q^{71} +(3.76912 + 2.17610i) q^{73} +(5.88860 + 3.39979i) q^{74} +0.816535i q^{76} +(-10.7436 + 8.01820i) q^{77} +(-6.37651 - 11.0444i) q^{79} +(1.82207 - 3.15592i) q^{80} +(-1.76117 + 1.01681i) q^{82} +1.53608 q^{83} +5.64621 q^{85} +(5.30335 - 3.06189i) q^{86} +(-2.53346 + 4.38809i) q^{88} +(6.01679 + 10.4214i) q^{89} +(-8.26249 - 3.55243i) q^{91} -1.70059i q^{92} +(5.83922 + 3.37127i) q^{94} +(-2.57692 - 1.48778i) q^{95} +6.46065i q^{97} +(6.71069 + 1.99165i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 4 q^{7} + 12 q^{11} - 8 q^{16} + 18 q^{17} - 6 q^{23} - 8 q^{25} - 12 q^{26} - 2 q^{28} - 6 q^{31} - 30 q^{35} - 2 q^{37} - 12 q^{41} + 4 q^{43} + 12 q^{44} + 6 q^{46} - 18 q^{47} - 2 q^{49}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.82207 + 3.15592i 0.814855 + 1.41137i 0.909432 + 0.415853i \(0.136517\pi\)
−0.0945763 + 0.995518i \(0.530150\pi\)
\(6\) 0 0
\(7\) −1.04503 + 2.43062i −0.394986 + 0.918687i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.15592 1.82207i −0.997990 0.576190i
\(11\) 4.38809 + 2.53346i 1.32306 + 0.763868i 0.984215 0.176975i \(-0.0566313\pi\)
0.338843 + 0.940843i \(0.389965\pi\)
\(12\) 0 0
\(13\) 3.39934i 0.942807i 0.881918 + 0.471404i \(0.156252\pi\)
−0.881918 + 0.471404i \(0.843748\pi\)
\(14\) −0.310282 2.62749i −0.0829264 0.702227i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.774696 1.34181i 0.187891 0.325438i −0.756656 0.653814i \(-0.773168\pi\)
0.944547 + 0.328376i \(0.106501\pi\)
\(18\) 0 0
\(19\) −0.707140 + 0.408267i −0.162229 + 0.0936629i −0.578916 0.815387i \(-0.696524\pi\)
0.416687 + 0.909050i \(0.363191\pi\)
\(20\) 3.64414 0.814855
\(21\) 0 0
\(22\) −5.06693 −1.08027
\(23\) 1.47275 0.850294i 0.307090 0.177299i −0.338533 0.940954i \(-0.609931\pi\)
0.645624 + 0.763656i \(0.276598\pi\)
\(24\) 0 0
\(25\) −4.13989 + 7.17050i −0.827979 + 1.43410i
\(26\) −1.69967 2.94391i −0.333333 0.577349i
\(27\) 0 0
\(28\) 1.58246 + 2.12034i 0.299057 + 0.400706i
\(29\) 4.16492i 0.773406i −0.922204 0.386703i \(-0.873614\pi\)
0.922204 0.386703i \(-0.126386\pi\)
\(30\) 0 0
\(31\) 1.87924 + 1.08498i 0.337521 + 0.194868i 0.659175 0.751989i \(-0.270906\pi\)
−0.321654 + 0.946857i \(0.604239\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 1.54939i 0.265719i
\(35\) −9.57497 + 1.13071i −1.61846 + 0.191125i
\(36\) 0 0
\(37\) −3.39979 5.88860i −0.558921 0.968080i −0.997587 0.0694297i \(-0.977882\pi\)
0.438666 0.898650i \(-0.355451\pi\)
\(38\) 0.408267 0.707140i 0.0662297 0.114713i
\(39\) 0 0
\(40\) −3.15592 + 1.82207i −0.498995 + 0.288095i
\(41\) 2.03363 0.317599 0.158799 0.987311i \(-0.449238\pi\)
0.158799 + 0.987311i \(0.449238\pi\)
\(42\) 0 0
\(43\) −6.12378 −0.933868 −0.466934 0.884292i \(-0.654641\pi\)
−0.466934 + 0.884292i \(0.654641\pi\)
\(44\) 4.38809 2.53346i 0.661529 0.381934i
\(45\) 0 0
\(46\) −0.850294 + 1.47275i −0.125369 + 0.217146i
\(47\) −3.37127 5.83922i −0.491751 0.851737i 0.508204 0.861237i \(-0.330310\pi\)
−0.999955 + 0.00949933i \(0.996976\pi\)
\(48\) 0 0
\(49\) −4.81580 5.08016i −0.687972 0.725737i
\(50\) 8.27979i 1.17094i
\(51\) 0 0
\(52\) 2.94391 + 1.69967i 0.408247 + 0.235702i
\(53\) 11.4961 + 6.63726i 1.57911 + 0.911698i 0.994984 + 0.100032i \(0.0318946\pi\)
0.584123 + 0.811665i \(0.301439\pi\)
\(54\) 0 0
\(55\) 18.4646i 2.48977i
\(56\) −2.43062 1.04503i −0.324805 0.139649i
\(57\) 0 0
\(58\) 2.08246 + 3.60693i 0.273440 + 0.473612i
\(59\) −1.08816 + 1.88475i −0.141666 + 0.245373i −0.928124 0.372271i \(-0.878579\pi\)
0.786458 + 0.617644i \(0.211913\pi\)
\(60\) 0 0
\(61\) 6.28199 3.62691i 0.804326 0.464378i −0.0406555 0.999173i \(-0.512945\pi\)
0.844982 + 0.534795i \(0.179611\pi\)
\(62\) −2.16996 −0.275585
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −10.7280 + 6.19384i −1.33065 + 0.768251i
\(66\) 0 0
\(67\) −1.22820 + 2.12731i −0.150049 + 0.259892i −0.931245 0.364393i \(-0.881276\pi\)
0.781196 + 0.624285i \(0.214610\pi\)
\(68\) −0.774696 1.34181i −0.0939457 0.162719i
\(69\) 0 0
\(70\) 7.72681 5.76671i 0.923530 0.689254i
\(71\) 6.74272i 0.800213i −0.916469 0.400107i \(-0.868973\pi\)
0.916469 0.400107i \(-0.131027\pi\)
\(72\) 0 0
\(73\) 3.76912 + 2.17610i 0.441142 + 0.254694i 0.704082 0.710119i \(-0.251359\pi\)
−0.262940 + 0.964812i \(0.584692\pi\)
\(74\) 5.88860 + 3.39979i 0.684536 + 0.395217i
\(75\) 0 0
\(76\) 0.816535i 0.0936629i
\(77\) −10.7436 + 8.01820i −1.22434 + 0.913759i
\(78\) 0 0
\(79\) −6.37651 11.0444i −0.717414 1.24260i −0.962021 0.272975i \(-0.911992\pi\)
0.244607 0.969622i \(-0.421341\pi\)
\(80\) 1.82207 3.15592i 0.203714 0.352843i
\(81\) 0 0
\(82\) −1.76117 + 1.01681i −0.194489 + 0.112288i
\(83\) 1.53608 0.168607 0.0843034 0.996440i \(-0.473134\pi\)
0.0843034 + 0.996440i \(0.473134\pi\)
\(84\) 0 0
\(85\) 5.64621 0.612417
\(86\) 5.30335 3.06189i 0.571875 0.330172i
\(87\) 0 0
\(88\) −2.53346 + 4.38809i −0.270068 + 0.467772i
\(89\) 6.01679 + 10.4214i 0.637778 + 1.10466i 0.985919 + 0.167222i \(0.0534798\pi\)
−0.348141 + 0.937442i \(0.613187\pi\)
\(90\) 0 0
\(91\) −8.26249 3.55243i −0.866145 0.372396i
\(92\) 1.70059i 0.177299i
\(93\) 0 0
\(94\) 5.83922 + 3.37127i 0.602269 + 0.347720i
\(95\) −2.57692 1.48778i −0.264386 0.152643i
\(96\) 0 0
\(97\) 6.46065i 0.655980i 0.944681 + 0.327990i \(0.106371\pi\)
−0.944681 + 0.327990i \(0.893629\pi\)
\(98\) 6.71069 + 1.99165i 0.677882 + 0.201187i
\(99\) 0 0
\(100\) 4.13989 + 7.17050i 0.413989 + 0.717050i
\(101\) −5.95045 + 10.3065i −0.592092 + 1.02553i 0.401858 + 0.915702i \(0.368364\pi\)
−0.993950 + 0.109831i \(0.964969\pi\)
\(102\) 0 0
\(103\) −12.7174 + 7.34240i −1.25308 + 0.723468i −0.971721 0.236134i \(-0.924120\pi\)
−0.281363 + 0.959601i \(0.590786\pi\)
\(104\) −3.39934 −0.333333
\(105\) 0 0
\(106\) −13.2745 −1.28934
\(107\) 2.87453 1.65961i 0.277891 0.160440i −0.354577 0.935027i \(-0.615375\pi\)
0.632468 + 0.774586i \(0.282042\pi\)
\(108\) 0 0
\(109\) 1.41837 2.45668i 0.135855 0.235308i −0.790069 0.613018i \(-0.789955\pi\)
