Properties

Label 1134.2.h.r.541.1
Level $1134$
Weight $2$
Character 1134.541
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(109,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1134.541
Dual form 1134.2.h.r.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.00000 - 2.44949i) q^{7} +1.00000 q^{8} +4.24264 q^{11} +(-3.12132 - 5.40629i) q^{13} +(-2.62132 + 0.358719i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.12132 + 5.40629i) q^{19} +(-2.12132 - 3.67423i) q^{22} +7.24264 q^{23} -5.00000 q^{25} +(-3.12132 + 5.40629i) q^{26} +(1.62132 + 2.09077i) q^{28} +(2.12132 - 3.67423i) q^{29} +(-0.378680 + 0.655892i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.00000 - 3.46410i) q^{37} +6.24264 q^{38} +(2.74264 + 4.75039i) q^{41} +(3.24264 - 5.61642i) q^{43} +(-2.12132 + 3.67423i) q^{44} +(-3.62132 - 6.27231i) q^{46} +(-6.62132 - 11.4685i) q^{47} +(-5.00000 - 4.89898i) q^{49} +(2.50000 + 4.33013i) q^{50} +6.24264 q^{52} +(-2.12132 - 3.67423i) q^{53} +(1.00000 - 2.44949i) q^{56} -4.24264 q^{58} +(-3.12132 - 5.40629i) q^{61} +0.757359 q^{62} +1.00000 q^{64} +(4.12132 - 7.13834i) q^{67} -7.24264 q^{71} +(3.50000 + 6.06218i) q^{73} -4.00000 q^{74} +(-3.12132 - 5.40629i) q^{76} +(4.24264 - 10.3923i) q^{77} +(-4.62132 - 8.00436i) q^{79} +(2.74264 - 4.75039i) q^{82} +(-3.87868 + 6.71807i) q^{83} -6.48528 q^{86} +4.24264 q^{88} +(2.74264 - 4.75039i) q^{89} +(-16.3640 + 2.23936i) q^{91} +(-3.62132 + 6.27231i) q^{92} +(-6.62132 + 11.4685i) q^{94} +(6.24264 - 10.8126i) q^{97} +(-1.74264 + 6.77962i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 4 q^{7} + 4 q^{8} - 4 q^{13} - 2 q^{14} - 2 q^{16} - 4 q^{19} + 12 q^{23} - 20 q^{25} - 4 q^{26} - 2 q^{28} - 10 q^{31} - 2 q^{32} + 8 q^{37} + 8 q^{38} - 6 q^{41} - 4 q^{43} - 6 q^{46}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 1.00000 2.44949i 0.377964 0.925820i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 4.24264 1.27920 0.639602 0.768706i \(-0.279099\pi\)
0.639602 + 0.768706i \(0.279099\pi\)
\(12\) 0 0
\(13\) −3.12132 5.40629i −0.865699 1.49943i −0.866352 0.499434i \(-0.833541\pi\)
0.000653431 1.00000i \(-0.499792\pi\)
\(14\) −2.62132 + 0.358719i −0.700577 + 0.0958718i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −3.12132 + 5.40629i −0.716080 + 1.24029i 0.246462 + 0.969153i \(0.420732\pi\)
−0.962542 + 0.271134i \(0.912601\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.12132 3.67423i −0.452267 0.783349i
\(23\) 7.24264 1.51019 0.755097 0.655613i \(-0.227590\pi\)
0.755097 + 0.655613i \(0.227590\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −3.12132 + 5.40629i −0.612141 + 1.06026i
\(27\) 0 0
\(28\) 1.62132 + 2.09077i 0.306401 + 0.395118i
\(29\) 2.12132 3.67423i 0.393919 0.682288i −0.599043 0.800717i \(-0.704452\pi\)
0.992963 + 0.118428i \(0.0377856\pi\)
\(30\) 0 0
\(31\) −0.378680 + 0.655892i −0.0680129 + 0.117802i −0.898027 0.439941i \(-0.854999\pi\)
0.830014 + 0.557743i \(0.188333\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 3.46410i 0.328798 0.569495i −0.653476 0.756948i \(-0.726690\pi\)
0.982274 + 0.187453i \(0.0600231\pi\)
\(38\) 6.24264 1.01269
\(39\) 0 0
\(40\) 0 0
\(41\) 2.74264 + 4.75039i 0.428329 + 0.741887i 0.996725 0.0808682i \(-0.0257693\pi\)
−0.568396 + 0.822755i \(0.692436\pi\)
\(42\) 0 0
\(43\) 3.24264 5.61642i 0.494498 0.856496i −0.505482 0.862837i \(-0.668685\pi\)
0.999980 + 0.00634147i \(0.00201857\pi\)
\(44\) −2.12132 + 3.67423i −0.319801 + 0.553912i
\(45\) 0 0
\(46\) −3.62132 6.27231i −0.533935 0.924802i
\(47\) −6.62132 11.4685i −0.965819 1.67285i −0.707399 0.706815i \(-0.750131\pi\)
−0.258420 0.966033i \(-0.583202\pi\)
\(48\) 0 0
\(49\) −5.00000 4.89898i −0.714286 0.699854i
\(50\) 2.50000 + 4.33013i 0.353553 + 0.612372i
\(51\) 0 0
\(52\) 6.24264 0.865699
\(53\) −2.12132 3.67423i −0.291386 0.504695i 0.682752 0.730650i \(-0.260783\pi\)
−0.974138 + 0.225955i \(0.927450\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 2.44949i 0.133631 0.327327i
\(57\) 0 0
\(58\) −4.24264 −0.557086
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −3.12132 5.40629i −0.399644 0.692204i 0.594038 0.804437i \(-0.297533\pi\)
−0.993682 + 0.112233i \(0.964200\pi\)
\(62\) 0.757359 0.0961847
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.12132 7.13834i 0.503499 0.872087i −0.496492 0.868041i \(-0.665379\pi\)
0.999992 0.00404550i \(-0.00128773\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.24264 −0.859543 −0.429772 0.902938i \(-0.641406\pi\)
−0.429772 + 0.902938i \(0.641406\pi\)
\(72\) 0 0
\(73\) 3.50000 + 6.06218i 0.409644 + 0.709524i 0.994850 0.101361i \(-0.0323196\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) −3.12132 5.40629i −0.358040 0.620143i
\(77\) 4.24264 10.3923i 0.483494 1.18431i
\(78\) 0 0
\(79\) −4.62132 8.00436i −0.519939 0.900561i −0.999731 0.0231789i \(-0.992621\pi\)
0.479792 0.877382i \(-0.340712\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.74264 4.75039i 0.302874 0.524593i
\(83\) −3.87868 + 6.71807i −0.425740 + 0.737404i −0.996489 0.0837207i \(-0.973320\pi\)
0.570749 + 0.821125i \(0.306653\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6.48528 −0.699326
\(87\) 0 0
\(88\) 4.24264 0.452267
\(89\) 2.74264 4.75039i 0.290719 0.503541i −0.683261 0.730175i \(-0.739439\pi\)
