Properties

Label 1134.2.h.g.109.1
Level $1134$
Weight $2$
Character 1134.109
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(109,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1134.109
Dual form 1134.2.h.g.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +3.00000 q^{5} +(2.50000 + 0.866025i) q^{7} +1.00000 q^{8} +(-1.50000 + 2.59808i) q^{10} +(2.00000 - 3.46410i) q^{13} +(-2.00000 + 1.73205i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-3.00000 + 5.19615i) q^{17} +(2.00000 + 3.46410i) q^{19} +(-1.50000 - 2.59808i) q^{20} +6.00000 q^{23} +4.00000 q^{25} +(2.00000 + 3.46410i) q^{26} +(-0.500000 - 2.59808i) q^{28} +(1.50000 + 2.59808i) q^{29} +(-4.00000 - 6.92820i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-3.00000 - 5.19615i) q^{34} +(7.50000 + 2.59808i) q^{35} +(-4.00000 - 6.92820i) q^{37} -4.00000 q^{38} +3.00000 q^{40} +(3.00000 - 5.19615i) q^{41} +(-4.00000 - 6.92820i) q^{43} +(-3.00000 + 5.19615i) q^{46} +(-3.00000 + 5.19615i) q^{47} +(5.50000 + 4.33013i) q^{49} +(-2.00000 + 3.46410i) q^{50} -4.00000 q^{52} +(-4.50000 + 7.79423i) q^{53} +(2.50000 + 0.866025i) q^{56} -3.00000 q^{58} +(1.50000 + 2.59808i) q^{59} +(5.00000 - 8.66025i) q^{61} +8.00000 q^{62} +1.00000 q^{64} +(6.00000 - 10.3923i) q^{65} +(5.00000 + 8.66025i) q^{67} +6.00000 q^{68} +(-6.00000 + 5.19615i) q^{70} +6.00000 q^{71} +(3.50000 - 6.06218i) q^{73} +8.00000 q^{74} +(2.00000 - 3.46410i) q^{76} +(-8.50000 + 14.7224i) q^{79} +(-1.50000 + 2.59808i) q^{80} +(3.00000 + 5.19615i) q^{82} +(6.00000 + 10.3923i) q^{83} +(-9.00000 + 15.5885i) q^{85} +8.00000 q^{86} +(-3.00000 - 5.19615i) q^{89} +(8.00000 - 6.92820i) q^{91} +(-3.00000 - 5.19615i) q^{92} +(-3.00000 - 5.19615i) q^{94} +(6.00000 + 10.3923i) q^{95} +(5.00000 + 8.66025i) q^{97} +(-6.50000 + 2.59808i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 6 q^{5} + 5 q^{7} + 2 q^{8} - 3 q^{10} + 4 q^{13} - 4 q^{14} - q^{16} - 6 q^{17} + 4 q^{19} - 3 q^{20} + 12 q^{23} + 8 q^{25} + 4 q^{26} - q^{28} + 3 q^{29} - 8 q^{31} - q^{32}+ \cdots - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) −2.00000 + 1.73205i −0.534522 + 0.462910i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) 2.00000 + 3.46410i 0.458831 + 0.794719i 0.998899 0.0469020i \(-0.0149348\pi\)
−0.540068 + 0.841621i \(0.681602\pi\)
\(20\) −1.50000 2.59808i −0.335410 0.580948i
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 2.00000 + 3.46410i 0.392232 + 0.679366i
\(27\) 0 0
\(28\) −0.500000 2.59808i −0.0944911 0.490990i
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −3.00000 5.19615i −0.514496 0.891133i
\(35\) 7.50000 + 2.59808i 1.26773 + 0.439155i
\(36\) 0 0
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 3.00000 5.19615i 0.468521 0.811503i −0.530831 0.847477i \(-0.678120\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) −4.00000 6.92820i −0.609994 1.05654i −0.991241 0.132068i \(-0.957838\pi\)
0.381246 0.924473i \(-0.375495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −3.00000 + 5.19615i −0.442326 + 0.766131i
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) −2.00000 + 3.46410i −0.282843 + 0.489898i
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −4.50000 + 7.79423i −0.618123 + 1.07062i 0.371706 + 0.928351i \(0.378773\pi\)
−0.989828 + 0.142269i \(0.954560\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.50000 + 0.866025i 0.334077 + 0.115728i
\(57\) 0 0
\(58\) −3.00000 −0.393919
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) 5.00000 8.66025i 0.640184 1.10883i −0.345207 0.938527i \(-0.612191\pi\)
0.985391 0.170305i \(-0.0544754\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.00000 10.3923i 0.744208 1.28901i
\(66\) 0 0
\(67\) 5.00000 + 8.66025i 0.610847 + 1.05802i 0.991098 + 0.133135i \(0.0425044\pi\)
−0.380251 + 0.924883i \(0.624162\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) −6.00000 + 5.19615i −0.717137 + 0.621059i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 3.50000 6.06218i 0.409644 0.709524i −0.585206 0.810885i \(-0.698986\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 2.00000 3.46410i 0.229416 0.397360i
\(77\) 0 0
\(78\) 0 0
\(79\) −8.50000 + 14.7224i −0.956325 + 1.65640i −0.225018 + 0.974355i \(0.572244\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −1.50000 + 2.59808i −0.167705 + 0.290474i
\(81\) 0 0
\(82\) 3.00000 + 5.19615i 0.331295 + 0.573819i
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) −9.00000 + 15.5885i −0.976187 + 1.69081i
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 0 0
\(91\) 8.00000 6.92820i 0.838628 0.726273i
\(92\) −3.00000 5.19615i −0.312772 0.541736i
\(93\) 0 0
\(94\) −3.00000 5.19615i −0.309426 0.535942i
\(95\) 6.00000 + 10.3923i 0.615587 + 1.06623i
\(96\) 0 0
\(97\) 5.00000 + 8.66025i 0.507673 + 0.879316i 0.999961 + 0.00888289i \(0.00282755\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(98\) −6.50000 + 2.59808i −0.656599 + 0.262445i