0.925924 + 0.377711i \(0.123289\pi\)
\(110\) −9.23230 15.9908i −0.880266 1.52466i
\(111\) 0 0
\(112\) 2.62749 0.310282i 0.248275 0.0293189i
\(113\) 7.85733i 0.739155i 0.929200 + 0.369578i \(0.120498\pi\)
−0.929200 + 0.369578i \(0.879502\pi\)
\(114\) 0 0
\(115\) 5.36692 + 3.09859i 0.500468 + 0.288945i
\(116\) −3.60693 2.08246i −0.334895 0.193351i
\(117\) 0 0
\(118\) 2.17632i 0.200346i
\(119\) 2.45185 + 3.28523i 0.224761 + 0.301157i
\(120\) 0 0
\(121\) 7.33687 + 12.7078i 0.666988 + 1.15526i
\(122\) −3.62691 + 6.28199i −0.328365 + 0.568744i
\(123\) 0 0
\(124\) 1.87924 1.08498i 0.168761 0.0974339i
\(125\) −11.9520 −1.06902
\(126\) 0 0
\(127\) −17.4279 −1.54647 −0.773237 0.634117i \(-0.781364\pi\)
−0.773237 + 0.634117i \(0.781364\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 6.19384 10.7280i 0.543236 0.940912i
\(131\) −1.61603 2.79904i −0.141193 0.244554i 0.786753 0.617268i \(-0.211760\pi\)
−0.927946 + 0.372714i \(0.878427\pi\)
\(132\) 0 0
\(133\) −0.253356 2.14544i −0.0219687 0.186033i
\(134\) 2.45641i 0.212201i
\(135\) 0 0
\(136\) 1.34181 + 0.774696i 0.115060 + 0.0664297i
\(137\) 12.6284 + 7.29101i 1.07892 + 0.622913i 0.930604 0.366027i \(-0.119282\pi\)
0.148313 + 0.988940i \(0.452616\pi\)
\(138\) 0 0
\(139\) 5.74826i 0.487561i −0.969830 0.243780i \(-0.921612\pi\)
0.969830 0.243780i \(-0.0783876\pi\)
\(140\) −3.80826 + 8.85752i −0.321857 + 0.748597i
\(141\) 0 0
\(142\) 3.37136 + 5.83936i 0.282918 + 0.490029i
\(143\) −8.61210 + 14.9166i −0.720180 + 1.24739i
\(144\) 0 0
\(145\) 13.1442 7.58878i 1.09156 0.630214i
\(146\) −4.35220 −0.360191
\(147\) 0 0
\(148\) −6.79957 −0.558921
\(149\) 4.95904 2.86310i 0.406261 0.234555i −0.282921 0.959143i \(-0.591303\pi\)
0.689182 + 0.724589i \(0.257970\pi\)
\(150\) 0 0
\(151\) 6.38483 11.0589i 0.519590 0.899957i −0.480151 0.877186i \(-0.659418\pi\)
0.999741 0.0227705i \(-0.00724870\pi\)
\(152\) −0.408267 0.707140i −0.0331148 0.0573566i
\(153\) 0 0
\(154\) 5.29511 12.3158i 0.426692 0.992432i
\(155\) 7.90763i 0.635156i
\(156\) 0 0
\(157\) −11.0598 6.38536i −0.882666 0.509607i −0.0111295 0.999938i \(-0.503543\pi\)
−0.871537 + 0.490331i \(0.836876\pi\)
\(158\) 11.0444 + 6.37651i 0.878649 + 0.507288i
\(159\) 0 0
\(160\) 3.64414i 0.288095i
\(161\) 0.527662 + 4.46829i 0.0415856 + 0.352150i
\(162\) 0 0
\(163\) −1.51018 2.61570i −0.118286 0.204878i 0.800802 0.598929i \(-0.204407\pi\)
−0.919089 + 0.394051i \(0.871073\pi\)
\(164\) 1.01681 1.76117i 0.0793997 0.137524i
\(165\) 0 0
\(166\) −1.33028 + 0.768040i −0.103250 + 0.0596115i
\(167\) −14.2953 −1.10621 −0.553103 0.833113i \(-0.686556\pi\)
−0.553103 + 0.833113i \(0.686556\pi\)
\(168\) 0 0
\(169\) 1.44449 0.111115
\(170\) −4.88976 + 2.82310i −0.375028 + 0.216522i
\(171\) 0 0
\(172\) −3.06189 + 5.30335i −0.233467 + 0.404377i
\(173\) 1.09953 + 1.90444i 0.0835954 + 0.144792i 0.904792 0.425854i \(-0.140026\pi\)
−0.821196 + 0.570646i \(0.806693\pi\)
\(174\) 0 0
\(175\) −13.1024 17.5559i −0.990450 1.32710i
\(176\) 5.06693i 0.381934i
\(177\) 0 0
\(178\) −10.4214 6.01679i −0.781116 0.450977i
\(179\) −9.30715 5.37349i −0.695649 0.401633i 0.110076 0.993923i \(-0.464891\pi\)
−0.805725 + 0.592290i \(0.798224\pi\)
\(180\) 0 0
\(181\) 14.4710i 1.07562i −0.843065 0.537811i \(-0.819251\pi\)
0.843065 0.537811i \(-0.180749\pi\)
\(182\) 8.93174 1.05475i 0.662065 0.0781835i
\(183\) 0 0
\(184\) 0.850294 + 1.47275i 0.0626845 + 0.108573i
\(185\) 12.3893 21.4589i 0.910880 1.57769i
\(186\) 0 0
\(187\) 6.79887 3.92533i 0.497183 0.287048i
\(188\) −6.74255 −0.491751
\(189\) 0 0
\(190\) 2.97557 0.215871
\(191\) −7.21567 + 4.16597i −0.522108 + 0.301439i −0.737797 0.675023i \(-0.764134\pi\)
0.215689 + 0.976462i \(0.430800\pi\)
\(192\) 0 0
\(193\) 4.78393 8.28601i 0.344355 0.596440i −0.640881 0.767640i \(-0.721431\pi\)
0.985236 + 0.171200i \(0.0547643\pi\)
\(194\) −3.23033 5.59509i −0.231924 0.401704i
\(195\) 0 0
\(196\) −6.80745 + 1.63053i −0.486246 + 0.116466i
\(197\) 2.37228i 0.169018i −0.996423 0.0845089i \(-0.973068\pi\)
0.996423 0.0845089i \(-0.0269322\pi\)
\(198\) 0 0
\(199\) 19.4983 + 11.2573i 1.38220 + 0.798011i 0.992419 0.122898i \(-0.0392188\pi\)
0.389777 + 0.920909i \(0.372552\pi\)
\(200\) −7.17050 4.13989i −0.507031 0.292735i
\(201\) 0 0
\(202\) 11.9009i 0.837344i
\(203\) 10.1233 + 4.35249i 0.710518 + 0.305485i
\(204\) 0 0
\(205\) 3.70541 + 6.41796i 0.258797 + 0.448250i
\(206\) 7.34240 12.7174i 0.511569 0.886064i
\(207\) 0 0
\(208\) 2.94391 1.69967i 0.204124 0.117851i
\(209\) −4.13732 −0.286184
\(210\) 0 0
\(211\) 14.5442 1.00126 0.500632 0.865660i \(-0.333101\pi\)
0.500632 + 0.865660i \(0.333101\pi\)
\(212\) 11.4961 6.63726i 0.789553 0.455849i
\(213\) 0 0
\(214\) −1.65961 + 2.87453i −0.113449 + 0.196499i
\(215\) −11.1580 19.3262i −0.760967 1.31803i
\(216\) 0 0
\(217\) −4.60104 + 3.43387i −0.312339 + 0.233106i
\(218\) 2.83674i 0.192128i
\(219\) 0 0
\(220\) 15.9908 + 9.23230i 1.07810 + 0.622442i
\(221\) 4.56128 + 2.63346i 0.306825 + 0.177145i
\(222\) 0 0
\(223\) 26.0062i 1.74151i 0.491720 + 0.870753i \(0.336368\pi\)
−0.491720 + 0.870753i \(0.663632\pi\)
\(224\) −2.12034 + 1.58246i −0.141671 + 0.105732i
\(225\) 0 0
\(226\) −3.92866 6.80465i −0.261331 0.452638i
\(227\) 11.4390 19.8129i 0.759231 1.31503i −0.184012 0.982924i \(-0.558909\pi\)
0.943243 0.332103i \(-0.107758\pi\)
\(228\) 0 0
\(229\) 23.3224 13.4652i 1.54118 0.889803i 0.542420 0.840107i \(-0.317508\pi\)
0.998764 0.0496960i \(-0.0158252\pi\)
\(230\) −6.19719 −0.408630
\(231\) 0 0
\(232\) 4.16492 0.273440
\(233\) 3.82003 2.20550i 0.250259 0.144487i −0.369624 0.929181i \(-0.620514\pi\)
0.619883 + 0.784694i \(0.287180\pi\)
\(234\) 0 0
\(235\) 12.2854 21.2789i 0.801412 1.38809i
\(236\) 1.08816 + 1.88475i 0.0708331 + 0.122687i
\(237\) 0 0
\(238\) −3.76598 1.61917i −0.244112 0.104955i
\(239\) 18.6669i 1.20746i −0.797189 0.603729i \(-0.793681\pi\)
0.797189 0.603729i \(-0.206319\pi\)