0.973980 + 0.226634i \(0.0727721\pi\)
\(90\) 0 0
\(91\) −16.3640 + 2.23936i −1.71541 + 0.234748i
\(92\) −3.62132 + 6.27231i −0.377549 + 0.653934i
\(93\) 0 0
\(94\) −6.62132 + 11.4685i −0.682937 + 1.18288i
\(95\) 0 0
\(96\) 0 0
\(97\) 6.24264 10.8126i 0.633844 1.09785i −0.352915 0.935656i \(-0.614809\pi\)
0.986759 0.162195i \(-0.0518573\pi\)
\(98\) −1.74264 + 6.77962i −0.176033 + 0.684845i
\(99\) 0 0
\(100\) 2.50000 4.33013i 0.250000 0.433013i
\(101\) 7.75736 0.771886 0.385943 0.922523i \(-0.373876\pi\)
0.385943 + 0.922523i \(0.373876\pi\)
\(102\) 0 0
\(103\) 0.757359 0.0746248 0.0373124 0.999304i \(-0.488120\pi\)
0.0373124 + 0.999304i \(0.488120\pi\)
\(104\) −3.12132 5.40629i −0.306071 0.530130i
\(105\) 0 0
\(106\) −2.12132 + 3.67423i −0.206041 + 0.356873i
\(107\) 1.24264 2.15232i 0.120131 0.208072i −0.799688 0.600415i \(-0.795002\pi\)
0.919819 + 0.392343i \(0.128335\pi\)
\(108\) 0 0
\(109\) 1.12132 + 1.94218i 0.107403 + 0.186027i 0.914717 0.404094i \(-0.132413\pi\)
−0.807314 + 0.590122i \(0.799080\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.62132 + 0.358719i −0.247691 + 0.0338958i
\(113\) 10.2426 + 17.7408i 0.963547 + 1.66891i 0.713470 + 0.700686i \(0.247122\pi\)
0.250076 + 0.968226i \(0.419544\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.12132 + 3.67423i 0.196960 + 0.341144i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) −3.12132 + 5.40629i −0.282591 + 0.489462i
\(123\) 0 0
\(124\) −0.378680 0.655892i −0.0340064 0.0589009i
\(125\) 0 0
\(126\) 0 0
\(127\) 6.75736 0.599619 0.299809 0.953999i \(-0.403077\pi\)
0.299809 + 0.953999i \(0.403077\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −7.75736 −0.677764 −0.338882 0.940829i \(-0.610049\pi\)
−0.338882 + 0.940829i \(0.610049\pi\)
\(132\) 0 0
\(133\) 10.1213 + 13.0519i 0.877630 + 1.13175i
\(134\) −8.24264 −0.712056
\(135\) 0 0
\(136\) 0 0
\(137\) −19.9706 −1.70620 −0.853100 0.521747i \(-0.825280\pi\)
−0.853100 + 0.521747i \(0.825280\pi\)
\(138\) 0 0
\(139\) 2.36396 + 4.09450i 0.200509 + 0.347291i 0.948692 0.316200i \(-0.102407\pi\)
−0.748184 + 0.663491i \(0.769074\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.62132 + 6.27231i 0.303894 + 0.526361i
\(143\) −13.2426 22.9369i −1.10741 1.91808i
\(144\) 0 0
\(145\) 0 0
\(146\) 3.50000 6.06218i 0.289662 0.501709i
\(147\) 0 0
\(148\) 2.00000 + 3.46410i 0.164399 + 0.284747i
\(149\) 16.2426 1.33065 0.665324 0.746554i \(-0.268293\pi\)
0.665324 + 0.746554i \(0.268293\pi\)
\(150\) 0 0
\(151\) −2.75736 −0.224391 −0.112195 0.993686i \(-0.535788\pi\)
−0.112195 + 0.993686i \(0.535788\pi\)
\(152\) −3.12132 + 5.40629i −0.253173 + 0.438508i
\(153\) 0 0
\(154\) −11.1213 + 1.52192i −0.896182 + 0.122640i
\(155\) 0 0
\(156\) 0 0
\(157\) −7.00000 + 12.1244i −0.558661 + 0.967629i 0.438948 + 0.898513i \(0.355351\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) −4.62132 + 8.00436i −0.367653 + 0.636793i
\(159\) 0 0
\(160\) 0 0
\(161\) 7.24264 17.7408i 0.570800 1.39817i
\(162\) 0 0
\(163\) 5.87868 10.1822i 0.460454 0.797529i −0.538530 0.842606i \(-0.681020\pi\)
0.998984 + 0.0450772i \(0.0143534\pi\)
\(164\) −5.48528 −0.428329
\(165\) 0 0
\(166\) 7.75736 0.602088
\(167\) −12.1066 20.9692i −0.936837 1.62265i −0.771325 0.636441i \(-0.780406\pi\)
−0.165512 0.986208i \(-0.552928\pi\)
\(168\) 0 0
\(169\) −12.9853 + 22.4912i −0.998868 + 1.73009i
\(170\) 0 0
\(171\) 0 0
\(172\) 3.24264 + 5.61642i 0.247249 + 0.428248i
\(173\) 5.48528 + 9.50079i 0.417038 + 0.722331i 0.995640 0.0932788i \(-0.0297348\pi\)
−0.578602 + 0.815610i \(0.696401\pi\)
\(174\) 0 0
\(175\) −5.00000 + 12.2474i −0.377964 + 0.925820i
\(176\) −2.12132 3.67423i −0.159901 0.276956i
\(177\) 0 0
\(178\) −5.48528 −0.411139
\(179\) 8.12132 + 14.0665i 0.607016 + 1.05138i 0.991729 + 0.128346i \(0.0409669\pi\)
−0.384713 + 0.923036i \(0.625700\pi\)
\(180\) 0 0
\(181\) −20.2426 −1.50462 −0.752312 0.658807i \(-0.771061\pi\)
−0.752312 + 0.658807i \(0.771061\pi\)
\(182\) 10.1213 + 13.0519i 0.750242 + 0.967473i
\(183\) 0 0
\(184\) 7.24264 0.533935
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 13.2426 0.965819
\(189\) 0 0
\(190\) 0 0
\(191\) −4.24264 7.34847i −0.306987 0.531717i 0.670715 0.741715i \(-0.265987\pi\)
−0.977702 + 0.209999i \(0.932654\pi\)
\(192\) 0 0
\(193\) 2.25736 3.90986i 0.162488 0.281438i −0.773272 0.634074i \(-0.781381\pi\)
0.935760 + 0.352636i \(0.114715\pi\)
\(194\) −12.4853 −0.896391
\(195\) 0 0
\(196\) 6.74264 1.88064i 0.481617 0.134331i
\(197\) 16.9706 1.20910 0.604551 0.796566i \(-0.293352\pi\)
0.604551 + 0.796566i \(0.293352\pi\)
\(198\) 0 0
\(199\) 7.37868 + 12.7802i 0.523061 + 0.905968i 0.999640 + 0.0268362i \(0.00854325\pi\)
−0.476579 + 0.879132i \(0.658123\pi\)
\(200\) −5.00000 −0.353553
\(201\) 0 0
\(202\) −3.87868 6.71807i −0.272903 0.472682i
\(203\) −6.87868 8.87039i −0.482789 0.622579i
\(204\) 0 0
\(205\) 0 0
\(206\) −0.378680 0.655892i −0.0263839 0.0456982i
\(207\) 0 0
\(208\) −3.12132 + 5.40629i −0.216425 + 0.374858i
\(209\) −13.2426 + 22.9369i −0.916013 + 1.58658i
\(210\) 0 0
\(211\) 3.24264 + 5.61642i 0.223233 + 0.386650i 0.955788 0.294058i \(-0.0950057\pi\)
−0.732555 + 0.680708i \(0.761672\pi\)
\(212\) 4.24264 0.291386
\(213\) 0 0
\(214\) −2.48528 −0.169890
\(215\) 0 0
\(216\) 0 0