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 2.00000 3.46410i 0.196116 0.339683i
\(105\) 0 0
\(106\) −4.50000 7.79423i −0.437079 0.757042i
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 0 0
\(109\) 2.00000 3.46410i 0.191565 0.331801i −0.754204 0.656640i \(-0.771977\pi\)
0.945769 + 0.324840i \(0.105310\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.00000 + 1.73205i −0.188982 + 0.163663i
\(113\) 3.00000 5.19615i 0.282216 0.488813i −0.689714 0.724082i \(-0.742264\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) 0 0
\(115\) 18.0000 1.67851
\(116\) 1.50000 2.59808i 0.139272 0.241225i
\(117\) 0 0
\(118\) −3.00000 −0.276172
\(119\) −12.0000 + 10.3923i −1.10004 + 0.952661i
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 5.00000 + 8.66025i 0.452679 + 0.784063i
\(123\) 0 0
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 6.00000 + 10.3923i 0.526235 + 0.911465i
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 2.00000 + 10.3923i 0.173422 + 0.901127i
\(134\) −10.0000 −0.863868
\(135\) 0 0
\(136\) −3.00000 + 5.19615i −0.257248 + 0.445566i
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −1.00000 + 1.73205i −0.0848189 + 0.146911i −0.905314 0.424743i \(-0.860365\pi\)
0.820495 + 0.571654i \(0.193698\pi\)
\(140\) −1.50000 7.79423i −0.126773 0.658733i
\(141\) 0 0
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) 0 0
\(144\) 0 0
\(145\) 4.50000 + 7.79423i 0.373705 + 0.647275i
\(146\) 3.50000 + 6.06218i 0.289662 + 0.501709i
\(147\) 0 0
\(148\) −4.00000 + 6.92820i −0.328798 + 0.569495i
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 2.00000 + 3.46410i 0.162221 + 0.280976i
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 20.7846i −0.963863 1.66946i
\(156\) 0 0
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) −8.50000 14.7224i −0.676224 1.17125i
\(159\) 0 0
\(160\) −1.50000 2.59808i −0.118585 0.205396i
\(161\) 15.0000 + 5.19615i 1.18217 + 0.409514i
\(162\) 0 0
\(163\) −1.00000 1.73205i −0.0783260 0.135665i 0.824202 0.566296i \(-0.191624\pi\)
−0.902528 + 0.430632i \(0.858291\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −3.00000 + 5.19615i −0.232147 + 0.402090i −0.958440 0.285295i \(-0.907908\pi\)
0.726293 + 0.687386i \(0.241242\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) −9.00000 15.5885i −0.690268 1.19558i
\(171\) 0 0
\(172\) −4.00000 + 6.92820i −0.304997 + 0.528271i
\(173\) 4.50000 7.79423i 0.342129 0.592584i −0.642699 0.766119i \(-0.722185\pi\)
0.984828 + 0.173534i \(0.0555188\pi\)
\(174\) 0 0
\(175\) 10.0000 + 3.46410i 0.755929 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 7.50000 12.9904i 0.560576 0.970947i −0.436870 0.899525i \(-0.643913\pi\)
0.997446 0.0714220i \(-0.0227537\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 2.00000 + 10.3923i 0.148250 + 0.770329i
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) −12.0000 20.7846i −0.882258 1.52811i
\(186\) 0 0
\(187\) 0 0
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) −12.0000 −0.870572
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) 0 0
\(193\) −13.0000 22.5167i −0.935760 1.62078i −0.773272 0.634074i \(-0.781381\pi\)
−0.162488 0.986710i \(-0.551952\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) −5.50000 + 9.52628i −0.389885 + 0.675300i −0.992434 0.122782i \(-0.960818\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) 4.00000 0.282843
\(201\) 0 0
\(202\) 7.50000 12.9904i 0.527698 0.914000i
\(203\) 1.50000 + 7.79423i 0.105279 + 0.547048i
\(204\) 0 0
\(205\) 9.00000 15.5885i 0.628587 1.08875i
\(206\) −4.00000 + 6.92820i −0.278693 + 0.482711i
\(207\) 0 0
\(208\) 2.00000 + 3.46410i 0.138675 + 0.240192i
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 3.46410i 0.137686 0.238479i −0.788935 0.614477i \(-0.789367\pi\)
0.926620 + 0.375999i \(0.122700\pi\)
\(212\) 9.00000 0.618123
\(213\) 0 0
\(214\) −3.00000 −0.205076
\(215\) −12.0000 20.7846i −0.818393 1.41750i
\(216\) 0 0
\(217\) −4.00000 20.7846i −0.271538 1.41095i
\(218\) 2.00000 + 3.46410i 0.135457 + 0.234619i
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 + 20.7846i 0.807207 + 1.39812i
\(222\) 0 0
\(223\) 0.500000 + 0.866025i 0.0334825 + 0.0579934i 0.882281 0.470723i \(-0.156007\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(224\) −0.500000 2.59808i −0.0334077 0.173591i
\(225\) 0 0
\(226\) 3.00000 + 5.19615i 0.199557 + 0.345643i
\(227\) 3.00000 0.199117 0.0995585 0.995032i \(-0.468257\pi\)
0.0995585 + 0.995032i \(0.468257\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) −9.00000 + 15.5885i −0.593442 + 1.02787i
\(231\) 0 0
\(232\) 1.50000 + 2.59808i 0.0984798 + 0.170572i
\(233\) −9.00000 15.5885i −0.589610 1.02123i −0.994283 0.106773i \(-0.965948\pi\)
0.404674 0.914461i \(-0.367385\pi\)
\(234\) 0 0
\(235\) −9.00000 + 15.5885i −0.587095 + 1.01688i
\(236\) 1.50000 2.59808i 0.0976417 0.169120i
\(237\) 0 0
\(238\) −3.00000 15.5885i −0.194461 1.01045i