\(240\) 0 0
\(241\) −0.412458 0.238133i −0.0265688 0.0153395i 0.486657 0.873593i \(-0.338216\pi\)
−0.513226 + 0.858254i \(0.671550\pi\)
\(242\) −12.7078 7.33687i −0.816890 0.471632i
\(243\) 0 0
\(244\) 7.25382i 0.464378i
\(245\) 7.25785 24.4547i 0.463687 1.56235i
\(246\) 0 0
\(247\) −1.38784 2.40381i −0.0883061 0.152951i
\(248\) −1.08498 + 1.87924i −0.0688962 + 0.119332i
\(249\) 0 0
\(250\) 10.3507 5.97601i 0.654639 0.377956i
\(251\) 17.6939 1.11683 0.558415 0.829562i \(-0.311410\pi\)
0.558415 + 0.829562i \(0.311410\pi\)
\(252\) 0 0
\(253\) 8.61675 0.541731
\(254\) 15.0930 8.71394i 0.947018 0.546761i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.5971 + 20.0867i 0.723405 + 1.25297i 0.959627 + 0.281275i \(0.0907573\pi\)
−0.236222 + 0.971699i \(0.575909\pi\)
\(258\) 0 0
\(259\) 17.8658 2.10978i 1.11013 0.131096i
\(260\) 12.3877i 0.768251i
\(261\) 0 0
\(262\) 2.79904 + 1.61603i 0.172925 + 0.0998386i
\(263\) 2.98247 + 1.72193i 0.183907 + 0.106179i 0.589127 0.808040i \(-0.299472\pi\)
−0.405220 + 0.914219i \(0.632805\pi\)
\(264\) 0 0
\(265\) 48.3743i 2.97161i
\(266\) 1.29213 + 1.73133i 0.0792257 + 0.106154i
\(267\) 0 0
\(268\) 1.22820 + 2.12731i 0.0750245 + 0.129946i
\(269\) 4.00690 6.94015i 0.244305 0.423148i −0.717631 0.696423i \(-0.754774\pi\)
0.961936 + 0.273275i \(0.0881069\pi\)
\(270\) 0 0
\(271\) −1.55095 + 0.895442i −0.0942136 + 0.0543942i −0.546367 0.837546i \(-0.683989\pi\)
0.452153 + 0.891940i \(0.350656\pi\)
\(272\) −1.54939 −0.0939457
\(273\) 0 0
\(274\) −14.5820 −0.880932
\(275\) −36.3324 + 20.9765i −2.19093 + 1.26493i
\(276\) 0 0
\(277\) 12.2968 21.2986i 0.738841 1.27971i −0.214176 0.976795i \(-0.568707\pi\)
0.953017 0.302915i \(-0.0979599\pi\)
\(278\) 2.87413 + 4.97814i 0.172379 + 0.298569i
\(279\) 0 0
\(280\) −1.13071 9.57497i −0.0675730 0.572214i
\(281\) 21.5077i 1.28304i 0.767105 + 0.641521i \(0.221696\pi\)
−0.767105 + 0.641521i \(0.778304\pi\)
\(282\) 0 0
\(283\) 17.2755 + 9.97402i 1.02692 + 0.592894i 0.916101 0.400947i \(-0.131319\pi\)
0.110821 + 0.993840i \(0.464652\pi\)
\(284\) −5.83936 3.37136i −0.346502 0.200053i
\(285\) 0 0
\(286\) 17.2242i 1.01849i
\(287\) −2.12521 + 4.94297i −0.125447 + 0.291774i
\(288\) 0 0
\(289\) 7.29969 + 12.6434i 0.429394 + 0.743732i
\(290\) −7.58878 + 13.1442i −0.445629 + 0.771851i
\(291\) 0 0
\(292\) 3.76912 2.17610i 0.220571 0.127347i
\(293\) −2.49313 −0.145650 −0.0728251 0.997345i \(-0.523201\pi\)
−0.0728251 + 0.997345i \(0.523201\pi\)
\(294\) 0 0
\(295\) −7.93082 −0.461750
\(296\) 5.88860 3.39979i 0.342268 0.197609i
\(297\) 0 0
\(298\) −2.86310 + 4.95904i −0.165855 + 0.287270i
\(299\) 2.89044 + 5.00639i 0.167158 + 0.289527i
\(300\) 0 0
\(301\) 6.39956 14.8846i 0.368865 0.857932i
\(302\) 12.7697i 0.734811i
\(303\) 0 0
\(304\) 0.707140 + 0.408267i 0.0405572 + 0.0234157i
\(305\) 22.8925 + 13.2170i 1.31082 + 0.756802i
\(306\) 0 0
\(307\) 9.23124i 0.526854i 0.964679 + 0.263427i \(0.0848529\pi\)
−0.964679 + 0.263427i \(0.915147\pi\)
\(308\) 1.57218 + 13.3133i 0.0895830 + 0.758597i
\(309\) 0 0
\(310\) −3.95382 6.84821i −0.224562 0.388952i
\(311\) 11.4857 19.8938i 0.651294 1.12807i −0.331515 0.943450i \(-0.607560\pi\)
0.982809 0.184624i \(-0.0591068\pi\)
\(312\) 0 0
\(313\) 5.57145 3.21668i 0.314917 0.181818i −0.334208 0.942500i \(-0.608469\pi\)
0.649125 + 0.760682i \(0.275135\pi\)
\(314\) 12.7707 0.720694
\(315\) 0 0
\(316\) −12.7530 −0.717414
\(317\) −7.56502 + 4.36767i −0.424894 + 0.245313i −0.697169 0.716907i \(-0.745557\pi\)
0.272275 + 0.962219i \(0.412224\pi\)
\(318\) 0 0
\(319\) 10.5517 18.2760i 0.590780 1.02326i
\(320\) −1.82207 3.15592i −0.101857 0.176421i
\(321\) 0 0
\(322\) −2.69111 3.60582i −0.149970 0.200944i
\(323\) 1.26513i 0.0703939i
\(324\) 0 0
\(325\) −24.3750 14.0729i −1.35208 0.780624i
\(326\) 2.61570 + 1.51018i 0.144870 + 0.0836410i
\(327\) 0 0
\(328\) 2.03363i 0.112288i
\(329\) 17.7160 2.09209i 0.976715 0.115341i
\(330\) 0 0
\(331\) −15.8504 27.4537i −0.871215 1.50899i −0.860740 0.509044i \(-0.829999\pi\)
−0.0104748 0.999945i \(-0.503334\pi\)
\(332\) 0.768040 1.33028i 0.0421517 0.0730088i
\(333\) 0 0
\(334\) 12.3801 7.14766i 0.677410 0.391103i
\(335\) −8.95150 −0.489073
\(336\) 0 0
\(337\) −32.2616 −1.75740 −0.878700 0.477375i \(-0.841588\pi\)
−0.878700 + 0.477375i \(0.841588\pi\)
\(338\) −1.25097 + 0.722247i −0.0680437 + 0.0392851i
\(339\) 0 0
\(340\) 2.82310 4.88976i 0.153104 0.265185i
\(341\) 5.49750 + 9.52196i 0.297707 + 0.515643i
\(342\) 0 0
\(343\) 17.3806 6.39643i 0.938465 0.345375i
\(344\) 6.12378i 0.330172i
\(345\) 0 0
\(346\) −1.90444 1.09953i −0.102383 0.0591109i
\(347\) −5.90994 3.41210i −0.317262 0.183171i 0.332909 0.942959i \(-0.391970\pi\)
−0.650172 + 0.759787i \(0.725303\pi\)
\(348\) 0 0
\(349\) 4.83102i 0.258599i 0.991606 + 0.129299i \(0.0412728\pi\)
−0.991606 + 0.129299i \(0.958727\pi\)
\(350\) 20.1250 + 8.65267i 1.07573 + 0.462504i
\(351\) 0 0
\(352\) 2.53346 + 4.38809i 0.135034 + 0.233886i
\(353\) 17.2922 29.9510i 0.920371 1.59413i 0.121529 0.992588i \(-0.461220\pi\)
0.798842 0.601541i \(-0.205446\pi\)
\(354\) 0 0
\(355\) 21.2795 12.2857i 1.12940 0.652058i
\(356\) 12.0336 0.637778
\(357\) 0 0
\(358\) 10.7470 0.567995
\(359\) −23.5112 + 13.5742i −1.24087 + 0.716417i −0.969272 0.245993i \(-0.920886\pi\)
−0.271600 + 0.962410i \(0.587553\pi\)
\(360\) 0 0
\(361\) −9.16664 + 15.8771i −0.482455 + 0.835636i
\(362\) 7.23551 + 12.5323i 0.380290 + 0.658682i
\(363\) 0 0
\(364\) −7.20774 + 5.37932i −0.377788 + 0.281953i
\(365\) 15.8601i 0.830153i
\(366\) 0 0
\(367\) 10.3307 + 5.96444i 0.539259 + 0.311341i 0.744778 0.667312i \(-0.232555\pi\)
−0.205520 + 0.978653i \(0.565888\pi\)
\(368\) −1.47275 0.850294i −0.0767725 0.0443246i
\(369\) 0 0
\(370\) 24.7786i 1.28818i
\(371\) −28.1464 + 21.0064i −1.46129 + 1.09060i
\(372\) 0 0
\(373\) −4.81925 8.34718i −0.249531 0.432201i 0.713865 0.700284i \(-0.246943\pi\)
−0.963396 + 0.268083i \(0.913610\pi\)
