Defining parameters
| Level: | \( N \) | \(=\) | \( 1134 = 2 \cdot 3^{4} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1134.k (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(432\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1134, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 480 | 64 | 416 |
| Cusp forms | 384 | 64 | 320 |
| Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1134, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1134.2.k.a | $16$ | $9.055$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q-\beta _{7}q^{2}+\beta _{8}q^{4}+(\beta _{5}+\beta _{10}+\beta _{12}+\cdots)q^{5}+\cdots\) |
| 1134.2.k.b | $16$ | $9.055$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta _{7}q^{2}+\beta _{8}q^{4}+(-\beta _{5}-\beta _{10}-\beta _{12}+\cdots)q^{5}+\cdots\) |
| 1134.2.k.c | $16$ | $9.055$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q-\beta _{9}q^{2}+(1+\beta _{2})q^{4}+(-\beta _{1}-\beta _{12}+\cdots)q^{5}+\cdots\) |
| 1134.2.k.d | $16$ | $9.055$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta _{9}q^{2}+(1+\beta _{2})q^{4}+(\beta _{1}+\beta _{12}-\beta _{14}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1134, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1134, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 2}\)