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) −1.00000 −0.0644157 −0.0322078 0.999481i \(-0.510254\pi\)
−0.0322078 + 0.999481i \(0.510254\pi\)
\(242\) 5.50000 9.52628i 0.353553 0.612372i
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 16.5000 + 12.9904i 1.05415 + 0.829925i
\(246\) 0 0
\(247\) 16.0000 1.01806
\(248\) −4.00000 6.92820i −0.254000 0.439941i
\(249\) 0 0
\(250\) 1.50000 2.59808i 0.0948683 0.164317i
\(251\) 9.00000 0.568075 0.284037 0.958813i \(-0.408326\pi\)
0.284037 + 0.958813i \(0.408326\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −2.50000 + 4.33013i −0.156864 + 0.271696i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −4.00000 20.7846i −0.248548 1.29149i
\(260\) −12.0000 −0.744208
\(261\) 0 0
\(262\) 6.00000 10.3923i 0.370681 0.642039i
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) −13.5000 + 23.3827i −0.829298 + 1.43639i
\(266\) −10.0000 3.46410i −0.613139 0.212398i
\(267\) 0 0
\(268\) 5.00000 8.66025i 0.305424 0.529009i
\(269\) −10.5000 + 18.1865i −0.640196 + 1.10885i 0.345192 + 0.938532i \(0.387814\pi\)
−0.985389 + 0.170321i \(0.945520\pi\)
\(270\) 0 0
\(271\) 12.5000 + 21.6506i 0.759321 + 1.31518i 0.943197 + 0.332233i \(0.107802\pi\)
−0.183876 + 0.982949i \(0.558865\pi\)
\(272\) −3.00000 5.19615i −0.181902 0.315063i
\(273\) 0 0
\(274\) −6.00000 + 10.3923i −0.362473 + 0.627822i
\(275\) 0 0
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) −1.00000 1.73205i −0.0599760 0.103882i
\(279\) 0 0
\(280\) 7.50000 + 2.59808i 0.448211 + 0.155265i
\(281\) 9.00000 + 15.5885i 0.536895 + 0.929929i 0.999069 + 0.0431402i \(0.0137362\pi\)
−0.462174 + 0.886789i \(0.652930\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) −3.00000 5.19615i −0.178017 0.308335i
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 10.3923i 0.708338 0.613438i
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) −9.00000 −0.528498
\(291\) 0 0
\(292\) −7.00000 −0.409644
\(293\) 1.50000 2.59808i 0.0876309 0.151781i −0.818878 0.573967i \(-0.805404\pi\)
0.906509 + 0.422186i \(0.138737\pi\)
\(294\) 0 0
\(295\) 4.50000 + 7.79423i 0.262000 + 0.453798i
\(296\) −4.00000 6.92820i −0.232495 0.402694i
\(297\) 0 0
\(298\) 10.5000 18.1865i 0.608249 1.05352i
\(299\) 12.0000 20.7846i 0.693978 1.20201i
\(300\) 0 0
\(301\) −4.00000 20.7846i −0.230556 1.19800i
\(302\) −4.00000 + 6.92820i −0.230174 + 0.398673i
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 15.0000 25.9808i 0.858898 1.48765i
\(306\) 0 0
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 24.0000 1.36311
\(311\) −6.00000 10.3923i −0.340229 0.589294i 0.644246 0.764818i \(-0.277171\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(312\) 0 0
\(313\) −2.50000 + 4.33013i −0.141308 + 0.244753i −0.927990 0.372606i \(-0.878464\pi\)
0.786681 + 0.617359i \(0.211798\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 17.0000 0.956325
\(317\) 9.00000 15.5885i 0.505490 0.875535i −0.494489 0.869184i \(-0.664645\pi\)
0.999980 0.00635137i \(-0.00202172\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.00000 0.167705
\(321\) 0 0
\(322\) −12.0000 + 10.3923i −0.668734 + 0.579141i
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) 8.00000 13.8564i 0.443760 0.768615i
\(326\) 2.00000 0.110770
\(327\) 0 0
\(328\) 3.00000 5.19615i 0.165647 0.286910i
\(329\) −12.0000 + 10.3923i −0.661581 + 0.572946i
\(330\) 0 0
\(331\) −1.00000 + 1.73205i −0.0549650 + 0.0952021i −0.892199 0.451643i \(-0.850838\pi\)
0.837234 + 0.546845i \(0.184171\pi\)
\(332\) 6.00000 10.3923i 0.329293 0.570352i
\(333\) 0 0
\(334\) −3.00000 5.19615i −0.164153 0.284321i
\(335\) 15.0000 + 25.9808i 0.819538 + 1.41948i
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) 3.00000 0.163178
\(339\) 0 0
\(340\) 18.0000 0.976187
\(341\) 0 0
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) −4.00000 6.92820i −0.215666 0.373544i
\(345\) 0 0
\(346\) 4.50000 + 7.79423i 0.241921 + 0.419020i
\(347\) −16.5000 28.5788i −0.885766 1.53419i −0.844833 0.535031i \(-0.820300\pi\)
−0.0409337 0.999162i \(-0.513033\pi\)
\(348\) 0 0
\(349\) 5.00000 + 8.66025i 0.267644 + 0.463573i 0.968253 0.249973i \(-0.0804216\pi\)
−0.700609 + 0.713545i \(0.747088\pi\)
\(350\) −8.00000 + 6.92820i −0.427618 + 0.370328i
\(351\) 0 0
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 18.0000 0.955341
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 0 0
\(358\) 7.50000 + 12.9904i 0.396387 + 0.686563i
\(359\) −18.0000 31.1769i −0.950004 1.64545i −0.745409 0.666608i \(-0.767746\pi\)
−0.204595 0.978847i \(-0.565588\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 5.00000 8.66025i 0.262794 0.455173i
\(363\) 0 0
\(364\) −10.0000 3.46410i −0.524142 0.181568i
\(365\) 10.5000 18.1865i 0.549595 0.951927i
\(366\) 0 0
\(367\) −19.0000 −0.991792 −0.495896 0.868382i \(-0.665160\pi\)
−0.495896 + 0.868382i \(0.665160\pi\)
\(368\) −3.00000 + 5.19615i −0.156386 + 0.270868i
\(369\) 0 0
\(370\) 24.0000 1.24770