\(374\) −3.92533 + 6.79887i −0.202974 + 0.351561i
\(375\) 0 0
\(376\) 5.83922 3.37127i 0.301135 0.173860i
\(377\) 14.1580 0.729173
\(378\) 0 0
\(379\) −16.0145 −0.822612 −0.411306 0.911497i \(-0.634927\pi\)
−0.411306 + 0.911497i \(0.634927\pi\)
\(380\) −2.57692 + 1.48778i −0.132193 + 0.0763217i
\(381\) 0 0
\(382\) 4.16597 7.21567i 0.213150 0.369186i
\(383\) 3.18472 + 5.51610i 0.162732 + 0.281860i 0.935847 0.352405i \(-0.114636\pi\)
−0.773116 + 0.634265i \(0.781303\pi\)
\(384\) 0 0
\(385\) −44.8804 19.2962i −2.28732 0.983423i
\(386\) 9.56786i 0.486991i
\(387\) 0 0
\(388\) 5.59509 + 3.23033i 0.284048 + 0.163995i
\(389\) −15.2013 8.77645i −0.770735 0.444984i 0.0624020 0.998051i \(-0.480124\pi\)
−0.833137 + 0.553067i \(0.813457\pi\)
\(390\) 0 0
\(391\) 2.63488i 0.133252i
\(392\) 5.08016 4.81580i 0.256587 0.243235i
\(393\) 0 0
\(394\) 1.18614 + 2.05445i 0.0597568 + 0.103502i
\(395\) 23.2369 40.2476i 1.16918 2.02507i
\(396\) 0 0
\(397\) 11.5693 6.67955i 0.580647 0.335237i −0.180743 0.983530i \(-0.557850\pi\)
0.761391 + 0.648293i \(0.224517\pi\)
\(398\) −22.5147 −1.12856
\(399\) 0 0
\(400\) 8.27979 0.413989
\(401\) 3.66182 2.11415i 0.182863 0.105576i −0.405774 0.913973i \(-0.632998\pi\)
0.588637 + 0.808398i \(0.299665\pi\)
\(402\) 0 0
\(403\) −3.68821 + 6.38817i −0.183723 + 0.318217i
\(404\) 5.95045 + 10.3065i 0.296046 + 0.512767i
\(405\) 0 0
\(406\) −10.9433 + 1.29230i −0.543107 + 0.0641357i
\(407\) 34.4529i 1.70777i
\(408\) 0 0
\(409\) −33.2687 19.2077i −1.64503 0.949759i −0.979006 0.203829i \(-0.934661\pi\)
−0.666025 0.745930i \(-0.732005\pi\)
\(410\) −6.41796 3.70541i −0.316961 0.182997i
\(411\) 0 0
\(412\) 14.6848i 0.723468i
\(413\) −3.44394 4.61453i −0.169465 0.227066i
\(414\) 0 0
\(415\) 2.79885 + 4.84775i 0.137390 + 0.237967i
\(416\) −1.69967 + 2.94391i −0.0833332 + 0.144337i
\(417\) 0 0
\(418\) 3.58302 2.06866i 0.175251 0.101181i
\(419\) 14.0660 0.687170 0.343585 0.939122i \(-0.388359\pi\)
0.343585 + 0.939122i \(0.388359\pi\)
\(420\) 0 0
\(421\) −21.1008 −1.02839 −0.514195 0.857673i \(-0.671909\pi\)
−0.514195 + 0.857673i \(0.671909\pi\)
\(422\) −12.5957 + 7.27211i −0.613147 + 0.354001i
\(423\) 0 0
\(424\) −6.63726 + 11.4961i −0.322334 + 0.558299i
\(425\) 6.41432 + 11.1099i 0.311140 + 0.538911i
\(426\) 0 0
\(427\) 2.25073 + 19.0594i 0.108920 + 0.922347i
\(428\) 3.31922i 0.160440i
\(429\) 0 0
\(430\) 19.3262 + 11.1580i 0.931991 + 0.538085i
\(431\) −10.0928 5.82709i −0.486154 0.280681i 0.236824 0.971553i \(-0.423894\pi\)
−0.722977 + 0.690872i \(0.757227\pi\)
\(432\) 0 0
\(433\) 17.9149i 0.860936i 0.902606 + 0.430468i \(0.141652\pi\)
−0.902606 + 0.430468i \(0.858348\pi\)
\(434\) 2.26768 5.27433i 0.108852 0.253176i
\(435\) 0 0
\(436\) −1.41837 2.45668i −0.0679275 0.117654i
\(437\) −0.694295 + 1.20255i −0.0332126 + 0.0575259i
\(438\) 0 0
\(439\) 16.4783 9.51377i 0.786468 0.454068i −0.0522494 0.998634i \(-0.516639\pi\)
0.838718 + 0.544566i \(0.183306\pi\)
\(440\) −18.4646 −0.880266
\(441\) 0 0
\(442\) −5.26691 −0.250521
\(443\) 6.64877 3.83867i 0.315893 0.182381i −0.333668 0.942691i \(-0.608286\pi\)
0.649560 + 0.760310i \(0.274953\pi\)
\(444\) 0 0
\(445\) −21.9260 + 37.9770i −1.03939 + 1.80028i
\(446\) −13.0031 22.5221i −0.615716 1.06645i
\(447\) 0 0
\(448\) 1.04503 2.43062i 0.0493733 0.114836i
\(449\) 30.1018i 1.42059i −0.703903 0.710296i \(-0.748561\pi\)
0.703903 0.710296i \(-0.251439\pi\)
\(450\) 0 0
\(451\) 8.92373 + 5.15212i 0.420202 + 0.242604i
\(452\) 6.80465 + 3.92866i 0.320064 + 0.184789i
\(453\) 0 0
\(454\) 22.8779i 1.07371i
\(455\) −3.84367 32.5486i −0.180194 1.52590i
\(456\) 0 0
\(457\) 19.7438 + 34.1973i 0.923576 + 1.59968i 0.793835 + 0.608133i \(0.208081\pi\)
0.129741 + 0.991548i \(0.458586\pi\)
\(458\) −13.4652 + 23.3224i −0.629186 + 1.08978i
\(459\) 0 0
\(460\) 5.36692 3.09859i 0.250234 0.144473i
\(461\) 22.7553 1.05982 0.529909 0.848054i \(-0.322226\pi\)
0.529909 + 0.848054i \(0.322226\pi\)
\(462\) 0 0
\(463\) −13.2773 −0.617049 −0.308525 0.951216i \(-0.599835\pi\)
−0.308525 + 0.951216i \(0.599835\pi\)
\(464\) −3.60693 + 2.08246i −0.167447 + 0.0966757i
\(465\) 0 0
\(466\) −2.20550 + 3.82003i −0.102168 + 0.176960i
\(467\) 11.5873 + 20.0698i 0.536195 + 0.928717i 0.999104 + 0.0423116i \(0.0134722\pi\)
−0.462909 + 0.886406i \(0.653194\pi\)
\(468\) 0 0
\(469\) −3.88716 5.20841i −0.179493 0.240502i
\(470\) 24.5708i 1.13337i
\(471\) 0 0
\(472\) −1.88475 1.08816i −0.0867525 0.0500866i
\(473\) −26.8717 15.5144i −1.23556 0.713351i
\(474\) 0 0
\(475\) 6.76073i 0.310204i
\(476\) 4.07102 0.480749i 0.186595 0.0220351i
\(477\) 0 0
\(478\) 9.33343 + 16.1660i 0.426901 + 0.739414i
\(479\) 12.3567 21.4025i 0.564594 0.977905i −0.432493 0.901637i \(-0.642366\pi\)
0.997087 0.0762684i \(-0.0243006\pi\)
\(480\) 0 0
\(481\) 20.0174 11.5570i 0.912713 0.526955i
\(482\) 0.476266 0.0216933
\(483\) 0 0
\(484\) 14.6737 0.666988
\(485\) −20.3893 + 11.7718i −0.925831 + 0.534529i
\(486\) 0 0
\(487\) 16.9877 29.4236i 0.769788 1.33331i −0.167889 0.985806i \(-0.553695\pi\)
0.937678 0.347506i \(-0.112971\pi\)
\(488\) 3.62691 + 6.28199i 0.164182 + 0.284372i
\(489\) 0 0
\(490\) 5.94188 + 24.8073i 0.268427 + 1.12068i
\(491\) 29.5526i 1.33369i 0.745197 + 0.666845i \(0.232356\pi\)
−0.745197 + 0.666845i \(0.767644\pi\)
\(492\) 0 0
\(493\) −5.58854 3.22655i −0.251695 0.145316i
\(494\) 2.40381 + 1.38784i 0.108152 + 0.0624418i
\(495\) 0 0
\(496\) 2.16996i 0.0974339i
\(497\) 16.3890 + 7.04637i 0.735146 + 0.316073i
\(498\) 0 0
\(499\) 5.38644 + 9.32959i 0.241130 + 0.417650i 0.961037 0.276421i \(-0.0891486\pi\)
−0.719906 + 0.694071i \(0.755815\pi\)
\(500\) −5.97601 + 10.3507i −0.267255 + 0.462899i
\(501\) 0 0
\(502\) −15.3234 + 8.84695i −0.683916 + 0.394859i
\(503\) −20.2016 −0.900743 −0.450372 0.892841i \(-0.648708\pi\)
−0.450372 + 0.892841i \(0.648708\pi\)
\(504\) 0 0
\(505\) −43.3686 −1.92988
\(506\) −7.46233 + 4.30838i −0.331741 + 0.191531i
\(507\) 0 0