\(217\) 1.22792 + 1.58346i 0.0833568 + 0.107493i
\(218\) 1.12132 1.94218i 0.0759454 0.131541i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −5.86396 + 10.1567i −0.392680 + 0.680141i −0.992802 0.119767i \(-0.961785\pi\)
0.600122 + 0.799908i \(0.295119\pi\)
\(224\) 1.62132 + 2.09077i 0.108329 + 0.139695i
\(225\) 0 0
\(226\) 10.2426 17.7408i 0.681330 1.18010i
\(227\) 26.4853 1.75789 0.878945 0.476923i \(-0.158248\pi\)
0.878945 + 0.476923i \(0.158248\pi\)
\(228\) 0 0
\(229\) 24.9706 1.65010 0.825051 0.565059i \(-0.191147\pi\)
0.825051 + 0.565059i \(0.191147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.12132 3.67423i 0.139272 0.241225i
\(233\) −10.2426 + 17.7408i −0.671018 + 1.16224i 0.306598 + 0.951839i \(0.400809\pi\)
−0.977616 + 0.210398i \(0.932524\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.86396 3.22848i −0.120570 0.208833i 0.799423 0.600769i \(-0.205139\pi\)
−0.919992 + 0.391936i \(0.871805\pi\)
\(240\) 0 0
\(241\) 8.51472 0.548481 0.274241 0.961661i \(-0.411574\pi\)
0.274241 + 0.961661i \(0.411574\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) 0 0
\(244\) 6.24264 0.399644
\(245\) 0 0
\(246\) 0 0
\(247\) 38.9706 2.47964
\(248\) −0.378680 + 0.655892i −0.0240462 + 0.0416492i
\(249\) 0 0
\(250\) 0 0
\(251\) 18.7279 1.18210 0.591048 0.806636i \(-0.298714\pi\)
0.591048 + 0.806636i \(0.298714\pi\)
\(252\) 0 0
\(253\) 30.7279 1.93185
\(254\) −3.37868 5.85204i −0.211997 0.367190i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.48528 0.342162 0.171081 0.985257i \(-0.445274\pi\)
0.171081 + 0.985257i \(0.445274\pi\)
\(258\) 0 0
\(259\) −6.48528 8.36308i −0.402976 0.519657i
\(260\) 0 0
\(261\) 0 0
\(262\) 3.87868 + 6.71807i 0.239626 + 0.415044i
\(263\) 22.9706 1.41643 0.708213 0.705999i \(-0.249502\pi\)
0.708213 + 0.705999i \(0.249502\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.24264 15.2913i 0.382761 0.937569i
\(267\) 0 0
\(268\) 4.12132 + 7.13834i 0.251750 + 0.436043i
\(269\) 5.48528 + 9.50079i 0.334444 + 0.579273i 0.983378 0.181571i \(-0.0581183\pi\)
−0.648934 + 0.760844i \(0.724785\pi\)
\(270\) 0 0
\(271\) 6.24264 10.8126i 0.379213 0.656817i −0.611735 0.791063i \(-0.709528\pi\)
0.990948 + 0.134246i \(0.0428613\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 9.98528 + 17.2950i 0.603233 + 1.04483i
\(275\) −21.2132 −1.27920
\(276\) 0 0
\(277\) −19.2132 −1.15441 −0.577205 0.816599i \(-0.695857\pi\)
−0.577205 + 0.816599i \(0.695857\pi\)
\(278\) 2.36396 4.09450i 0.141781 0.245572i
\(279\) 0 0
\(280\) 0 0
\(281\) −11.2279 + 19.4473i −0.669802 + 1.16013i 0.308158 + 0.951335i \(0.400288\pi\)
−0.977959 + 0.208795i \(0.933046\pi\)
\(282\) 0 0
\(283\) −12.4853 + 21.6251i −0.742173 + 1.28548i 0.209331 + 0.977845i \(0.432871\pi\)
−0.951504 + 0.307636i \(0.900462\pi\)
\(284\) 3.62132 6.27231i 0.214886 0.372193i
\(285\) 0 0
\(286\) −13.2426 + 22.9369i −0.783054 + 1.35629i
\(287\) 14.3787 1.96768i 0.848747 0.116148i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) −7.00000 −0.409644
\(293\) 5.48528 + 9.50079i 0.320454 + 0.555042i 0.980582 0.196111i \(-0.0628314\pi\)
−0.660128 + 0.751153i \(0.729498\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.00000 3.46410i 0.116248 0.201347i
\(297\) 0 0
\(298\) −8.12132 14.0665i −0.470455 0.814853i
\(299\) −22.6066 39.1558i −1.30737 2.26444i
\(300\) 0 0
\(301\) −10.5147 13.5592i −0.606058 0.781541i
\(302\) 1.37868 + 2.38794i 0.0793341 + 0.137411i
\(303\) 0 0
\(304\) 6.24264 0.358040
\(305\) 0 0
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 6.87868 + 8.87039i 0.391949 + 0.505437i
\(309\) 0 0
\(310\) 0 0
\(311\) 5.48528 9.50079i 0.311042 0.538740i −0.667546 0.744568i \(-0.732655\pi\)
0.978588 + 0.205828i \(0.0659888\pi\)
\(312\) 0 0
\(313\) 8.98528 + 15.5630i 0.507878 + 0.879671i 0.999958 + 0.00912090i \(0.00290331\pi\)
−0.492080 + 0.870550i \(0.663763\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 9.24264 0.519939
\(317\) 8.48528 + 14.6969i 0.476581 + 0.825462i 0.999640 0.0268342i \(-0.00854260\pi\)
−0.523059 + 0.852296i \(0.675209\pi\)
\(318\) 0 0
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) −18.9853 + 2.59808i −1.05801 + 0.144785i
\(323\) 0 0
\(324\) 0 0
\(325\) 15.6066 + 27.0314i 0.865699 + 1.49943i
\(326\) −11.7574 −0.651180
\(327\) 0 0
\(328\) 2.74264 + 4.75039i 0.151437 + 0.262297i
\(329\) −34.7132 + 4.75039i −1.91380 + 0.261898i
\(330\) 0 0
\(331\) 9.24264 + 16.0087i 0.508021 + 0.879919i 0.999957 + 0.00928730i \(0.00295628\pi\)
−0.491935 + 0.870632i \(0.663710\pi\)
\(332\) −3.87868 6.71807i −0.212870 0.368702i
\(333\) 0 0
\(334\) −12.1066 + 20.9692i −0.662444 + 1.14739i
\(335\) 0 0
\(336\) 0 0
\(337\) −2.24264 3.88437i −0.122164 0.211595i 0.798457 0.602052i \(-0.205650\pi\)
−0.920621 + 0.390457i \(0.872317\pi\)
\(338\) 25.9706 1.41261
\(339\) 0 0
\(340\) 0 0
\(341\) −1.60660 + 2.78272i −0.0870024 + 0.150693i
\(342\) 0 0
\(343\) −17.0000 + 7.34847i −0.917914 + 0.396780i
\(344\) 3.24264 5.61642i 0.174831 0.302817i
\(345\) 0 0
\(346\) 5.48528 9.50079i 0.294891 0.510765i
\(347\) 3.36396 5.82655i 0.180587 0.312786i −0.761494 0.648172i \(-0.775534\pi\)
0.942081 + 0.335387i \(0.108867\pi\)
\(348\) 0 0
\(349\) −12.4853 + 21.6251i −0.668322 + 1.15757i 0.310051 + 0.950720i \(0.399654\pi\)
−0.978373 + 0.206848i \(0.933680\pi\)