\(371\) −18.0000 + 15.5885i −0.934513 + 0.809312i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.00000 + 5.19615i −0.154713 + 0.267971i
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 6.00000 10.3923i 0.307794 0.533114i
\(381\) 0 0
\(382\) 9.00000 + 15.5885i 0.460480 + 0.797575i
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 26.0000 1.32337
\(387\) 0 0
\(388\) 5.00000 8.66025i 0.253837 0.439658i
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) −18.0000 + 31.1769i −0.910299 + 1.57668i
\(392\) 5.50000 + 4.33013i 0.277792 + 0.218704i
\(393\) 0 0
\(394\) 7.50000 12.9904i 0.377845 0.654446i
\(395\) −25.5000 + 44.1673i −1.28304 + 2.22230i
\(396\) 0 0
\(397\) −16.0000 27.7128i −0.803017 1.39087i −0.917622 0.397455i \(-0.869893\pi\)
0.114605 0.993411i \(-0.463440\pi\)
\(398\) −5.50000 9.52628i −0.275690 0.477509i
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −32.0000 −1.59403
\(404\) 7.50000 + 12.9904i 0.373139 + 0.646296i
\(405\) 0 0
\(406\) −7.50000 2.59808i −0.372219 0.128940i
\(407\) 0 0
\(408\) 0 0
\(409\) 12.5000 + 21.6506i 0.618085 + 1.07056i 0.989835 + 0.142222i \(0.0454247\pi\)
−0.371750 + 0.928333i \(0.621242\pi\)
\(410\) 9.00000 + 15.5885i 0.444478 + 0.769859i
\(411\) 0 0
\(412\) −4.00000 6.92820i −0.197066 0.341328i
\(413\) 1.50000 + 7.79423i 0.0738102 + 0.383529i
\(414\) 0 0
\(415\) 18.0000 + 31.1769i 0.883585 + 1.53041i
\(416\) −4.00000 −0.196116
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) −16.0000 27.7128i −0.779792 1.35064i −0.932061 0.362301i \(-0.881991\pi\)
0.152269 0.988339i \(-0.451342\pi\)
\(422\) 2.00000 + 3.46410i 0.0973585 + 0.168630i
\(423\) 0 0
\(424\) −4.50000 + 7.79423i −0.218539 + 0.378521i
\(425\) −12.0000 + 20.7846i −0.582086 + 1.00820i
\(426\) 0 0
\(427\) 20.0000 17.3205i 0.967868 0.838198i
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) −6.00000 + 10.3923i −0.289010 + 0.500580i −0.973574 0.228373i \(-0.926659\pi\)
0.684564 + 0.728953i \(0.259993\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 20.0000 + 6.92820i 0.960031 + 0.332564i
\(435\) 0 0
\(436\) −4.00000 −0.191565
\(437\) 12.0000 + 20.7846i 0.574038 + 0.994263i
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.0000 −1.14156
\(443\) 19.5000 33.7750i 0.926473 1.60470i 0.137298 0.990530i \(-0.456158\pi\)
0.789175 0.614168i \(-0.210508\pi\)
\(444\) 0 0
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) −1.00000 −0.0473514
\(447\) 0 0
\(448\) 2.50000 + 0.866025i 0.118114 + 0.0409159i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) −1.50000 + 2.59808i −0.0703985 + 0.121934i
\(455\) 24.0000 20.7846i 1.12514 0.974398i
\(456\) 0 0
\(457\) 0.500000 0.866025i 0.0233890 0.0405110i −0.854094 0.520119i \(-0.825888\pi\)
0.877483 + 0.479608i \(0.159221\pi\)
\(458\) −7.00000 + 12.1244i −0.327089 + 0.566534i
\(459\) 0 0
\(460\) −9.00000 15.5885i −0.419627 0.726816i
\(461\) 16.5000 + 28.5788i 0.768482 + 1.33105i 0.938386 + 0.345589i \(0.112321\pi\)
−0.169904 + 0.985461i \(0.554346\pi\)
\(462\) 0 0
\(463\) 9.50000 16.4545i 0.441502 0.764705i −0.556299 0.830982i \(-0.687779\pi\)
0.997801 + 0.0662777i \(0.0211123\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) 16.5000 + 28.5788i 0.763529 + 1.32247i 0.941021 + 0.338349i \(0.109868\pi\)
−0.177492 + 0.984122i \(0.556798\pi\)
\(468\) 0 0
\(469\) 5.00000 + 25.9808i 0.230879 + 1.19968i
\(470\) −9.00000 15.5885i −0.415139 0.719042i
\(471\) 0 0
\(472\) 1.50000 + 2.59808i 0.0690431 + 0.119586i
\(473\) 0 0
\(474\) 0 0
\(475\) 8.00000 + 13.8564i 0.367065 + 0.635776i
\(476\) 15.0000 + 5.19615i 0.687524 + 0.238165i
\(477\) 0 0
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −32.0000 −1.45907
\(482\) 0.500000 0.866025i 0.0227744 0.0394464i
\(483\) 0 0
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) 15.0000 + 25.9808i 0.681115 + 1.17973i
\(486\) 0 0
\(487\) 6.50000 11.2583i 0.294543 0.510164i −0.680335 0.732901i \(-0.738166\pi\)
0.974879 + 0.222737i \(0.0714992\pi\)
\(488\) 5.00000 8.66025i 0.226339 0.392031i
\(489\) 0 0
\(490\) −19.5000 + 7.79423i −0.880920 + 0.352107i
\(491\) −13.5000 + 23.3827i −0.609246 + 1.05525i 0.382118 + 0.924113i \(0.375195\pi\)
−0.991365 + 0.131132i \(0.958139\pi\)
\(492\) 0 0
\(493\) −18.0000 −0.810679
\(494\) −8.00000 + 13.8564i −0.359937 + 0.623429i
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 15.0000 + 5.19615i 0.672842 + 0.233079i
\(498\) 0 0
\(499\) 2.00000 0.0895323 0.0447661 0.998997i \(-0.485746\pi\)
0.0447661 + 0.998997i \(0.485746\pi\)
\(500\) 1.50000 + 2.59808i 0.0670820 + 0.116190i
\(501\) 0 0
\(502\) −4.50000 + 7.79423i −0.200845 + 0.347873i
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) −45.0000 −2.00247
\(506\) 0 0
\(507\) 0 0
\(508\) −2.50000 4.33013i −0.110920 0.192118i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 14.0000 12.1244i 0.619324 0.536350i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0 0
\(515\) 24.0000 1.05757
\(516\) 0 0
\(517\) 0 0
\(518\) 20.0000 + 6.92820i 0.878750 + 0.304408i