\(508\) −8.71394 + 15.0930i −0.386619 + 0.669643i
\(509\) 0.529272 + 0.916725i 0.0234595 + 0.0406331i 0.877517 0.479546i \(-0.159199\pi\)
−0.854057 + 0.520179i \(0.825865\pi\)
\(510\) 0 0
\(511\) −9.22813 + 6.88719i −0.408229 + 0.304671i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −20.0867 11.5971i −0.885987 0.511525i
\(515\) −46.3441 26.7568i −2.04216 1.17904i
\(516\) 0 0
\(517\) 34.1640i 1.50253i
\(518\) −14.4174 + 10.7600i −0.633463 + 0.472769i
\(519\) 0 0
\(520\) −6.19384 10.7280i −0.271618 0.470456i
\(521\) −5.05068 + 8.74804i −0.221275 + 0.383259i −0.955195 0.295976i \(-0.904355\pi\)
0.733921 + 0.679235i \(0.237688\pi\)
\(522\) 0 0
\(523\) −8.02992 + 4.63608i −0.351124 + 0.202722i −0.665180 0.746683i \(-0.731645\pi\)
0.314056 + 0.949404i \(0.398312\pi\)
\(524\) −3.23206 −0.141193
\(525\) 0 0
\(526\) −3.44386 −0.150159
\(527\) 2.91168 1.68106i 0.126835 0.0732280i
\(528\) 0 0
\(529\) −10.0540 + 17.4140i −0.437130 + 0.757132i
\(530\) −24.1871 41.8933i −1.05062 1.81973i
\(531\) 0 0
\(532\) −1.98468 0.853307i −0.0860469 0.0369956i
\(533\) 6.91298i 0.299435i
\(534\) 0 0
\(535\) 10.4752 + 6.04786i 0.452882 + 0.261472i
\(536\) −2.12731 1.22820i −0.0918858 0.0530503i
\(537\) 0 0
\(538\) 8.01379i 0.345499i
\(539\) −8.26177 34.4928i −0.355859 1.48571i
\(540\) 0 0
\(541\) −2.87498 4.97960i −0.123605 0.214090i 0.797582 0.603211i \(-0.206112\pi\)
−0.921187 + 0.389121i \(0.872779\pi\)
\(542\) 0.895442 1.55095i 0.0384625 0.0666191i
\(543\) 0 0
\(544\) 1.34181 0.774696i 0.0575298 0.0332148i
\(545\) 10.3375 0.442809
\(546\) 0 0
\(547\) −36.6188 −1.56571 −0.782853 0.622207i \(-0.786236\pi\)
−0.782853 + 0.622207i \(0.786236\pi\)
\(548\) 12.6284 7.29101i 0.539459 0.311457i
\(549\) 0 0
\(550\) 20.9765 36.3324i 0.894442 1.54922i
\(551\) 1.70040 + 2.94518i 0.0724395 + 0.125469i
\(552\) 0 0
\(553\) 33.5085 3.95704i 1.42493 0.168270i
\(554\) 24.5935i 1.04488i
\(555\) 0 0
\(556\) −4.97814 2.87413i −0.211120 0.121890i
\(557\) 0.323902 + 0.187005i 0.0137242 + 0.00792365i 0.506846 0.862036i \(-0.330811\pi\)
−0.493122 + 0.869960i \(0.664144\pi\)
\(558\) 0 0
\(559\) 20.8168i 0.880457i
\(560\) 5.76671 + 7.72681i 0.243688 + 0.326517i
\(561\) 0 0
\(562\) −10.7539 18.6262i −0.453624 0.785700i
\(563\) −2.18961 + 3.79252i −0.0922812 + 0.159836i −0.908471 0.417949i \(-0.862749\pi\)
0.816189 + 0.577784i \(0.196083\pi\)
\(564\) 0 0
\(565\) −24.7971 + 14.3166i −1.04322 + 0.602305i
\(566\) −19.9480 −0.838478
\(567\) 0 0
\(568\) 6.74272 0.282918
\(569\) 31.9253 18.4321i 1.33838 0.772712i 0.351810 0.936072i \(-0.385566\pi\)
0.986567 + 0.163360i \(0.0522331\pi\)
\(570\) 0 0
\(571\) −15.8297 + 27.4179i −0.662454 + 1.14740i 0.317515 + 0.948253i \(0.397152\pi\)
−0.979969 + 0.199150i \(0.936182\pi\)
\(572\) 8.61210 + 14.9166i 0.360090 + 0.623694i
\(573\) 0 0
\(574\) −0.630997 5.34334i −0.0263373 0.223027i
\(575\) 14.0805i 0.587198i
\(576\) 0 0
\(577\) 12.2923 + 7.09699i 0.511737 + 0.295452i 0.733547 0.679638i \(-0.237863\pi\)
−0.221810 + 0.975090i \(0.571197\pi\)
\(578\) −12.6434 7.29969i −0.525898 0.303627i
\(579\) 0 0
\(580\) 15.1776i 0.630214i
\(581\) −1.60526 + 3.73362i −0.0665973 + 0.154897i
\(582\) 0 0
\(583\) 33.6305 + 58.2497i 1.39283 + 2.41246i
\(584\) −2.17610 + 3.76912i −0.0900478 + 0.155967i
\(585\) 0 0
\(586\) 2.15911 1.24656i 0.0891921 0.0514951i
\(587\) −4.64455 −0.191701 −0.0958505 0.995396i \(-0.530557\pi\)
−0.0958505 + 0.995396i \(0.530557\pi\)
\(588\) 0 0
\(589\) −1.77184 −0.0730076
\(590\) 6.86829 3.96541i 0.282763 0.163253i
\(591\) 0 0
\(592\) −3.39979 + 5.88860i −0.139730 + 0.242020i
\(593\) −11.5215 19.9558i −0.473132 0.819488i 0.526395 0.850240i \(-0.323543\pi\)
−0.999527 + 0.0307518i \(0.990210\pi\)
\(594\) 0 0
\(595\) −5.90049 + 13.7238i −0.241896 + 0.562620i
\(596\) 5.72621i 0.234555i
\(597\) 0 0
\(598\) −5.00639 2.89044i −0.204726 0.118199i
\(599\) 25.0820 + 14.4811i 1.02482 + 0.591682i 0.915497 0.402324i \(-0.131797\pi\)
0.109326 + 0.994006i \(0.465131\pi\)
\(600\) 0 0
\(601\) 5.83116i 0.237858i −0.992903 0.118929i \(-0.962054\pi\)
0.992903 0.118929i \(-0.0379461\pi\)
\(602\) 1.90010 + 16.0902i 0.0774422 + 0.655787i
\(603\) 0 0
\(604\) −6.38483 11.0589i −0.259795 0.449978i
\(605\) −26.7366 + 46.3092i −1.08700 + 1.88273i
\(606\) 0 0
\(607\) −16.3750 + 9.45411i −0.664641 + 0.383731i −0.794043 0.607862i \(-0.792028\pi\)
0.129402 + 0.991592i \(0.458694\pi\)
\(608\) −0.816535 −0.0331148
\(609\) 0 0
\(610\) −26.4339 −1.07028
\(611\) 19.8495 11.4601i 0.803024 0.463626i
\(612\) 0 0
\(613\) −16.5880 + 28.7313i −0.669984 + 1.16045i 0.307924 + 0.951411i \(0.400366\pi\)
−0.977908 + 0.209036i \(0.932967\pi\)
\(614\) −4.61562 7.99448i −0.186271 0.322631i
\(615\) 0 0
\(616\) −8.01820 10.7436i −0.323063 0.432871i
\(617\) 39.2854i 1.58157i −0.612093 0.790786i \(-0.709672\pi\)
0.612093 0.790786i \(-0.290328\pi\)
\(618\) 0 0
\(619\) 8.46727 + 4.88858i 0.340329 + 0.196489i 0.660417 0.750899i \(-0.270379\pi\)
−0.320089 + 0.947388i \(0.603713\pi\)
\(620\) 6.84821 + 3.95382i 0.275031 + 0.158789i
\(621\) 0 0
\(622\) 22.9714i 0.921069i
\(623\) −31.6182 + 3.73380i −1.26675 + 0.149592i
\(624\) 0 0
\(625\) −1.07796 1.86708i −0.0431185 0.0746834i
\(626\) −3.21668 + 5.57145i −0.128564 + 0.222680i
\(627\) 0 0
\(628\) −11.0598 + 6.38536i −0.441333 + 0.254804i
\(629\) −10.5352 −0.420066
\(630\) 0 0
\(631\) 11.6364 0.463237 0.231618 0.972807i \(-0.425598\pi\)
0.231618 + 0.972807i \(0.425598\pi\)
\(632\) 11.0444 6.37651i 0.439325 0.253644i
\(633\) 0 0
\(634\) 4.36767 7.56502i 0.173462 0.300445i
\(635\) −31.7549 55.0010i −1.26015 2.18265i
\(636\) 0 0
\(637\) 17.2692 16.3706i 0.684230 0.648625i
\(638\) 21.1033i 0.835489i
\(639\) 0 0
\(640\) 3.15592 + 1.82207i 0.124749 + 0.0720237i
\(641\) 25.2233 + 14.5627i 0.996262 + 0.575192i 0.907140 0.420828i \(-0.138261\pi\)
0.0891220 + 0.996021i \(0.471594\pi\)
\(642\) 0 0
\(643\) 39.1917i 1.54557i 0.634667 + 0.772785i \(0.281137\pi\)