\(350\) 13.1066 1.79360i 0.700577 0.0958718i
\(351\) 0 0
\(352\) −2.12132 + 3.67423i −0.113067 + 0.195837i
\(353\) 21.0000 1.11772 0.558859 0.829263i \(-0.311239\pi\)
0.558859 + 0.829263i \(0.311239\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.74264 + 4.75039i 0.145360 + 0.251770i
\(357\) 0 0
\(358\) 8.12132 14.0665i 0.429225 0.743440i
\(359\) −5.37868 + 9.31615i −0.283876 + 0.491687i −0.972336 0.233587i \(-0.924954\pi\)
0.688460 + 0.725274i \(0.258287\pi\)
\(360\) 0 0
\(361\) −9.98528 17.2950i −0.525541 0.910264i
\(362\) 10.1213 + 17.5306i 0.531965 + 0.921390i
\(363\) 0 0
\(364\) 6.24264 15.2913i 0.327203 0.801481i
\(365\) 0 0
\(366\) 0 0
\(367\) 11.7279 0.612193 0.306096 0.952001i \(-0.400977\pi\)
0.306096 + 0.952001i \(0.400977\pi\)
\(368\) −3.62132 6.27231i −0.188774 0.326967i
\(369\) 0 0
\(370\) 0 0
\(371\) −11.1213 + 1.52192i −0.577390 + 0.0790140i
\(372\) 0 0
\(373\) −7.21320 −0.373486 −0.186743 0.982409i \(-0.559793\pi\)
−0.186743 + 0.982409i \(0.559793\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.62132 11.4685i −0.341469 0.591441i
\(377\) −26.4853 −1.36406
\(378\) 0 0
\(379\) 1.27208 0.0653423 0.0326711 0.999466i \(-0.489599\pi\)
0.0326711 + 0.999466i \(0.489599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.24264 + 7.34847i −0.217072 + 0.375980i
\(383\) −24.2132 −1.23724 −0.618618 0.785692i \(-0.712307\pi\)
−0.618618 + 0.785692i \(0.712307\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.51472 −0.229793
\(387\) 0 0
\(388\) 6.24264 + 10.8126i 0.316922 + 0.548925i
\(389\) 10.2426 0.519322 0.259661 0.965700i \(-0.416389\pi\)
0.259661 + 0.965700i \(0.416389\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −5.00000 4.89898i −0.252538 0.247436i
\(393\) 0 0
\(394\) −8.48528 14.6969i −0.427482 0.740421i
\(395\) 0 0
\(396\) 0 0
\(397\) 10.1213 17.5306i 0.507975 0.879838i −0.491983 0.870605i \(-0.663728\pi\)
0.999957 0.00923278i \(-0.00293893\pi\)
\(398\) 7.37868 12.7802i 0.369860 0.640616i
\(399\) 0 0
\(400\) 2.50000 + 4.33013i 0.125000 + 0.216506i
\(401\) 29.4853 1.47242 0.736212 0.676751i \(-0.236612\pi\)
0.736212 + 0.676751i \(0.236612\pi\)
\(402\) 0 0
\(403\) 4.72792 0.235515
\(404\) −3.87868 + 6.71807i −0.192972 + 0.334236i
\(405\) 0 0
\(406\) −4.24264 + 10.3923i −0.210559 + 0.515761i
\(407\) 8.48528 14.6969i 0.420600 0.728500i
\(408\) 0 0
\(409\) −17.5000 + 30.3109i −0.865319 + 1.49878i 0.00141047 + 0.999999i \(0.499551\pi\)
−0.866730 + 0.498778i \(0.833782\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.378680 + 0.655892i −0.0186562 + 0.0323135i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 6.24264 0.306071
\(417\) 0 0
\(418\) 26.4853 1.29544
\(419\) 3.87868 + 6.71807i 0.189486 + 0.328199i 0.945079 0.326842i \(-0.105985\pi\)
−0.755593 + 0.655041i \(0.772651\pi\)
\(420\) 0 0
\(421\) 7.12132 12.3345i 0.347072 0.601146i −0.638656 0.769492i \(-0.720509\pi\)
0.985728 + 0.168346i \(0.0538426\pi\)
\(422\) 3.24264 5.61642i 0.157849 0.273403i
\(423\) 0 0
\(424\) −2.12132 3.67423i −0.103020 0.178437i
\(425\) 0 0
\(426\) 0 0
\(427\) −16.3640 + 2.23936i −0.791908 + 0.108370i
\(428\) 1.24264 + 2.15232i 0.0600653 + 0.104036i
\(429\) 0 0
\(430\) 0 0
\(431\) 18.6213 + 32.2531i 0.896957 + 1.55358i 0.831363 + 0.555729i \(0.187561\pi\)
0.0655943 + 0.997846i \(0.479106\pi\)
\(432\) 0 0
\(433\) 3.97056 0.190813 0.0954065 0.995438i \(-0.469585\pi\)
0.0954065 + 0.995438i \(0.469585\pi\)
\(434\) 0.757359 1.85514i 0.0363544 0.0890498i
\(435\) 0 0
\(436\) −2.24264 −0.107403
\(437\) −22.6066 + 39.1558i −1.08142 + 1.87308i
\(438\) 0 0
\(439\) −5.86396 10.1567i −0.279872 0.484752i 0.691481 0.722395i \(-0.256959\pi\)
−0.971353 + 0.237643i \(0.923625\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.75736 8.23999i −0.226029 0.391494i 0.730599 0.682807i \(-0.239241\pi\)
−0.956628 + 0.291313i \(0.905908\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 11.7279 0.555333
\(447\) 0 0
\(448\) 1.00000 2.44949i 0.0472456 0.115728i
\(449\) −4.97056 −0.234575 −0.117288 0.993098i \(-0.537420\pi\)
−0.117288 + 0.993098i \(0.537420\pi\)
\(450\) 0 0
\(451\) 11.6360 + 20.1542i 0.547920 + 0.949025i
\(452\) −20.4853 −0.963547
\(453\) 0 0
\(454\) −13.2426 22.9369i −0.621508 1.07648i
\(455\) 0 0
\(456\) 0 0
\(457\) −5.75736 9.97204i −0.269318 0.466472i 0.699368 0.714762i \(-0.253465\pi\)
−0.968686 + 0.248290i \(0.920132\pi\)
\(458\) −12.4853 21.6251i −0.583399 1.01048i
\(459\) 0 0
\(460\) 0 0
\(461\) −17.1213 + 29.6550i −0.797419 + 1.38117i 0.123872 + 0.992298i \(0.460469\pi\)
−0.921291 + 0.388873i \(0.872865\pi\)
\(462\) 0 0
\(463\) 4.37868 + 7.58410i 0.203495 + 0.352463i 0.949652 0.313307i \(-0.101437\pi\)
−0.746158 + 0.665769i \(0.768103\pi\)
\(464\) −4.24264 −0.196960
\(465\) 0 0
\(466\) 20.4853 0.948962
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) −13.3640 17.2335i −0.617090 0.795768i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 13.7574 23.8284i 0.632564 1.09563i
\(474\) 0 0
\(475\) 15.6066 27.0314i 0.716080 1.24029i
\(476\) 0 0
\(477\) 0 0
\(478\) −1.86396 + 3.22848i −0.0852556 + 0.147667i
\(479\) −13.2426 −0.605072 −0.302536 0.953138i \(-0.597833\pi\)
−0.302536 + 0.953138i \(0.597833\pi\)
\(480\) 0 0
\(481\) −24.9706 −1.13856
\(482\) −4.25736 7.37396i −0.193917 0.335875i