\(519\) 0 0
\(520\) 6.00000 10.3923i 0.263117 0.455733i
\(521\) 15.0000 25.9808i 0.657162 1.13824i −0.324185 0.945994i \(-0.605090\pi\)
0.981347 0.192244i \(-0.0615766\pi\)
\(522\) 0 0
\(523\) 2.00000 + 3.46410i 0.0874539 + 0.151475i 0.906434 0.422347i \(-0.138794\pi\)
−0.818980 + 0.573822i \(0.805460\pi\)
\(524\) 6.00000 + 10.3923i 0.262111 + 0.453990i
\(525\) 0 0
\(526\) 9.00000 15.5885i 0.392419 0.679689i
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −13.5000 23.3827i −0.586403 1.01568i
\(531\) 0 0
\(532\) 8.00000 6.92820i 0.346844 0.300376i
\(533\) −12.0000 20.7846i −0.519778 0.900281i
\(534\) 0 0
\(535\) 4.50000 + 7.79423i 0.194552 + 0.336974i
\(536\) 5.00000 + 8.66025i 0.215967 + 0.374066i
\(537\) 0 0
\(538\) −10.5000 18.1865i −0.452687 0.784077i
\(539\) 0 0
\(540\) 0 0
\(541\) 5.00000 + 8.66025i 0.214967 + 0.372333i 0.953262 0.302144i \(-0.0977023\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(542\) −25.0000 −1.07384
\(543\) 0 0
\(544\) 6.00000 0.257248
\(545\) 6.00000 10.3923i 0.257012 0.445157i
\(546\) 0 0
\(547\) 14.0000 + 24.2487i 0.598597 + 1.03680i 0.993028 + 0.117875i \(0.0376081\pi\)
−0.394432 + 0.918925i \(0.629059\pi\)
\(548\) −6.00000 10.3923i −0.256307 0.443937i
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 + 10.3923i −0.255609 + 0.442727i
\(552\) 0 0
\(553\) −34.0000 + 29.4449i −1.44583 + 1.25212i
\(554\) 14.0000 24.2487i 0.594803 1.03023i
\(555\) 0 0
\(556\) 2.00000 0.0848189
\(557\) 3.00000 5.19615i 0.127114 0.220168i −0.795443 0.606028i \(-0.792762\pi\)
0.922557 + 0.385860i \(0.126095\pi\)
\(558\) 0 0
\(559\) −32.0000 −1.35346
\(560\) −6.00000 + 5.19615i −0.253546 + 0.219578i
\(561\) 0 0
\(562\) −18.0000 −0.759284
\(563\) −7.50000 12.9904i −0.316087 0.547479i 0.663581 0.748105i \(-0.269036\pi\)
−0.979668 + 0.200625i \(0.935703\pi\)
\(564\) 0 0
\(565\) 9.00000 15.5885i 0.378633 0.655811i
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −9.00000 + 15.5885i −0.377300 + 0.653502i −0.990668 0.136295i \(-0.956481\pi\)
0.613369 + 0.789797i \(0.289814\pi\)
\(570\) 0 0
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 3.00000 + 15.5885i 0.125218 + 0.650650i
\(575\) 24.0000 1.00087
\(576\) 0 0
\(577\) −11.5000 + 19.9186i −0.478751 + 0.829222i −0.999703 0.0243645i \(-0.992244\pi\)
0.520952 + 0.853586i \(0.325577\pi\)
\(578\) 19.0000 0.790296
\(579\) 0 0
\(580\) 4.50000 7.79423i 0.186852 0.323638i
\(581\) 6.00000 + 31.1769i 0.248922 + 1.29344i
\(582\) 0 0
\(583\) 0 0
\(584\) 3.50000 6.06218i 0.144831 0.250855i
\(585\) 0 0
\(586\) 1.50000 + 2.59808i 0.0619644 + 0.107326i
\(587\) 7.50000 + 12.9904i 0.309558 + 0.536170i 0.978266 0.207355i \(-0.0664855\pi\)
−0.668708 + 0.743525i \(0.733152\pi\)
\(588\) 0 0
\(589\) 16.0000 27.7128i 0.659269 1.14189i
\(590\) −9.00000 −0.370524
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) 0 0
\(595\) −36.0000 + 31.1769i −1.47586 + 1.27813i
\(596\) 10.5000 + 18.1865i 0.430097 + 0.744949i
\(597\) 0 0
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 12.5000 + 21.6506i 0.509886 + 0.883148i 0.999934 + 0.0114528i \(0.00364562\pi\)
−0.490049 + 0.871695i \(0.663021\pi\)
\(602\) 20.0000 + 6.92820i 0.815139 + 0.282372i
\(603\) 0 0
\(604\) −4.00000 6.92820i −0.162758 0.281905i
\(605\) −33.0000 −1.34164
\(606\) 0 0
\(607\) 11.0000 0.446476 0.223238 0.974764i \(-0.428337\pi\)
0.223238 + 0.974764i \(0.428337\pi\)
\(608\) 2.00000 3.46410i 0.0811107 0.140488i
\(609\) 0 0
\(610\) 15.0000 + 25.9808i 0.607332 + 1.05193i
\(611\) 12.0000 + 20.7846i 0.485468 + 0.840855i
\(612\) 0 0
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) −4.00000 + 6.92820i −0.161427 + 0.279600i
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 15.5885i 0.362326 0.627568i −0.626017 0.779809i \(-0.715316\pi\)
0.988343 + 0.152242i \(0.0486493\pi\)
\(618\) 0 0
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) −12.0000 + 20.7846i −0.481932 + 0.834730i
\(621\) 0 0
\(622\) 12.0000 0.481156
\(623\) −3.00000 15.5885i −0.120192 0.624538i
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) −2.50000 4.33013i −0.0999201 0.173067i
\(627\) 0 0
\(628\) −7.00000 + 12.1244i −0.279330 + 0.483814i
\(629\) 48.0000 1.91389
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −8.50000 + 14.7224i −0.338112 + 0.585627i
\(633\) 0 0
\(634\) 9.00000 + 15.5885i 0.357436 + 0.619097i
\(635\) 15.0000 0.595257
\(636\) 0 0
\(637\) 26.0000 10.3923i 1.03016 0.411758i
\(638\) 0 0
\(639\) 0 0
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 0 0
\(643\) 8.00000 13.8564i 0.315489 0.546443i −0.664052 0.747686i \(-0.731165\pi\)
0.979541 + 0.201243i \(0.0644981\pi\)
\(644\) −3.00000 15.5885i −0.118217 0.614271i
\(645\) 0 0
\(646\) 12.0000 20.7846i 0.472134 0.817760i
\(647\) −21.0000 + 36.3731i −0.825595 + 1.42997i 0.0758684 + 0.997118i \(0.475827\pi\)
−0.901464 + 0.432855i \(0.857506\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 8.00000 + 13.8564i 0.313786 + 0.543493i