−0.634667 + 0.772785i \(0.718863\pi\)
\(644\) 4.13348 + 1.77717i 0.162882 + 0.0700305i
\(645\) 0 0
\(646\) −0.632566 1.09564i −0.0248880 0.0431073i
\(647\) −10.1800 + 17.6323i −0.400218 + 0.693199i −0.993752 0.111610i \(-0.964399\pi\)
0.593534 + 0.804809i \(0.297732\pi\)
\(648\) 0 0
\(649\) −9.54988 + 5.51362i −0.374865 + 0.216429i
\(650\) 28.1458 1.10397
\(651\) 0 0
\(652\) −3.02035 −0.118286
\(653\) −13.1105 + 7.56933i −0.513052 + 0.296211i −0.734087 0.679055i \(-0.762390\pi\)
0.221035 + 0.975266i \(0.429056\pi\)
\(654\) 0 0
\(655\) 5.88904 10.2001i 0.230104 0.398552i
\(656\) −1.01681 1.76117i −0.0396999 0.0687622i
\(657\) 0 0
\(658\) −14.2965 + 10.6698i −0.557334 + 0.415952i
\(659\) 10.5934i 0.412659i −0.978483 0.206330i \(-0.933848\pi\)
0.978483 0.206330i \(-0.0661519\pi\)
\(660\) 0 0
\(661\) 14.7583 + 8.52074i 0.574033 + 0.331418i 0.758759 0.651372i \(-0.225806\pi\)
−0.184725 + 0.982790i \(0.559140\pi\)
\(662\) 27.4537 + 15.8504i 1.06702 + 0.616042i
\(663\) 0 0
\(664\) 1.53608i 0.0596115i
\(665\) 6.30921 4.70872i 0.244661 0.182596i
\(666\) 0 0
\(667\) −3.54141 6.13389i −0.137124 0.237505i
\(668\) −7.14766 + 12.3801i −0.276551 + 0.479001i
\(669\) 0 0
\(670\) 7.75223 4.47575i 0.299495 0.172913i
\(671\) 36.7545 1.41889
\(672\) 0 0
\(673\) 25.0096 0.964050 0.482025 0.876158i \(-0.339902\pi\)
0.482025 + 0.876158i \(0.339902\pi\)
\(674\) 27.9393 16.1308i 1.07618 0.621335i
\(675\) 0 0
\(676\) 0.722247 1.25097i 0.0277787 0.0481142i
\(677\) 19.8534 + 34.3871i 0.763028 + 1.32160i 0.941283 + 0.337619i \(0.109622\pi\)
−0.178255 + 0.983984i \(0.557045\pi\)
\(678\) 0 0
\(679\) −15.7034 6.75161i −0.602640 0.259103i
\(680\) 5.64621i 0.216522i
\(681\) 0 0
\(682\) −9.52196 5.49750i −0.364615 0.210510i
\(683\) −2.31868 1.33869i −0.0887218 0.0512236i 0.454983 0.890500i \(-0.349645\pi\)
−0.543705 + 0.839277i \(0.682979\pi\)
\(684\) 0 0
\(685\) 53.1390i 2.03034i
\(686\) −11.8538 + 14.2298i −0.452582 + 0.543295i
\(687\) 0 0
\(688\) 3.06189 + 5.30335i 0.116733 + 0.202188i
\(689\) −22.5623 + 39.0790i −0.859555 + 1.48879i
\(690\) 0 0
\(691\) −16.6346 + 9.60399i −0.632810 + 0.365353i −0.781839 0.623480i \(-0.785718\pi\)
0.149030 + 0.988833i \(0.452385\pi\)
\(692\) 2.19905 0.0835954
\(693\) 0 0
\(694\) 6.82421 0.259043
\(695\) 18.1410 10.4737i 0.688129 0.397291i
\(696\) 0 0
\(697\) 1.57544 2.72875i 0.0596741 0.103359i
\(698\) −2.41551 4.18379i −0.0914284 0.158359i
\(699\) 0 0
\(700\) −21.7551 + 2.56907i −0.822265 + 0.0971017i
\(701\) 34.1916i 1.29140i 0.763591 + 0.645700i \(0.223434\pi\)
−0.763591 + 0.645700i \(0.776566\pi\)
\(702\) 0 0
\(703\) 4.80825 + 2.77604i 0.181346 + 0.104700i
\(704\) −4.38809 2.53346i −0.165382 0.0954835i
\(705\) 0 0
\(706\) 34.5844i 1.30160i
\(707\) −18.8327 25.2339i −0.708276 0.949018i
\(708\) 0 0
\(709\) 11.7284 + 20.3141i 0.440468 + 0.762914i 0.997724 0.0674271i \(-0.0214790\pi\)
−0.557256 + 0.830341i \(0.688146\pi\)
\(710\) −12.2857 + 21.2795i −0.461075 + 0.798605i
\(711\) 0 0
\(712\) −10.4214 + 6.01679i −0.390558 + 0.225489i
\(713\) 3.69020 0.138199
\(714\) 0 0
\(715\) −62.7675 −2.34737
\(716\) −9.30715 + 5.37349i −0.347825 + 0.200817i
\(717\) 0 0
\(718\) 13.5742 23.5112i 0.506584 0.877429i
\(719\) 7.98801 + 13.8356i 0.297902 + 0.515982i 0.975656 0.219307i \(-0.0703796\pi\)
−0.677753 + 0.735289i \(0.737046\pi\)
\(720\) 0 0
\(721\) −4.55643 38.5842i −0.169690 1.43695i
\(722\) 18.3333i 0.682294i
\(723\) 0 0
\(724\) −12.5323 7.23551i −0.465758 0.268906i
\(725\) 29.8646 + 17.2423i 1.10914 + 0.640364i
\(726\) 0 0
\(727\) 25.0324i 0.928401i −0.885730 0.464201i \(-0.846342\pi\)
0.885730 0.464201i \(-0.153658\pi\)
\(728\) 3.55243 8.26249i 0.131662 0.306228i
\(729\) 0 0
\(730\) −7.93003 13.7352i −0.293504 0.508363i
\(731\) −4.74407 + 8.21697i −0.175466 + 0.303916i
\(732\) 0 0
\(733\) −10.1433 + 5.85625i −0.374652 + 0.216305i −0.675489 0.737370i \(-0.736067\pi\)
0.300837 + 0.953676i \(0.402734\pi\)
\(734\) −11.9289 −0.440303
\(735\) 0 0
\(736\) 1.70059 0.0626845
\(737\) −10.7789 + 6.22322i −0.397047 + 0.229235i
\(738\) 0 0
\(739\) −8.20255 + 14.2072i −0.301736 + 0.522622i −0.976529 0.215385i \(-0.930899\pi\)
0.674793 + 0.738007i \(0.264233\pi\)
\(740\) −12.3893 21.4589i −0.455440 0.788845i
\(741\) 0 0
\(742\) 13.8723 32.2653i 0.509269 1.18450i
\(743\) 9.27063i 0.340106i −0.985435 0.170053i \(-0.945606\pi\)
0.985435 0.170053i \(-0.0543940\pi\)
\(744\) 0 0
\(745\) 18.0715 + 10.4336i 0.662087 + 0.382256i
\(746\) 8.34718 + 4.81925i 0.305612 + 0.176445i
\(747\) 0 0
\(748\) 7.85066i 0.287048i
\(749\) 1.02989 + 8.72123i 0.0376315 + 0.318667i
\(750\) 0 0
\(751\) −10.0756 17.4515i −0.367665 0.636815i 0.621535 0.783386i \(-0.286509\pi\)
−0.989200 + 0.146572i \(0.953176\pi\)
\(752\) −3.37127 + 5.83922i −0.122938 + 0.212934i
\(753\) 0 0
\(754\) −12.2612 + 7.07898i −0.446525 + 0.257801i
\(755\) 46.5345 1.69356
\(756\) 0 0
\(757\) 47.4297 1.72386 0.861932 0.507024i \(-0.169255\pi\)
0.861932 + 0.507024i \(0.169255\pi\)
\(758\) 13.8690 8.00727i 0.503745 0.290837i
\(759\) 0 0
\(760\) 1.48778 2.57692i 0.0539676 0.0934747i
\(761\) 24.0809 + 41.7094i 0.872933 + 1.51196i 0.858948 + 0.512063i \(0.171118\pi\)
0.0139853 + 0.999902i \(0.495548\pi\)
\(762\) 0 0
\(763\) 4.48902 + 6.01483i 0.162513 + 0.217751i
\(764\) 8.33194i 0.301439i
\(765\) 0 0
\(766\) −5.51610 3.18472i −0.199305 0.115069i
\(767\) −6.40690 3.69902i −0.231340 0.133564i
\(768\) 0 0
\(769\) 11.3736i 0.410143i 0.978747 + 0.205071i \(0.0657427\pi\)
−0.978747 + 0.205071i \(0.934257\pi\)
\(770\) 48.5156 5.72924i 1.74838 0.206467i
\(771\) 0 0
\(772\) −4.78393 8.28601i −0.172177 0.298220i
\(773\) −2.13778 + 3.70275i −0.0768906 + 0.133179i −0.901907 0.431931i \(-0.857833\pi\)
0.825016 + 0.565109i \(0.191166\pi\)
\(774\) 0 0
\(775\) −15.5597 + 8.98339i −0.558920 + 0.322693i
\(776\) −6.46065 −0.231924
\(777\) 0 0
\(778\) 17.5529 0.629302
\(779\) −1.43806 + 0.830263i −0.0515238 + 0.0297473i
