Properties

Label 1134.2.k
Level $1134$
Weight $2$
Character orbit 1134.k
Rep. character $\chi_{1134}(647,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $4$
Sturm bound $432$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(432\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1134, [\chi])\).

Total New Old
Modular forms 480 64 416
Cusp forms 384 64 320
Eisenstein series 96 0 96

Trace form

\( 64 q + 32 q^{4} + 8 q^{7} - 32 q^{16} - 32 q^{25} + 4 q^{28} + 12 q^{31} + 4 q^{37} - 56 q^{43} + 12 q^{46} + 4 q^{49} - 12 q^{52} - 12 q^{58} + 96 q^{61} - 64 q^{64} + 20 q^{67} - 12 q^{70} + 72 q^{73}+ \cdots - 72 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1134, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1134.2.k.a 1134.k 21.g $16$ $9.055$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 126.2.l.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{7}q^{2}+\beta _{8}q^{4}+(\beta _{5}+\beta _{10}+\beta _{12}+\cdots)q^{5}+\cdots\)
1134.2.k.b 1134.k 21.g $16$ $9.055$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 126.2.l.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{7}q^{2}+\beta _{8}q^{4}+(-\beta _{5}-\beta _{10}-\beta _{12}+\cdots)q^{5}+\cdots\)
1134.2.k.c 1134.k 21.g $16$ $9.055$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1134.2.k.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{9}q^{2}+(1+\beta _{2})q^{4}+(-\beta _{1}-\beta _{12}+\cdots)q^{5}+\cdots\)
1134.2.k.d 1134.k 21.g $16$ $9.055$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1134.2.k.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{9}q^{2}+(1+\beta _{2})q^{4}+(\beta _{1}+\beta _{12}-\beta _{14}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1134, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1134, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 2}\)