\(483\) 0 0
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) 0 0
\(486\) 0 0
\(487\) 1.37868 + 2.38794i 0.0624739 + 0.108208i 0.895571 0.444919i \(-0.146768\pi\)
−0.833097 + 0.553127i \(0.813434\pi\)
\(488\) −3.12132 5.40629i −0.141296 0.244731i
\(489\) 0 0
\(490\) 0 0
\(491\) −3.36396 5.82655i −0.151813 0.262949i 0.780081 0.625679i \(-0.215178\pi\)
−0.931894 + 0.362730i \(0.881845\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −19.4853 33.7495i −0.876684 1.51846i
\(495\) 0 0
\(496\) 0.757359 0.0340064
\(497\) −7.24264 + 17.7408i −0.324877 + 0.795782i
\(498\) 0 0
\(499\) −10.7279 −0.480248 −0.240124 0.970742i \(-0.577188\pi\)
−0.240124 + 0.970742i \(0.577188\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −9.36396 16.2189i −0.417934 0.723883i
\(503\) −24.2132 −1.07961 −0.539807 0.841789i \(-0.681503\pi\)
−0.539807 + 0.841789i \(0.681503\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −15.3640 26.6112i −0.683011 1.18301i
\(507\) 0 0
\(508\) −3.37868 + 5.85204i −0.149905 + 0.259643i
\(509\) 7.75736 0.343839 0.171919 0.985111i \(-0.445003\pi\)
0.171919 + 0.985111i \(0.445003\pi\)
\(510\) 0 0
\(511\) 18.3492 2.51104i 0.811723 0.111082i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −2.74264 4.75039i −0.120973 0.209531i
\(515\) 0 0
\(516\) 0 0
\(517\) −28.0919 48.6566i −1.23548 2.13991i
\(518\) −4.00000 + 9.79796i −0.175750 + 0.430498i
\(519\) 0 0
\(520\) 0 0
\(521\) −8.22792 14.2512i −0.360472 0.624355i 0.627567 0.778563i \(-0.284051\pi\)
−0.988039 + 0.154207i \(0.950718\pi\)
\(522\) 0 0
\(523\) 10.1213 17.5306i 0.442574 0.766561i −0.555305 0.831647i \(-0.687399\pi\)
0.997880 + 0.0650852i \(0.0207319\pi\)
\(524\) 3.87868 6.71807i 0.169441 0.293480i
\(525\) 0 0
\(526\) −11.4853 19.8931i −0.500782 0.867380i
\(527\) 0 0
\(528\) 0 0
\(529\) 29.4558 1.28069
\(530\) 0 0
\(531\) 0 0
\(532\) −16.3640 + 2.23936i −0.709468 + 0.0970884i
\(533\) 17.1213 29.6550i 0.741607 1.28450i
\(534\) 0 0
\(535\) 0 0
\(536\) 4.12132 7.13834i 0.178014 0.308329i
\(537\) 0 0
\(538\) 5.48528 9.50079i 0.236487 0.409608i
\(539\) −21.2132 20.7846i −0.913717 0.895257i
\(540\) 0 0
\(541\) 7.48528 12.9649i 0.321817 0.557404i −0.659046 0.752103i \(-0.729040\pi\)
0.980863 + 0.194699i \(0.0623730\pi\)
\(542\) −12.4853 −0.536289
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.24264 5.61642i 0.138645 0.240141i −0.788339 0.615241i \(-0.789059\pi\)
0.926984 + 0.375101i \(0.122392\pi\)
\(548\) 9.98528 17.2950i 0.426550 0.738806i
\(549\) 0 0
\(550\) 10.6066 + 18.3712i 0.452267 + 0.783349i
\(551\) 13.2426 + 22.9369i 0.564155 + 0.977146i
\(552\) 0 0
\(553\) −24.2279 + 3.31552i −1.03028 + 0.140990i
\(554\) 9.60660 + 16.6391i 0.408145 + 0.706929i
\(555\) 0 0
\(556\) −4.72792 −0.200509
\(557\) 20.4853 + 35.4815i 0.867989 + 1.50340i 0.864048 + 0.503409i \(0.167921\pi\)
0.00394110 + 0.999992i \(0.498746\pi\)
\(558\) 0 0
\(559\) −40.4853 −1.71234
\(560\) 0 0
\(561\) 0 0
\(562\) 22.4558 0.947243
\(563\) −9.36396 + 16.2189i −0.394644 + 0.683543i −0.993056 0.117645i \(-0.962465\pi\)
0.598412 + 0.801189i \(0.295799\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 24.9706 1.04959
\(567\) 0 0
\(568\) −7.24264 −0.303894
\(569\) −12.4706 21.5996i −0.522793 0.905504i −0.999648 0.0265224i \(-0.991557\pi\)
0.476855 0.878982i \(-0.341777\pi\)
\(570\) 0 0
\(571\) 10.4853 18.1610i 0.438795 0.760016i −0.558801 0.829301i \(-0.688739\pi\)
0.997597 + 0.0692856i \(0.0220720\pi\)
\(572\) 26.4853 1.10741
\(573\) 0 0
\(574\) −8.89340 11.4685i −0.371203 0.478684i
\(575\) −36.2132 −1.51019
\(576\) 0 0
\(577\) −17.9706 31.1259i −0.748124 1.29579i −0.948721 0.316115i \(-0.897621\pi\)
0.200596 0.979674i \(-0.435712\pi\)
\(578\) −17.0000 −0.707107
\(579\) 0 0
\(580\) 0 0
\(581\) 12.5772 + 16.2189i 0.521789 + 0.672872i
\(582\) 0 0
\(583\) −9.00000 15.5885i −0.372742 0.645608i
\(584\) 3.50000 + 6.06218i 0.144831 + 0.250855i
\(585\) 0 0
\(586\) 5.48528 9.50079i 0.226595 0.392474i
\(587\) 1.60660 2.78272i 0.0663115 0.114855i −0.830963 0.556327i \(-0.812210\pi\)
0.897275 + 0.441472i \(0.145544\pi\)
\(588\) 0 0
\(589\) −2.36396 4.09450i −0.0974053 0.168711i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) 2.74264 4.75039i 0.112627 0.195075i −0.804202 0.594356i \(-0.797407\pi\)
0.916829 + 0.399281i \(0.130740\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.12132 + 14.0665i −0.332662 + 0.576188i
\(597\) 0 0
\(598\) −22.6066 + 39.1558i −0.924453 + 1.60120i
\(599\) −11.4853 + 19.8931i −0.469276 + 0.812810i −0.999383 0.0351210i \(-0.988818\pi\)
0.530107 + 0.847931i \(0.322152\pi\)
\(600\) 0 0
\(601\) 8.98528 15.5630i 0.366517 0.634827i −0.622501 0.782619i \(-0.713883\pi\)
0.989018 + 0.147792i \(0.0472167\pi\)
\(602\) −6.48528 + 15.8856i −0.264320 + 0.647450i
\(603\) 0 0
\(604\) 1.37868 2.38794i 0.0560977 0.0971640i
\(605\) 0 0
\(606\) 0 0
\(607\) −38.9706 −1.58177 −0.790883 0.611967i \(-0.790378\pi\)
−0.790883 + 0.611967i \(0.790378\pi\)
\(608\) −3.12132 5.40629i −0.126586 0.219254i
\(609\) 0 0
\(610\) 0 0
\(611\) −41.3345 + 71.5935i −1.67222 + 2.89636i
\(612\) 0 0
\(613\) 18.9706 + 32.8580i 0.766214 + 1.32712i 0.939602 + 0.342268i \(0.111195\pi\)
−0.173389 + 0.984853i \(0.555472\pi\)
\(614\) 14.0000 + 24.2487i 0.564994 + 0.978598i