\(780\) 0 0
\(781\) 17.0824 29.5876i 0.611257 1.05873i
\(782\) 1.31744 + 2.28187i 0.0471115 + 0.0815996i
\(783\) 0 0
\(784\) −1.99165 + 6.71069i −0.0711302 + 0.239667i
\(785\) 46.5384i 1.66103i
\(786\) 0 0
\(787\) 22.8644 + 13.2008i 0.815029 + 0.470557i 0.848699 0.528876i \(-0.177386\pi\)
−0.0336701 + 0.999433i \(0.510720\pi\)
\(788\) −2.05445 1.18614i −0.0731869 0.0422545i
\(789\) 0 0
\(790\) 46.4739i 1.65347i
\(791\) −19.0982 8.21118i −0.679053 0.291956i
\(792\) 0 0
\(793\) 12.3291 + 21.3546i 0.437819 + 0.758324i
\(794\) −6.67955 + 11.5693i −0.237048 + 0.410580i
\(795\) 0 0
\(796\) 19.4983 11.2573i 0.691098 0.399006i
\(797\) −53.4507 −1.89332 −0.946660 0.322234i \(-0.895566\pi\)
−0.946660 + 0.322234i \(0.895566\pi\)
\(798\) 0 0
\(799\) −10.4469 −0.369583
\(800\) −7.17050 + 4.13989i −0.253516 + 0.146367i
\(801\) 0 0
\(802\) −2.11415 + 3.66182i −0.0746533 + 0.129303i
\(803\) 11.0261 + 19.0978i 0.389104 + 0.673948i
\(804\) 0 0
\(805\) −13.1401 + 9.80680i −0.463128 + 0.345644i
\(806\) 7.37642i 0.259823i
\(807\) 0 0
\(808\) −10.3065 5.95045i −0.362581 0.209336i
\(809\) −8.76550 5.06076i −0.308179 0.177927i 0.337933 0.941170i \(-0.390272\pi\)
−0.646111 + 0.763243i \(0.723606\pi\)
\(810\) 0 0
\(811\) 44.8854i 1.57614i −0.615586 0.788070i \(-0.711080\pi\)
0.615586 0.788070i \(-0.288920\pi\)
\(812\) 8.83102 6.59081i 0.309908 0.231292i
\(813\) 0 0
\(814\) 17.2265 + 29.8371i 0.603787 + 1.04579i
\(815\) 5.50330 9.53200i 0.192772 0.333891i
\(816\) 0 0
\(817\) 4.33037 2.50014i 0.151500 0.0874688i
\(818\) 38.4154 1.34316
\(819\) 0 0
\(820\) 7.41083 0.258797
\(821\) −29.8527 + 17.2354i −1.04187 + 0.601521i −0.920361 0.391070i \(-0.872105\pi\)
−0.121504 + 0.992591i \(0.538772\pi\)
\(822\) 0 0
\(823\) 14.4561 25.0386i 0.503906 0.872792i −0.496083 0.868275i \(-0.665229\pi\)
0.999990 0.00451663i \(-0.00143769\pi\)
\(824\) −7.34240 12.7174i −0.255785 0.443032i
\(825\) 0 0
\(826\) 5.28980 + 2.27433i 0.184056 + 0.0791340i
\(827\) 18.8795i 0.656506i −0.944590 0.328253i \(-0.893540\pi\)
0.944590 0.328253i \(-0.106460\pi\)
\(828\) 0 0
\(829\) 15.6663 + 9.04494i 0.544113 + 0.314144i 0.746744 0.665111i \(-0.231616\pi\)
−0.202631 + 0.979255i \(0.564949\pi\)
\(830\) −4.84775 2.79885i −0.168268 0.0971495i
\(831\) 0 0
\(832\) 3.39934i 0.117851i
\(833\) −10.5474 + 2.52633i −0.365446 + 0.0875321i
\(834\) 0 0
\(835\) −26.0471 45.1149i −0.901397 1.56127i
\(836\) −2.06866 + 3.58302i −0.0715461 + 0.123921i
\(837\) 0 0
\(838\) −12.1815 + 7.03301i −0.420804 + 0.242951i
\(839\) 5.06098 0.174725 0.0873623 0.996177i \(-0.472156\pi\)
0.0873623 + 0.996177i \(0.472156\pi\)
\(840\) 0 0
\(841\) 11.6535 0.401843
\(842\) 18.2738 10.5504i 0.629758 0.363591i
\(843\) 0 0
\(844\) 7.27211 12.5957i 0.250316 0.433560i
\(845\) 2.63197 + 4.55871i 0.0905426 + 0.156824i
\(846\) 0 0
\(847\) −38.5552 + 4.55300i −1.32477 + 0.156443i
\(848\) 13.2745i 0.455849i
\(849\) 0 0
\(850\) −11.1099 6.41432i −0.381067 0.220009i
\(851\) −10.0141 5.78163i −0.343278 0.198192i
\(852\) 0 0
\(853\) 42.7427i 1.46348i −0.681582 0.731742i \(-0.738708\pi\)
0.681582 0.731742i \(-0.261292\pi\)
\(854\) −11.4789 15.3805i −0.392799 0.526311i
\(855\) 0 0
\(856\) 1.65961 + 2.87453i 0.0567243 + 0.0982493i
\(857\) −0.537523 + 0.931017i −0.0183614 + 0.0318030i −0.875060 0.484014i \(-0.839178\pi\)
0.856699 + 0.515817i \(0.172512\pi\)
\(858\) 0 0
\(859\) 20.9983 12.1234i 0.716452 0.413644i −0.0969931 0.995285i \(-0.530922\pi\)
0.813446 + 0.581641i \(0.197589\pi\)
\(860\) −22.3159 −0.760967
\(861\) 0 0
\(862\) 11.6542 0.396943
\(863\) 38.7211 22.3556i 1.31808 0.760994i 0.334661 0.942339i \(-0.391378\pi\)
0.983420 + 0.181344i \(0.0580449\pi\)
\(864\) 0 0
\(865\) −4.00683 + 6.94004i −0.136236 + 0.235968i
\(866\) −8.95746 15.5148i −0.304387 0.527214i
\(867\) 0 0
\(868\) 0.673298 + 5.70155i 0.0228532 + 0.193523i
\(869\) 64.6186i 2.19204i
\(870\) 0 0
\(871\) −7.23145 4.17508i −0.245028 0.141467i
\(872\) 2.45668 + 1.41837i 0.0831938 + 0.0480320i
\(873\) 0 0
\(874\) 1.38859i 0.0469697i
\(875\) 12.4903 29.0508i 0.422248 0.982095i
\(876\) 0 0
\(877\) 2.08435 + 3.61020i 0.0703835 + 0.121908i 0.899069 0.437806i \(-0.144244\pi\)
−0.828686 + 0.559714i \(0.810911\pi\)
\(878\) −9.51377 + 16.4783i −0.321074 + 0.556117i
\(879\) 0 0
\(880\) 15.9908 9.23230i 0.539050 0.311221i
\(881\) 32.0880 1.08107 0.540536 0.841321i \(-0.318221\pi\)
0.540536 + 0.841321i \(0.318221\pi\)
\(882\) 0 0
\(883\) −29.5080 −0.993022 −0.496511 0.868031i \(-0.665386\pi\)
−0.496511 + 0.868031i \(0.665386\pi\)
\(884\) 4.56128 2.63346i 0.153412 0.0885727i
\(885\) 0 0
\(886\) −3.83867 + 6.64877i −0.128963 + 0.223370i
\(887\) −12.4214 21.5145i −0.417071 0.722387i 0.578573 0.815631i \(-0.303610\pi\)
−0.995643 + 0.0932433i \(0.970277\pi\)
\(888\) 0 0
\(889\) 18.2127 42.3605i 0.610836 1.42073i
\(890\) 43.8521i 1.46993i
\(891\) 0 0
\(892\) 22.5221 + 13.0031i 0.754095 + 0.435377i
\(893\) 4.76792 + 2.75276i 0.159552 + 0.0921176i
\(894\) 0 0
\(895\) 39.1635i 1.30909i
\(896\) 0.310282 + 2.62749i 0.0103658 + 0.0877784i
\(897\) 0 0
\(898\) 15.0509 + 26.0689i 0.502255 + 0.869932i
\(899\) 4.51885 7.82687i 0.150712 0.261041i
\(900\) 0 0
\(901\) 17.8119 10.2837i 0.593401 0.342600i
\(902\) −10.3042 −0.343093
\(903\) 0 0
\(904\) −7.85733 −0.261331
\(905\) 45.6694 26.3673i 1.51810 0.876477i
\(906\) 0 0
\(907\) −20.4561 + 35.4311i −0.679235 + 1.17647i 0.295977 + 0.955195i \(0.404355\pi\)
−0.975212 + 0.221274i \(0.928979\pi\)
\(908\) −11.4390 19.8129i −0.379616 0.657513i
\(909\) 0 0
\(910\) 19.6030 + 26.2660i 0.649833 + 0.870711i
\(911\) 2.55972i 0.0848072i 0.999101 + 0.0424036i \(0.0135015\pi\)
−0.999101 + 0.0424036i \(0.986498\pi\)
\(912\) 0 0
\(913\) 6.74045 + 3.89160i 0.223076 + 0.128793i
\(914\) −34.1973 19.7438i −1.13115 0.653067i
\(915\) 0 0
\(916\) 26.9303i 0.889803i
\(917\) 8.49221 1.00285i 0.280438 0.0331170i
\(918\) 0 0
\(919\) 5.12246 + 8.87236i 0.168974 + 0.292672i 0.938060 0.346474i \(-0.112621\pi\)