\(651\) 0 0
\(652\) −1.00000 + 1.73205i −0.0391630 + 0.0678323i
\(653\) 3.00000 0.117399 0.0586995 0.998276i \(-0.481305\pi\)
0.0586995 + 0.998276i \(0.481305\pi\)
\(654\) 0 0
\(655\) −36.0000 −1.40664
\(656\) 3.00000 + 5.19615i 0.117130 + 0.202876i
\(657\) 0 0
\(658\) −3.00000 15.5885i −0.116952 0.607701i
\(659\) −10.5000 18.1865i −0.409022 0.708447i 0.585758 0.810486i \(-0.300797\pi\)
−0.994780 + 0.102039i \(0.967463\pi\)
\(660\) 0 0
\(661\) −16.0000 27.7128i −0.622328 1.07790i −0.989051 0.147573i \(-0.952854\pi\)
0.366723 0.930330i \(-0.380480\pi\)
\(662\) −1.00000 1.73205i −0.0388661 0.0673181i
\(663\) 0 0
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) 6.00000 + 31.1769i 0.232670 + 1.20899i
\(666\) 0 0
\(667\) 9.00000 + 15.5885i 0.348481 + 0.603587i
\(668\) 6.00000 0.232147
\(669\) 0 0
\(670\) −30.0000 −1.15900
\(671\) 0 0
\(672\) 0 0
\(673\) 21.5000 + 37.2391i 0.828764 + 1.43546i 0.899008 + 0.437932i \(0.144289\pi\)
−0.0702442 + 0.997530i \(0.522378\pi\)
\(674\) 3.50000 + 6.06218i 0.134815 + 0.233506i
\(675\) 0 0
\(676\) −1.50000 + 2.59808i −0.0576923 + 0.0999260i
\(677\) 10.5000 18.1865i 0.403548 0.698965i −0.590603 0.806962i \(-0.701110\pi\)
0.994151 + 0.107997i \(0.0344436\pi\)
\(678\) 0 0
\(679\) 5.00000 + 25.9808i 0.191882 + 0.997050i
\(680\) −9.00000 + 15.5885i −0.345134 + 0.597790i
\(681\) 0 0
\(682\) 0 0
\(683\) 4.50000 7.79423i 0.172188 0.298238i −0.766997 0.641651i \(-0.778250\pi\)
0.939184 + 0.343413i \(0.111583\pi\)
\(684\) 0 0
\(685\) 36.0000 1.37549
\(686\) −18.5000 + 0.866025i −0.706333 + 0.0330650i
\(687\) 0 0
\(688\) 8.00000 0.304997
\(689\) 18.0000 + 31.1769i 0.685745 + 1.18775i
\(690\) 0 0
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) −9.00000 −0.342129
\(693\) 0 0
\(694\) 33.0000 1.25266
\(695\) −3.00000 + 5.19615i −0.113796 + 0.197101i
\(696\) 0 0
\(697\) 18.0000 + 31.1769i 0.681799 + 1.18091i
\(698\) −10.0000 −0.378506
\(699\) 0 0
\(700\) −2.00000 10.3923i −0.0755929 0.392792i
\(701\) −39.0000 −1.47301 −0.736505 0.676432i \(-0.763525\pi\)
−0.736505 + 0.676432i \(0.763525\pi\)
\(702\) 0 0
\(703\) 16.0000 27.7128i 0.603451 1.04521i
\(704\) 0 0
\(705\) 0 0
\(706\) 15.0000 25.9808i 0.564532 0.977799i
\(707\) −37.5000 12.9904i −1.41033 0.488554i
\(708\) 0 0
\(709\) −4.00000 + 6.92820i −0.150223 + 0.260194i −0.931309 0.364229i \(-0.881333\pi\)
0.781086 + 0.624423i \(0.214666\pi\)
\(710\) −9.00000 + 15.5885i −0.337764 + 0.585024i
\(711\) 0 0
\(712\) −3.00000 5.19615i −0.112430 0.194734i
\(713\) −24.0000 41.5692i −0.898807 1.55678i
\(714\) 0 0
\(715\) 0 0
\(716\) −15.0000 −0.560576
\(717\) 0 0
\(718\) 36.0000 1.34351
\(719\) 12.0000 + 20.7846i 0.447524 + 0.775135i 0.998224 0.0595683i \(-0.0189724\pi\)
−0.550700 + 0.834703i \(0.685639\pi\)
\(720\) 0 0
\(721\) 20.0000 + 6.92820i 0.744839 + 0.258020i
\(722\) 1.50000 + 2.59808i 0.0558242 + 0.0966904i
\(723\) 0 0
\(724\) 5.00000 + 8.66025i 0.185824 + 0.321856i
\(725\) 6.00000 + 10.3923i 0.222834 + 0.385961i
\(726\) 0 0
\(727\) −11.5000 19.9186i −0.426511 0.738739i 0.570049 0.821611i \(-0.306924\pi\)
−0.996560 + 0.0828714i \(0.973591\pi\)
\(728\) 8.00000 6.92820i 0.296500 0.256776i
\(729\) 0 0
\(730\) 10.5000 + 18.1865i 0.388622 + 0.673114i
\(731\) 48.0000 1.77534
\(732\) 0 0
\(733\) 44.0000 1.62518 0.812589 0.582838i \(-0.198058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(734\) 9.50000 16.4545i 0.350651 0.607346i
\(735\) 0 0
\(736\) −3.00000 5.19615i −0.110581 0.191533i
\(737\) 0 0
\(738\) 0 0
\(739\) −7.00000 + 12.1244i −0.257499 + 0.446002i −0.965571 0.260138i \(-0.916232\pi\)
0.708072 + 0.706140i \(0.249565\pi\)
\(740\) −12.0000 + 20.7846i −0.441129 + 0.764057i
\(741\) 0 0
\(742\) −4.50000 23.3827i −0.165200 0.858405i
\(743\) −12.0000 + 20.7846i −0.440237 + 0.762513i −0.997707 0.0676840i \(-0.978439\pi\)
0.557470 + 0.830197i \(0.311772\pi\)
\(744\) 0 0
\(745\) −63.0000 −2.30814
\(746\) 5.00000 8.66025i 0.183063 0.317074i
\(747\) 0 0
\(748\) 0 0
\(749\) 1.50000 + 7.79423i 0.0548088 + 0.284795i
\(750\) 0 0
\(751\) −43.0000 −1.56909 −0.784546 0.620070i \(-0.787104\pi\)
−0.784546 + 0.620070i \(0.787104\pi\)
\(752\) −3.00000 5.19615i −0.109399 0.189484i
\(753\) 0 0
\(754\) −6.00000 + 10.3923i −0.218507 + 0.378465i
\(755\) 24.0000 0.873449
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 5.00000 8.66025i 0.181608 0.314555i
\(759\) 0 0
\(760\) 6.00000 + 10.3923i 0.217643 + 0.376969i
\(761\) 48.0000 1.74000 0.869999 0.493053i \(-0.164119\pi\)
0.869999 + 0.493053i \(0.164119\pi\)
\(762\) 0 0
\(763\) 8.00000 6.92820i 0.289619 0.250818i
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) −3.00000 + 5.19615i −0.108394 + 0.187745i
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) −13.0000 + 22.5167i −0.468792 + 0.811972i −0.999364 0.0356685i \(-0.988644\pi\)
0.530572 + 0.847640i \(0.321977\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13.0000 + 22.5167i −0.467880 + 0.810392i