\(615\) 0 0
\(616\) 4.24264 10.3923i 0.170941 0.418718i
\(617\) 14.2279 + 24.6435i 0.572795 + 0.992109i 0.996277 + 0.0862052i \(0.0274741\pi\)
−0.423483 + 0.905904i \(0.639193\pi\)
\(618\) 0 0
\(619\) −1.51472 −0.0608817 −0.0304408 0.999537i \(-0.509691\pi\)
−0.0304408 + 0.999537i \(0.509691\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.9706 −0.439879
\(623\) −8.89340 11.4685i −0.356306 0.459474i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 8.98528 15.5630i 0.359124 0.622021i
\(627\) 0 0
\(628\) −7.00000 12.1244i −0.279330 0.483814i
\(629\) 0 0
\(630\) 0 0
\(631\) −24.4853 −0.974744 −0.487372 0.873195i \(-0.662044\pi\)
−0.487372 + 0.873195i \(0.662044\pi\)
\(632\) −4.62132 8.00436i −0.183826 0.318396i
\(633\) 0 0
\(634\) 8.48528 14.6969i 0.336994 0.583690i
\(635\) 0 0
\(636\) 0 0
\(637\) −10.8787 + 42.3227i −0.431029 + 1.67689i
\(638\) −18.0000 −0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) −4.45584 −0.175995 −0.0879976 0.996121i \(-0.528047\pi\)
−0.0879976 + 0.996121i \(0.528047\pi\)
\(642\) 0 0
\(643\) 23.3640 + 40.4676i 0.921385 + 1.59589i 0.797275 + 0.603617i \(0.206274\pi\)
0.124110 + 0.992268i \(0.460392\pi\)
\(644\) 11.7426 + 15.1427i 0.462725 + 0.596706i
\(645\) 0 0
\(646\) 0 0
\(647\) −1.13604 1.96768i −0.0446623 0.0773574i 0.842830 0.538180i \(-0.180888\pi\)
−0.887492 + 0.460822i \(0.847555\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 15.6066 27.0314i 0.612141 1.06026i
\(651\) 0 0
\(652\) 5.87868 + 10.1822i 0.230227 + 0.398765i
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.74264 4.75039i 0.107082 0.185472i
\(657\) 0 0
\(658\) 21.4706 + 27.6873i 0.837010 + 1.07936i
\(659\) 19.6066 33.9596i 0.763765 1.32288i −0.177132 0.984187i \(-0.556682\pi\)
0.940897 0.338692i \(-0.109985\pi\)
\(660\) 0 0
\(661\) 21.0919 36.5322i 0.820379 1.42094i −0.0850210 0.996379i \(-0.527096\pi\)
0.905400 0.424559i \(-0.139571\pi\)
\(662\) 9.24264 16.0087i 0.359225 0.622197i
\(663\) 0 0
\(664\) −3.87868 + 6.71807i −0.150522 + 0.260712i
\(665\) 0 0
\(666\) 0 0
\(667\) 15.3640 26.6112i 0.594895 1.03039i
\(668\) 24.2132 0.936837
\(669\) 0 0
\(670\) 0 0
\(671\) −13.2426 22.9369i −0.511226 0.885470i
\(672\) 0 0
\(673\) 13.7426 23.8030i 0.529740 0.917536i −0.469658 0.882848i \(-0.655623\pi\)
0.999398 0.0346881i \(-0.0110438\pi\)
\(674\) −2.24264 + 3.88437i −0.0863833 + 0.149620i
\(675\) 0 0
\(676\) −12.9853 22.4912i −0.499434 0.865045i
\(677\) −17.1213 29.6550i −0.658026 1.13973i −0.981126 0.193369i \(-0.938058\pi\)
0.323100 0.946365i \(-0.395275\pi\)
\(678\) 0 0
\(679\) −20.2426 26.1039i −0.776841 1.00177i
\(680\) 0 0
\(681\) 0 0
\(682\) 3.21320 0.123040
\(683\) −20.8492 36.1119i −0.797774 1.38179i −0.921063 0.389414i \(-0.872677\pi\)
0.123289 0.992371i \(-0.460656\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 14.8640 + 11.0482i 0.567509 + 0.421822i
\(687\) 0 0
\(688\) −6.48528 −0.247249
\(689\) −13.2426 + 22.9369i −0.504504 + 0.873827i
\(690\) 0 0
\(691\) −3.12132 5.40629i −0.118741 0.205665i 0.800528 0.599295i \(-0.204552\pi\)
−0.919269 + 0.393630i \(0.871219\pi\)
\(692\) −10.9706 −0.417038
\(693\) 0 0
\(694\) −6.72792 −0.255388
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 24.9706 0.945150
\(699\) 0 0
\(700\) −8.10660 10.4539i −0.306401 0.395118i
\(701\) 13.7574 0.519608 0.259804 0.965661i \(-0.416342\pi\)
0.259804 + 0.965661i \(0.416342\pi\)
\(702\) 0 0
\(703\) 12.4853 + 21.6251i 0.470891 + 0.815608i
\(704\) 4.24264 0.159901
\(705\) 0 0
\(706\) −10.5000 18.1865i −0.395173 0.684459i
\(707\) 7.75736 19.0016i 0.291746 0.714628i
\(708\) 0 0
\(709\) −12.8492 22.2555i −0.482563 0.835824i 0.517236 0.855843i \(-0.326961\pi\)
−0.999800 + 0.0200183i \(0.993628\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2.74264 4.75039i 0.102785 0.178029i
\(713\) −2.74264 + 4.75039i −0.102713 + 0.177904i
\(714\) 0 0
\(715\) 0 0
\(716\) −16.2426 −0.607016
\(717\) 0 0
\(718\) 10.7574 0.401461
\(719\) 1.13604 1.96768i 0.0423671 0.0733820i −0.844064 0.536242i \(-0.819843\pi\)
0.886431 + 0.462860i \(0.153177\pi\)
\(720\) 0 0
\(721\) 0.757359 1.85514i 0.0282055 0.0690892i
\(722\) −9.98528 + 17.2950i −0.371614 + 0.643654i
\(723\) 0 0
\(724\) 10.1213 17.5306i 0.376156 0.651521i
\(725\) −10.6066 + 18.3712i −0.393919 + 0.682288i
\(726\) 0 0
\(727\) 12.8640 22.2810i 0.477098 0.826358i −0.522558 0.852604i \(-0.675022\pi\)
0.999656 + 0.0262462i \(0.00835537\pi\)
\(728\) −16.3640 + 2.23936i −0.606489 + 0.0829961i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −38.9706 −1.43941 −0.719705 0.694280i \(-0.755723\pi\)
−0.719705 + 0.694280i \(0.755723\pi\)
\(734\) −5.86396 10.1567i −0.216443 0.374890i
\(735\) 0 0
\(736\) −3.62132 + 6.27231i −0.133484 + 0.231200i
\(737\) 17.4853 30.2854i 0.644079 1.11558i
\(738\) 0 0
\(739\) −5.24264 9.08052i −0.192854 0.334032i 0.753341 0.657630i \(-0.228441\pi\)
−0.946195 + 0.323598i \(0.895108\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.87868 + 8.87039i 0.252524 + 0.325642i
\(743\) −17.3787 30.1008i −0.637562 1.10429i −0.985966 0.166945i \(-0.946610\pi\)
0.348404 0.937344i \(-0.386724\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 3.60660 + 6.24682i 0.132047 + 0.228712i
\(747\) 0 0
\(748\) 0 0
\(749\) −4.02944 5.19615i −0.147232 0.189863i
\(750\) 0 0