−0.769085 + 0.639146i \(0.779288\pi\)
\(920\) −3.09859 + 5.36692i −0.102158 + 0.176942i
\(921\) 0 0
\(922\) −19.7066 + 11.3776i −0.649004 + 0.374703i
\(923\) 22.9208 0.754447
\(924\) 0 0
\(925\) 56.2990 1.85110
\(926\) 11.4985 6.63866i 0.377864 0.218160i
\(927\) 0 0
\(928\) 2.08246 3.60693i 0.0683601 0.118403i
\(929\) −14.7852 25.6087i −0.485087 0.840195i 0.514767 0.857330i \(-0.327879\pi\)
−0.999853 + 0.0171358i \(0.994545\pi\)
\(930\) 0 0
\(931\) 5.47951 + 1.62625i 0.179584 + 0.0532981i
\(932\) 4.41099i 0.144487i
\(933\) 0 0
\(934\) −20.0698 11.5873i −0.656702 0.379147i
\(935\) 24.7761 + 14.3045i 0.810264 + 0.467806i
\(936\) 0 0
\(937\) 17.9991i 0.588005i −0.955805 0.294002i \(-0.905013\pi\)
0.955805 0.294002i \(-0.0949874\pi\)
\(938\) 5.97059 + 2.56703i 0.194947 + 0.0838166i
\(939\) 0 0
\(940\) −12.2854 21.2789i −0.400706 0.694043i
\(941\) 14.8619 25.7415i 0.484483 0.839148i −0.515359 0.856975i \(-0.672341\pi\)
0.999841 + 0.0178263i \(0.00567457\pi\)
\(942\) 0 0
\(943\) 2.99503 1.72918i 0.0975315 0.0563098i
\(944\) 2.17632 0.0708331
\(945\) 0 0
\(946\) 31.0287 1.00883
\(947\) −19.2222 + 11.0980i −0.624639 + 0.360635i −0.778673 0.627430i \(-0.784107\pi\)
0.154034 + 0.988066i \(0.450773\pi\)
\(948\) 0 0
\(949\) −7.39731 + 12.8125i −0.240127 + 0.415912i
\(950\) 3.38037 + 5.85497i 0.109674 + 0.189960i
\(951\) 0 0
\(952\) −3.28523 + 2.45185i −0.106475 + 0.0794649i
\(953\) 2.12319i 0.0687769i −0.999409 0.0343884i \(-0.989052\pi\)
0.999409 0.0343884i \(-0.0109483\pi\)
\(954\) 0 0
\(955\) −26.2950 15.1814i −0.850885 0.491258i
\(956\) −16.1660 9.33343i −0.522845 0.301865i
\(957\) 0 0
\(958\) 24.7135i 0.798456i
\(959\) −30.9188 + 23.0755i −0.998419 + 0.745145i
\(960\) 0 0
\(961\) −13.1456 22.7689i −0.424053 0.734481i
\(962\) −11.5570 + 20.0174i −0.372613 + 0.645385i
\(963\) 0 0
\(964\) −0.412458 + 0.238133i −0.0132844 + 0.00766974i
\(965\) 34.8667 1.12240
\(966\) 0 0
\(967\) 4.46817 0.143687 0.0718434 0.997416i \(-0.477112\pi\)
0.0718434 + 0.997416i \(0.477112\pi\)
\(968\) −12.7078 + 7.33687i −0.408445 + 0.235816i
\(969\) 0 0
\(970\) 11.7718 20.3893i 0.377969 0.654661i
\(971\) 0.916026 + 1.58660i 0.0293967 + 0.0509165i 0.880349 0.474326i \(-0.157308\pi\)
−0.850953 + 0.525242i \(0.823975\pi\)
\(972\) 0 0
\(973\) 13.9718 + 6.00713i 0.447916 + 0.192580i
\(974\) 33.9755i 1.08864i
\(975\) 0 0
\(976\) −6.28199 3.62691i −0.201082 0.116094i
\(977\) 26.8034 + 15.4749i 0.857515 + 0.495087i 0.863179 0.504897i \(-0.168470\pi\)
−0.00566423 + 0.999984i \(0.501803\pi\)
\(978\) 0 0
\(979\) 60.9733i 1.94871i
\(980\) −17.5495 18.5128i −0.560598 0.591371i
\(981\) 0 0
\(982\) −14.7763 25.5933i −0.471531 0.816715i
\(983\) −16.2825 + 28.2020i −0.519330 + 0.899505i 0.480418 + 0.877040i \(0.340485\pi\)
−0.999748 + 0.0224656i \(0.992848\pi\)
\(984\) 0 0
\(985\) 7.48673 4.32246i 0.238547 0.137725i
\(986\) 6.45309 0.205508
\(987\) 0 0
\(988\) −2.77568 −0.0883061
\(989\) −9.01881 + 5.20701i −0.286782 + 0.165573i
\(990\) 0 0
\(991\) 1.45730 2.52411i 0.0462926 0.0801811i −0.841951 0.539555i \(-0.818593\pi\)
0.888243 + 0.459373i \(0.151926\pi\)
\(992\) 1.08498 + 1.87924i 0.0344481 + 0.0596659i
\(993\) 0 0
\(994\) −17.7164 + 2.09214i −0.561932 + 0.0663588i
\(995\) 82.0467i 2.60106i
\(996\) 0 0
\(997\) −39.9943 23.0907i −1.26663 0.731290i −0.292282 0.956332i \(-0.594415\pi\)
−0.974349 + 0.225042i \(0.927748\pi\)
\(998\) −9.32959 5.38644i −0.295323 0.170505i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.k.b.647.4 16
3.2 odd 2 1134.2.k.a.647.5 16
7.5 odd 6 1134.2.k.a.971.5 16
9.2 odd 6 378.2.t.a.17.4 16
9.4 even 3 378.2.l.a.143.4 16
9.5 odd 6 126.2.l.a.101.8 yes 16
9.7 even 3 126.2.t.a.59.8 yes 16
21.5 even 6 inner 1134.2.k.b.971.4 16
36.7 odd 6 1008.2.df.c.689.1 16
36.11 even 6 3024.2.df.c.17.8 16
36.23 even 6 1008.2.ca.c.353.2 16
36.31 odd 6 3024.2.ca.c.2033.8 16
63.2 odd 6 2646.2.l.a.1097.5 16
63.4 even 3 2646.2.m.b.1763.8 16
63.5 even 6 126.2.t.a.47.8 yes 16
63.11 odd 6 2646.2.m.a.881.5 16
63.13 odd 6 2646.2.l.a.521.1 16
63.16 even 3 882.2.l.b.509.1 16
63.20 even 6 2646.2.t.b.2285.1 16
63.23 odd 6 882.2.t.a.803.5 16
63.25 even 3 882.2.m.a.293.2 16
63.31 odd 6 2646.2.m.a.1763.5 16
63.32 odd 6 882.2.m.b.587.3 16
63.34 odd 6 882.2.t.a.815.5 16
63.38 even 6 2646.2.m.b.881.8 16
63.40 odd 6 378.2.t.a.89.4 16
63.41 even 6 882.2.l.b.227.5 16
63.47 even 6 378.2.l.a.341.8 16
63.52 odd 6 882.2.m.b.293.3 16
63.58 even 3 2646.2.t.b.1979.1 16
63.59 even 6 882.2.m.a.587.2 16
63.61 odd 6 126.2.l.a.5.4 16
252.47 odd 6 3024.2.ca.c.2609.8 16
252.103 even 6 3024.2.df.c.1601.8 16
252.131 odd 6 1008.2.df.c.929.1 16
252.187 even 6 1008.2.ca.c.257.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.4 16 63.61 odd 6
126.2.l.a.101.8 yes 16 9.5 odd 6
126.2.t.a.47.8 yes 16 63.5 even 6
126.2.t.a.59.8 yes 16 9.7 even 3
378.2.l.a.143.4 16 9.4 even 3
378.2.l.a.341.8 16 63.47 even 6
378.2.t.a.17.4 16 9.2 odd 6
378.2.t.a.89.4 16 63.40 odd 6
882.2.l.b.227.5 16 63.41 even 6
882.2.l.b.509.1 16 63.16 even 3
882.2.m.a.293.2 16 63.25 even 3
882.2.m.a.587.2 16 63.59 even 6
882.2.m.b.293.3 16 63.52 odd 6
882.2.m.b.587.3 16 63.32 odd 6
882.2.t.a.803.5 16 63.23 odd 6
882.2.t.a.815.5 16 63.34 odd 6
1008.2.ca.c.257.2 16 252.187 even 6
1008.2.ca.c.353.2 16 36.23 even 6
1008.2.df.c.689.1 16 36.7 odd 6
1008.2.df.c.929.1 16 252.131 odd 6
1134.2.k.a.647.5 16 3.2 odd 2
1134.2.k.a.971.5 16 7.5 odd 6
1134.2.k.b.647.4 16 1.1 even 1 trivial
1134.2.k.b.971.4 16 21.5 even 6 inner
2646.2.l.a.521.1 16 63.13 odd 6
2646.2.l.a.1097.5 16 63.2 odd 6
2646.2.m.a.881.5 16 63.11 odd 6
2646.2.m.a.1763.5 16 63.31 odd 6
2646.2.m.b.881.8 16 63.38 even 6
2646.2.m.b.1763.8 16 63.4 even 3
2646.2.t.b.1979.1 16 63.58 even 3
2646.2.t.b.2285.1 16 63.20 even 6
3024.2.ca.c.2033.8 16 36.31 odd 6
3024.2.ca.c.2609.8 16 252.47 odd 6
3024.2.df.c.17.8 16 36.11 even 6
3024.2.df.c.1601.8 16 252.103 even 6