\(773\) 9.00000 15.5885i 0.323708 0.560678i −0.657542 0.753418i \(-0.728404\pi\)
0.981250 + 0.192740i \(0.0617373\pi\)
\(774\) 0 0
\(775\) −16.0000 27.7128i −0.574737 0.995474i
\(776\) 5.00000 + 8.66025i 0.179490 + 0.310885i
\(777\) 0 0
\(778\) 4.50000 7.79423i 0.161333 0.279437i
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) −18.0000 31.1769i −0.643679 1.11488i
\(783\) 0 0
\(784\) −6.50000 + 2.59808i −0.232143 + 0.0927884i
\(785\) −21.0000 36.3731i −0.749522 1.29821i
\(786\) 0 0
\(787\) 11.0000 + 19.0526i 0.392108 + 0.679150i 0.992727 0.120384i \(-0.0384127\pi\)
−0.600620 + 0.799535i \(0.705079\pi\)
\(788\) 7.50000 + 12.9904i 0.267176 + 0.462763i
\(789\) 0 0
\(790\) −25.5000 44.1673i −0.907249 1.57140i
\(791\) 12.0000 10.3923i 0.426671 0.369508i
\(792\) 0 0
\(793\) −20.0000 34.6410i −0.710221 1.23014i
\(794\) 32.0000 1.13564
\(795\) 0 0
\(796\) 11.0000 0.389885
\(797\) −9.00000 + 15.5885i −0.318796 + 0.552171i −0.980237 0.197826i \(-0.936612\pi\)
0.661441 + 0.749997i \(0.269945\pi\)
\(798\) 0 0
\(799\) −18.0000 31.1769i −0.636794 1.10296i
\(800\) −2.00000 3.46410i −0.0707107 0.122474i
\(801\) 0 0
\(802\) 9.00000 15.5885i 0.317801 0.550448i
\(803\) 0 0
\(804\) 0 0
\(805\) 45.0000 + 15.5885i 1.58604 + 0.549421i
\(806\) 16.0000 27.7128i 0.563576 0.976142i
\(807\) 0 0
\(808\) −15.0000 −0.527698
\(809\) −12.0000 + 20.7846i −0.421898 + 0.730748i −0.996125 0.0879478i \(-0.971969\pi\)
0.574228 + 0.818696i \(0.305302\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 6.00000 5.19615i 0.210559 0.182349i
\(813\) 0 0
\(814\) 0 0
\(815\) −3.00000 5.19615i −0.105085 0.182013i
\(816\) 0 0
\(817\) 16.0000 27.7128i 0.559769 0.969549i
\(818\) −25.0000 −0.874105
\(819\) 0 0
\(820\) −18.0000 −0.628587
\(821\) −10.5000 + 18.1865i −0.366453 + 0.634714i −0.989008 0.147861i \(-0.952761\pi\)
0.622556 + 0.782576i \(0.286094\pi\)
\(822\) 0 0
\(823\) −11.5000 19.9186i −0.400865 0.694318i 0.592966 0.805228i \(-0.297957\pi\)
−0.993831 + 0.110910i \(0.964624\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −7.50000 2.59808i −0.260958 0.0903986i
\(827\) 21.0000 0.730242 0.365121 0.930960i \(-0.381028\pi\)
0.365121 + 0.930960i \(0.381028\pi\)
\(828\) 0 0
\(829\) −16.0000 + 27.7128i −0.555703 + 0.962506i 0.442145 + 0.896943i \(0.354217\pi\)
−0.997848 + 0.0655624i \(0.979116\pi\)
\(830\) −36.0000 −1.24958
\(831\) 0 0
\(832\) 2.00000 3.46410i 0.0693375 0.120096i
\(833\) −39.0000 + 15.5885i −1.35127 + 0.540108i
\(834\) 0 0
\(835\) −9.00000 + 15.5885i −0.311458 + 0.539461i
\(836\) 0 0
\(837\) 0 0
\(838\) −6.00000 10.3923i −0.207267 0.358996i
\(839\) 12.0000 + 20.7846i 0.414286 + 0.717564i 0.995353 0.0962912i \(-0.0306980\pi\)
−0.581067 + 0.813856i \(0.697365\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 32.0000 1.10279
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) −4.50000 7.79423i −0.154805 0.268130i
\(846\) 0 0
\(847\) −27.5000 9.52628i −0.944911 0.327327i
\(848\) −4.50000 7.79423i −0.154531 0.267655i
\(849\) 0 0
\(850\) −12.0000 20.7846i −0.411597 0.712906i
\(851\) −24.0000 41.5692i −0.822709 1.42497i
\(852\) 0 0
\(853\) −22.0000 38.1051i −0.753266 1.30469i −0.946232 0.323489i \(-0.895144\pi\)
0.192966 0.981205i \(-0.438189\pi\)
\(854\) 5.00000 + 25.9808i 0.171096 + 0.889043i
\(855\) 0 0
\(856\) 1.50000 + 2.59808i 0.0512689 + 0.0888004i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) −12.0000 + 20.7846i −0.409197 + 0.708749i
\(861\) 0 0
\(862\) −6.00000 10.3923i −0.204361 0.353963i
\(863\) −21.0000 36.3731i −0.714848 1.23815i −0.963018 0.269437i \(-0.913162\pi\)
0.248170 0.968717i \(-0.420171\pi\)
\(864\) 0 0
\(865\) 13.5000 23.3827i 0.459014 0.795035i
\(866\) 3.50000 6.06218i 0.118935 0.206001i
\(867\) 0 0
\(868\) −16.0000 + 13.8564i −0.543075 + 0.470317i
\(869\) 0 0
\(870\) 0 0
\(871\) 40.0000 1.35535
\(872\) 2.00000 3.46410i 0.0677285 0.117309i
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) −7.50000 2.59808i −0.253546 0.0878310i
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) −4.00000 6.92820i −0.134993 0.233816i
\(879\) 0 0
\(880\) 0 0
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 32.0000 1.07689 0.538443 0.842662i \(-0.319013\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(884\) 12.0000 20.7846i 0.403604 0.699062i
\(885\) 0 0
\(886\) 19.5000 + 33.7750i 0.655115 + 1.13469i
\(887\) −42.0000 −1.41022 −0.705111 0.709097i \(-0.749103\pi\)
−0.705111 + 0.709097i \(0.749103\pi\)
\(888\) 0 0
\(889\) 12.5000 + 4.33013i 0.419237 + 0.145228i
\(890\) 18.0000 0.603361
\(891\) 0 0
\(892\) 0.500000 0.866025i 0.0167412 0.0289967i
\(893\) −24.0000 −0.803129
\(894\) 0 0
\(895\) 22.5000 38.9711i 0.752092 1.30266i
\(896\) −2.00000 + 1.73205i −0.0668153 + 0.0578638i
\(897\) 0 0
\(898\) −3.00000 + 5.19615i −0.100111 + 0.173398i
\(899\) 12.0000 20.7846i 0.400222 0.693206i
\(900\) 0 0
\(901\) −27.0000 46.7654i −0.899500 1.55798i
\(902\) 0 0
\(903\) 0 0
\(904\) 3.00000 5.19615i 0.0997785 0.172821i