\(751\) −17.2426 −0.629193 −0.314596 0.949226i \(-0.601869\pi\)
−0.314596 + 0.949226i \(0.601869\pi\)
\(752\) −6.62132 + 11.4685i −0.241455 + 0.418212i
\(753\) 0 0
\(754\) 13.2426 + 22.9369i 0.482269 + 0.835314i
\(755\) 0 0
\(756\) 0 0
\(757\) 12.9706 0.471423 0.235712 0.971823i \(-0.424258\pi\)
0.235712 + 0.971823i \(0.424258\pi\)
\(758\) −0.636039 1.10165i −0.0231020 0.0400138i
\(759\) 0 0
\(760\) 0 0
\(761\) 21.0000 0.761249 0.380625 0.924730i \(-0.375709\pi\)
0.380625 + 0.924730i \(0.375709\pi\)
\(762\) 0 0
\(763\) 5.87868 0.804479i 0.212822 0.0291241i
\(764\) 8.48528 0.306987
\(765\) 0 0
\(766\) 12.1066 + 20.9692i 0.437429 + 0.757650i
\(767\) 0 0
\(768\) 0 0
\(769\) 6.24264 + 10.8126i 0.225115 + 0.389911i 0.956354 0.292210i \(-0.0943908\pi\)
−0.731239 + 0.682122i \(0.761057\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.25736 + 3.90986i 0.0812441 + 0.140719i
\(773\) 22.6066 + 39.1558i 0.813103 + 1.40834i 0.910682 + 0.413108i \(0.135557\pi\)
−0.0975792 + 0.995228i \(0.531110\pi\)
\(774\) 0 0
\(775\) 1.89340 3.27946i 0.0680129 0.117802i
\(776\) 6.24264 10.8126i 0.224098 0.388149i
\(777\) 0 0
\(778\) −5.12132 8.87039i −0.183608 0.318019i
\(779\) −34.2426 −1.22687
\(780\) 0 0
\(781\) −30.7279 −1.09953
\(782\) 0 0
\(783\) 0 0
\(784\) −1.74264 + 6.77962i −0.0622372 + 0.242129i
\(785\) 0 0
\(786\) 0 0
\(787\) 15.6066 27.0314i 0.556315 0.963566i −0.441485 0.897269i \(-0.645548\pi\)
0.997800 0.0662975i \(-0.0211186\pi\)
\(788\) −8.48528 + 14.6969i −0.302276 + 0.523557i
\(789\) 0 0
\(790\) 0 0
\(791\) 53.6985 7.34847i 1.90930 0.261281i
\(792\) 0 0
\(793\) −19.4853 + 33.7495i −0.691943 + 1.19848i
\(794\) −20.2426 −0.718384
\(795\) 0 0
\(796\) −14.7574 −0.523061
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.50000 4.33013i 0.0883883 0.153093i
\(801\) 0 0
\(802\) −14.7426 25.5350i −0.520581 0.901672i
\(803\) 14.8492 + 25.7196i 0.524018 + 0.907626i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.36396 4.09450i −0.0832670 0.144223i
\(807\) 0 0
\(808\) 7.75736 0.272903
\(809\) 4.50000 + 7.79423i 0.158212 + 0.274030i 0.934224 0.356687i \(-0.116094\pi\)
−0.776012 + 0.630718i \(0.782761\pi\)
\(810\) 0 0
\(811\) −23.4558 −0.823646 −0.411823 0.911264i \(-0.635108\pi\)
−0.411823 + 0.911264i \(0.635108\pi\)
\(812\) 11.1213 1.52192i 0.390282 0.0534088i
\(813\) 0 0
\(814\) −16.9706 −0.594818
\(815\) 0 0
\(816\) 0 0
\(817\) 20.2426 + 35.0613i 0.708200 + 1.22664i
\(818\) 35.0000 1.22375
\(819\) 0 0
\(820\) 0 0
\(821\) 16.0919 + 27.8720i 0.561611 + 0.972738i 0.997356 + 0.0726682i \(0.0231514\pi\)
−0.435746 + 0.900070i \(0.643515\pi\)
\(822\) 0 0
\(823\) −20.3492 + 35.2459i −0.709330 + 1.22860i 0.255776 + 0.966736i \(0.417669\pi\)
−0.965106 + 0.261860i \(0.915664\pi\)
\(824\) 0.757359 0.0263839
\(825\) 0 0
\(826\) 0 0
\(827\) 16.9706 0.590124 0.295062 0.955478i \(-0.404660\pi\)
0.295062 + 0.955478i \(0.404660\pi\)
\(828\) 0 0
\(829\) 24.9706 + 43.2503i 0.867263 + 1.50214i 0.864782 + 0.502148i \(0.167457\pi\)
0.00248151 + 0.999997i \(0.499210\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −3.12132 5.40629i −0.108212 0.187429i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −13.2426 22.9369i −0.458006 0.793290i
\(837\) 0 0
\(838\) 3.87868 6.71807i 0.133987 0.232072i
\(839\) −7.75736 + 13.4361i −0.267814 + 0.463867i −0.968297 0.249802i \(-0.919635\pi\)
0.700483 + 0.713669i \(0.252968\pi\)
\(840\) 0 0
\(841\) 5.50000 + 9.52628i 0.189655 + 0.328492i
\(842\) −14.2426 −0.490834
\(843\) 0 0
\(844\) −6.48528 −0.223233
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000 17.1464i 0.240523 0.589158i
\(848\) −2.12132 + 3.67423i −0.0728464 + 0.126174i
\(849\) 0 0
\(850\) 0 0
\(851\) 14.4853 25.0892i 0.496549 0.860048i
\(852\) 0 0
\(853\) −14.0919 + 24.4079i −0.482497 + 0.835709i −0.999798 0.0200943i \(-0.993603\pi\)
0.517301 + 0.855803i \(0.326937\pi\)
\(854\) 10.1213 + 13.0519i 0.346344 + 0.446628i
\(855\) 0 0
\(856\) 1.24264 2.15232i 0.0424726 0.0735647i
\(857\) −5.48528 −0.187374 −0.0936868 0.995602i \(-0.529865\pi\)
−0.0936868 + 0.995602i \(0.529865\pi\)
\(858\) 0 0
\(859\) 43.6985 1.49097 0.745487 0.666521i \(-0.232217\pi\)
0.745487 + 0.666521i \(0.232217\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 18.6213 32.2531i 0.634245 1.09854i
\(863\) 0.106602 0.184640i 0.00362876 0.00628520i −0.864205 0.503139i \(-0.832178\pi\)
0.867834 + 0.496854i \(0.165512\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.98528 3.43861i −0.0674626 0.116849i
\(867\) 0 0
\(868\) −1.98528 + 0.271680i −0.0673848 + 0.00922140i
\(869\) −19.6066 33.9596i −0.665108 1.15200i
\(870\) 0 0
\(871\) −51.4558 −1.74351
\(872\) 1.12132 + 1.94218i 0.0379727 + 0.0657706i
\(873\) 0 0
\(874\) 45.2132 1.52936
\(875\) 0 0
\(876\) 0 0
\(877\) 25.6985 0.867776 0.433888 0.900967i \(-0.357141\pi\)
0.433888 + 0.900967i \(0.357141\pi\)
\(878\) −5.86396 + 10.1567i −0.197899 + 0.342771i
\(879\) 0 0
\(880\) 0 0
\(881\) −36.5147 −1.23021 −0.615106 0.788444i \(-0.710887\pi\)
−0.615106 + 0.788444i \(0.710887\pi\)
\(882\) 0 0
\(883\) 49.6985 1.67249 0.836244 0.548358i \(-0.184747\pi\)
0.836244 + 0.548358i \(0.184747\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −4.75736 + 8.23999i −0.159827 + 0.276828i
\(887\) 39.7279 1.33393 0.666967 0.745088i \(-0.267592\pi\)