\(905\) −30.0000 −0.997234
\(906\) 0 0
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) −1.50000 2.59808i −0.0497792 0.0862202i
\(909\) 0 0
\(910\) 6.00000 + 31.1769i 0.198898 + 1.03350i
\(911\) 27.0000 + 46.7654i 0.894550 + 1.54941i 0.834361 + 0.551219i \(0.185837\pi\)
0.0601892 + 0.998187i \(0.480830\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.500000 + 0.866025i 0.0165385 + 0.0286456i
\(915\) 0 0
\(916\) −7.00000 12.1244i −0.231287 0.400600i
\(917\) −30.0000 10.3923i −0.990687 0.343184i
\(918\) 0 0
\(919\) 18.5000 + 32.0429i 0.610259 + 1.05700i 0.991197 + 0.132398i \(0.0422678\pi\)
−0.380938 + 0.924601i \(0.624399\pi\)
\(920\) 18.0000 0.593442
\(921\) 0 0
\(922\) −33.0000 −1.08680
\(923\) 12.0000 20.7846i 0.394985 0.684134i
\(924\) 0 0
\(925\) −16.0000 27.7128i −0.526077 0.911192i
\(926\) 9.50000 + 16.4545i 0.312189 + 0.540728i
\(927\) 0 0
\(928\) 1.50000 2.59808i 0.0492399 0.0852860i
\(929\) −3.00000 + 5.19615i −0.0984268 + 0.170480i −0.911034 0.412332i \(-0.864714\pi\)
0.812607 + 0.582812i \(0.198048\pi\)
\(930\) 0 0
\(931\) −4.00000 + 27.7128i −0.131095 + 0.908251i
\(932\) −9.00000 + 15.5885i −0.294805 + 0.510617i
\(933\) 0 0
\(934\) −33.0000 −1.07979
\(935\) 0 0
\(936\) 0 0
\(937\) −1.00000 −0.0326686 −0.0163343 0.999867i \(-0.505200\pi\)
−0.0163343 + 0.999867i \(0.505200\pi\)
\(938\) −25.0000 8.66025i −0.816279 0.282767i
\(939\) 0 0
\(940\) 18.0000 0.587095
\(941\) −9.00000 15.5885i −0.293392 0.508169i 0.681218 0.732081i \(-0.261451\pi\)
−0.974609 + 0.223912i \(0.928117\pi\)
\(942\) 0 0
\(943\) 18.0000 31.1769i 0.586161 1.01526i
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 0 0
\(947\) −22.5000 + 38.9711i −0.731152 + 1.26639i 0.225240 + 0.974303i \(0.427684\pi\)
−0.956391 + 0.292089i \(0.905650\pi\)
\(948\) 0 0
\(949\) −14.0000 24.2487i −0.454459 0.787146i
\(950\) −16.0000 −0.519109
\(951\) 0 0
\(952\) −12.0000 + 10.3923i −0.388922 + 0.336817i
\(953\) −48.0000 −1.55487 −0.777436 0.628962i \(-0.783480\pi\)
−0.777436 + 0.628962i \(0.783480\pi\)
\(954\) 0 0
\(955\) 27.0000 46.7654i 0.873699 1.51329i
\(956\) 0 0
\(957\) 0 0
\(958\) 12.0000 20.7846i 0.387702 0.671520i
\(959\) 30.0000 + 10.3923i 0.968751 + 0.335585i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 16.0000 27.7128i 0.515861 0.893497i
\(963\) 0 0
\(964\) 0.500000 + 0.866025i 0.0161039 + 0.0278928i
\(965\) −39.0000 67.5500i −1.25545 2.17451i
\(966\) 0 0
\(967\) 18.5000 32.0429i 0.594920 1.03043i −0.398638 0.917108i \(-0.630517\pi\)
0.993558 0.113323i \(-0.0361496\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) −30.0000 −0.963242
\(971\) 1.50000 + 2.59808i 0.0481373 + 0.0833762i 0.889090 0.457732i \(-0.151338\pi\)
−0.840953 + 0.541108i \(0.818005\pi\)
\(972\) 0 0
\(973\) −4.00000 + 3.46410i −0.128234 + 0.111054i
\(974\) 6.50000 + 11.2583i 0.208273 + 0.360740i
\(975\) 0 0
\(976\) 5.00000 + 8.66025i 0.160046 + 0.277208i
\(977\) −6.00000 10.3923i −0.191957 0.332479i 0.753942 0.656941i \(-0.228150\pi\)
−0.945899 + 0.324462i \(0.894817\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 3.00000 20.7846i 0.0958315 0.663940i
\(981\) 0 0
\(982\) −13.5000 23.3827i −0.430802 0.746171i
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) −45.0000 −1.43382
\(986\) 9.00000 15.5885i 0.286618 0.496438i
\(987\) 0 0
\(988\) −8.00000 13.8564i −0.254514 0.440831i
\(989\) −24.0000 41.5692i −0.763156 1.32182i
\(990\) 0 0
\(991\) −11.5000 + 19.9186i −0.365310 + 0.632735i −0.988826 0.149076i \(-0.952370\pi\)
0.623516 + 0.781810i \(0.285704\pi\)
\(992\) −4.00000 + 6.92820i −0.127000 + 0.219971i
\(993\) 0 0
\(994\) −12.0000 + 10.3923i −0.380617 + 0.329624i
\(995\) −16.5000 + 28.5788i −0.523085 + 0.906010i
\(996\) 0 0
\(997\) 32.0000 1.01345 0.506725 0.862108i \(-0.330856\pi\)
0.506725 + 0.862108i \(0.330856\pi\)
\(998\) −1.00000 + 1.73205i −0.0316544 + 0.0548271i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.h.g.109.1 2
3.2 odd 2 1134.2.h.k.109.1 2
7.2 even 3 1134.2.e.j.919.1 2
9.2 odd 6 1134.2.e.f.865.1 2
9.4 even 3 378.2.g.a.109.1 2
9.5 odd 6 378.2.g.f.109.1 yes 2
9.7 even 3 1134.2.e.j.865.1 2
21.2 odd 6 1134.2.e.f.919.1 2
63.2 odd 6 1134.2.h.k.541.1 2
63.4 even 3 2646.2.a.bc.1.1 1
63.16 even 3 inner 1134.2.h.g.541.1 2
63.23 odd 6 378.2.g.f.163.1 yes 2
63.31 odd 6 2646.2.a.r.1.1 1
63.32 odd 6 2646.2.a.b.1.1 1
63.58 even 3 378.2.g.a.163.1 yes 2
63.59 even 6 2646.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
378.2.g.a.109.1 2 9.4 even 3
378.2.g.a.163.1 yes 2 63.58 even 3
378.2.g.f.109.1 yes 2 9.5 odd 6
378.2.g.f.163.1 yes 2 63.23 odd 6
1134.2.e.f.865.1 2 9.2 odd 6
1134.2.e.f.919.1 2 21.2 odd 6
1134.2.e.j.865.1 2 9.7 even 3
1134.2.e.j.919.1 2 7.2 even 3
1134.2.h.g.109.1 2 1.1 even 1 trivial
1134.2.h.g.541.1 2 63.16 even 3 inner
1134.2.h.k.109.1 2 3.2 odd 2
1134.2.h.k.541.1 2 63.2 odd 6
2646.2.a.b.1.1 1 63.32 odd 6
2646.2.a.m.1.1 1 63.59 even 6
2646.2.a.r.1.1 1 63.31 odd 6
2646.2.a.bc.1.1 1 63.4 even 3