0.666967 + 0.745088i \(0.267592\pi\)
\(888\) 0 0
\(889\) 6.75736 16.5521i 0.226635 0.555139i
\(890\) 0 0
\(891\) 0 0
\(892\) −5.86396 10.1567i −0.196340 0.340071i
\(893\) 82.6690 2.76641
\(894\) 0 0
\(895\) 0 0
\(896\) −2.62132 + 0.358719i −0.0875722 + 0.0119840i
\(897\) 0 0
\(898\) 2.48528 + 4.30463i 0.0829349 + 0.143647i
\(899\) 1.60660 + 2.78272i 0.0535832 + 0.0928088i
\(900\) 0 0
\(901\) 0 0
\(902\) 11.6360 20.1542i 0.387438 0.671062i
\(903\) 0 0
\(904\) 10.2426 + 17.7408i 0.340665 + 0.590049i
\(905\) 0 0
\(906\) 0 0
\(907\) −37.9411 −1.25981 −0.629907 0.776670i \(-0.716907\pi\)
−0.629907 + 0.776670i \(0.716907\pi\)
\(908\) −13.2426 + 22.9369i −0.439472 + 0.761189i
\(909\) 0 0
\(910\) 0 0
\(911\) 7.13604 12.3600i 0.236428 0.409504i −0.723259 0.690577i \(-0.757357\pi\)
0.959687 + 0.281072i \(0.0906901\pi\)
\(912\) 0 0
\(913\) −16.4558 + 28.5024i −0.544609 + 0.943290i
\(914\) −5.75736 + 9.97204i −0.190437 + 0.329846i
\(915\) 0 0
\(916\) −12.4853 + 21.6251i −0.412525 + 0.714515i
\(917\) −7.75736 + 19.0016i −0.256171 + 0.627487i
\(918\) 0 0
\(919\) −16.7279 + 28.9736i −0.551803 + 0.955751i 0.446341 + 0.894863i \(0.352727\pi\)
−0.998145 + 0.0608884i \(0.980607\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 34.2426 1.12772
\(923\) 22.6066 + 39.1558i 0.744105 + 1.28883i
\(924\) 0 0
\(925\) −10.0000 + 17.3205i −0.328798 + 0.569495i
\(926\) 4.37868 7.58410i 0.143892 0.249229i
\(927\) 0 0
\(928\) 2.12132 + 3.67423i 0.0696358 + 0.120613i
\(929\) 5.01472 + 8.68575i 0.164528 + 0.284970i 0.936487 0.350701i \(-0.114057\pi\)
−0.771960 + 0.635671i \(0.780723\pi\)
\(930\) 0 0
\(931\) 42.0919 11.7401i 1.37951 0.384768i
\(932\) −10.2426 17.7408i −0.335509 0.581118i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 30.4558 0.994949 0.497475 0.867479i \(-0.334261\pi\)
0.497475 + 0.867479i \(0.334261\pi\)
\(938\) −8.24264 + 20.1903i −0.269132 + 0.659235i
\(939\) 0 0
\(940\) 0 0
\(941\) 20.3345 35.2204i 0.662887 1.14815i −0.316967 0.948437i \(-0.602665\pi\)
0.979854 0.199717i \(-0.0640022\pi\)
\(942\) 0 0
\(943\) 19.8640 + 34.4054i 0.646860 + 1.12039i
\(944\) 0 0
\(945\) 0 0
\(946\) −27.5147 −0.894581
\(947\) 10.7574 + 18.6323i 0.349567 + 0.605468i 0.986173 0.165722i \(-0.0529953\pi\)
−0.636605 + 0.771190i \(0.719662\pi\)
\(948\) 0 0
\(949\) 21.8492 37.8440i 0.709256 1.22847i
\(950\) −31.2132 −1.01269
\(951\) 0 0
\(952\) 0 0
\(953\) −6.51472 −0.211032 −0.105516 0.994418i \(-0.533649\pi\)
−0.105516 + 0.994418i \(0.533649\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.72792 0.120570
\(957\) 0 0
\(958\) 6.62132 + 11.4685i 0.213925 + 0.370529i
\(959\) −19.9706 + 48.9177i −0.644883 + 1.57963i
\(960\) 0 0
\(961\) 15.2132 + 26.3500i 0.490748 + 0.850001i
\(962\) 12.4853 + 21.6251i 0.402542 + 0.697223i
\(963\) 0 0
\(964\) −4.25736 + 7.37396i −0.137120 + 0.237499i
\(965\) 0 0
\(966\) 0 0
\(967\) 3.34924 + 5.80106i 0.107704 + 0.186549i 0.914840 0.403817i \(-0.132317\pi\)
−0.807136 + 0.590366i \(0.798983\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) 13.2426 22.9369i 0.424977 0.736081i −0.571442 0.820643i \(-0.693616\pi\)
0.996418 + 0.0845617i \(0.0269490\pi\)
\(972\) 0 0
\(973\) 12.3934 1.69600i 0.397314 0.0543712i
\(974\) 1.37868 2.38794i 0.0441757 0.0765146i
\(975\) 0 0
\(976\) −3.12132 + 5.40629i −0.0999110 + 0.173051i
\(977\) 6.98528 12.0989i 0.223479 0.387077i −0.732383 0.680893i \(-0.761592\pi\)
0.955862 + 0.293816i \(0.0949253\pi\)
\(978\) 0 0
\(979\) 11.6360 20.1542i 0.371889 0.644131i
\(980\) 0 0
\(981\) 0 0
\(982\) −3.36396 + 5.82655i −0.107348 + 0.185933i
\(983\) −15.5147 −0.494843 −0.247421 0.968908i \(-0.579583\pi\)
−0.247421 + 0.968908i \(0.579583\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −19.4853 + 33.7495i −0.619909 + 1.07371i
\(989\) 23.4853 40.6777i 0.746789 1.29348i
\(990\) 0 0
\(991\) −25.1066 43.4859i −0.797537 1.38138i −0.921215 0.389053i \(-0.872802\pi\)
0.123678 0.992322i \(-0.460531\pi\)
\(992\) −0.378680 0.655892i −0.0120231 0.0208246i
\(993\) 0 0
\(994\) 18.9853 2.59808i 0.602177 0.0824060i
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 5.36396 + 9.29065i 0.169793 + 0.294090i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.h.r.541.1 4
3.2 odd 2 1134.2.h.s.541.1 4
7.4 even 3 1134.2.e.s.865.2 4
9.2 odd 6 1134.2.g.j.163.1 yes 4
9.4 even 3 1134.2.e.s.919.2 4
9.5 odd 6 1134.2.e.r.919.2 4
9.7 even 3 1134.2.g.i.163.1 4
21.11 odd 6 1134.2.e.r.865.2 4
63.2 odd 6 7938.2.a.bk.1.1 2
63.4 even 3 inner 1134.2.h.r.109.2 4
63.11 odd 6 1134.2.g.j.487.1 yes 4
63.16 even 3 7938.2.a.bq.1.2 2
63.25 even 3 1134.2.g.i.487.1 yes 4
63.32 odd 6 1134.2.h.s.109.2 4
63.47 even 6 7938.2.a.bj.1.1 2
63.61 odd 6 7938.2.a.bp.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.e.r.865.2 4 21.11 odd 6
1134.2.e.r.919.2 4 9.5 odd 6
1134.2.e.s.865.2 4 7.4 even 3
1134.2.e.s.919.2 4 9.4 even 3
1134.2.g.i.163.1 4 9.7 even 3
1134.2.g.i.487.1 yes 4 63.25 even 3
1134.2.g.j.163.1 yes 4 9.2 odd 6
1134.2.g.j.487.1 yes 4 63.11 odd 6
1134.2.h.r.109.2 4 63.4 even 3 inner
1134.2.h.r.541.1 4 1.1 even 1 trivial
1134.2.h.s.109.2 4 63.32 odd 6
1134.2.h.s.541.1 4 3.2 odd 2
7938.2.a.bj.1.1 2 63.47 even 6
7938.2.a.bk.1.1 2 63.2 odd 6
7938.2.a.bp.1.2 2 63.61 odd 6
7938.2.a.bq.1.2 2 63.16 even 3