Properties

Label 1134.2.h.c
Level $1134$
Weight $2$
Character orbit 1134.h
Analytic conductor $9.055$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + ( -3 + 2 \zeta_{6} ) q^{7} + q^{8} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + ( -3 + 2 \zeta_{6} ) q^{7} + q^{8} + ( 4 - 4 \zeta_{6} ) q^{13} + ( 1 - 3 \zeta_{6} ) q^{14} + ( -1 + \zeta_{6} ) q^{16} + ( -6 + 6 \zeta_{6} ) q^{17} -2 \zeta_{6} q^{19} -3 q^{23} -5 q^{25} + 4 \zeta_{6} q^{26} + ( 2 + \zeta_{6} ) q^{28} + 6 \zeta_{6} q^{29} -5 \zeta_{6} q^{31} -\zeta_{6} q^{32} -6 \zeta_{6} q^{34} -8 \zeta_{6} q^{37} + 2 q^{38} + ( -3 + 3 \zeta_{6} ) q^{41} -2 \zeta_{6} q^{43} + ( 3 - 3 \zeta_{6} ) q^{46} + ( 3 - 3 \zeta_{6} ) q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + ( 5 - 5 \zeta_{6} ) q^{50} -4 q^{52} + ( -6 + 6 \zeta_{6} ) q^{53} + ( -3 + 2 \zeta_{6} ) q^{56} -6 q^{58} -12 \zeta_{6} q^{59} + ( -8 + 8 \zeta_{6} ) q^{61} + 5 q^{62} + q^{64} -8 \zeta_{6} q^{67} + 6 q^{68} -15 q^{71} + ( -11 + 11 \zeta_{6} ) q^{73} + 8 q^{74} + ( -2 + 2 \zeta_{6} ) q^{76} + ( 1 - \zeta_{6} ) q^{79} -3 \zeta_{6} q^{82} + 2 q^{86} -9 \zeta_{6} q^{89} + ( -4 + 12 \zeta_{6} ) q^{91} + 3 \zeta_{6} q^{92} + 3 \zeta_{6} q^{94} -2 \zeta_{6} q^{97} + ( 3 + 5 \zeta_{6} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{4} - 4q^{7} + 2q^{8} + O(q^{10}) \) \( 2q - q^{2} - q^{4} - 4q^{7} + 2q^{8} + 4q^{13} - q^{14} - q^{16} - 6q^{17} - 2q^{19} - 6q^{23} - 10q^{25} + 4q^{26} + 5q^{28} + 6q^{29} - 5q^{31} - q^{32} - 6q^{34} - 8q^{37} + 4q^{38} - 3q^{41} - 2q^{43} + 3q^{46} + 3q^{47} + 2q^{49} + 5q^{50} - 8q^{52} - 6q^{53} - 4q^{56} - 12q^{58} - 12q^{59} - 8q^{61} + 10q^{62} + 2q^{64} - 8q^{67} + 12q^{68} - 30q^{71} - 11q^{73} + 16q^{74} - 2q^{76} + q^{79} - 3q^{82} + 4q^{86} - 9q^{89} + 4q^{91} + 3q^{92} + 3q^{94} - 2q^{97} + 11q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(-\zeta_{6}\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 −2.00000 + 1.73205i 1.00000 0 0
541.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 −2.00000 1.73205i 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.h.c 2
3.b odd 2 1 1134.2.h.m 2
7.c even 3 1 1134.2.e.n 2
9.c even 3 1 1134.2.e.n 2
9.c even 3 1 1134.2.g.b 2
9.d odd 6 1 1134.2.e.d 2
9.d odd 6 1 1134.2.g.g yes 2
21.h odd 6 1 1134.2.e.d 2
63.g even 3 1 inner 1134.2.h.c 2
63.g even 3 1 7938.2.a.y 1
63.h even 3 1 1134.2.g.b 2
63.j odd 6 1 1134.2.g.g yes 2
63.k odd 6 1 7938.2.a.z 1
63.n odd 6 1 1134.2.h.m 2
63.n odd 6 1 7938.2.a.g 1
63.s even 6 1 7938.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1134.2.e.d 2 9.d odd 6 1
1134.2.e.d 2 21.h odd 6 1
1134.2.e.n 2 7.c even 3 1
1134.2.e.n 2 9.c even 3 1
1134.2.g.b 2 9.c even 3 1
1134.2.g.b 2 63.h even 3 1
1134.2.g.g yes 2 9.d odd 6 1
1134.2.g.g yes 2 63.j odd 6 1
1134.2.h.c 2 1.a even 1 1 trivial
1134.2.h.c 2 63.g even 3 1 inner
1134.2.h.m 2 3.b odd 2 1
1134.2.h.m 2 63.n odd 6 1
7938.2.a.g 1 63.n odd 6 1
7938.2.a.h 1 63.s even 6 1
7938.2.a.y 1 63.g even 3 1
7938.2.a.z 1 63.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5} \)
\( T_{11} \)
\( T_{17}^{2} + 6 T_{17} + 36 \)
\( T_{23} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 7 + 4 T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 16 - 4 T + T^{2} \)
$17$ \( 36 + 6 T + T^{2} \)
$19$ \( 4 + 2 T + T^{2} \)
$23$ \( ( 3 + T )^{2} \)
$29$ \( 36 - 6 T + T^{2} \)
$31$ \( 25 + 5 T + T^{2} \)
$37$ \( 64 + 8 T + T^{2} \)
$41$ \( 9 + 3 T + T^{2} \)
$43$ \( 4 + 2 T + T^{2} \)
$47$ \( 9 - 3 T + T^{2} \)
$53$ \( 36 + 6 T + T^{2} \)
$59$ \( 144 + 12 T + T^{2} \)
$61$ \( 64 + 8 T + T^{2} \)
$67$ \( 64 + 8 T + T^{2} \)
$71$ \( ( 15 + T )^{2} \)
$73$ \( 121 + 11 T + T^{2} \)
$79$ \( 1 - T + T^{2} \)
$83$ \( T^{2} \)
$89$ \( 81 + 9 T + T^{2} \)
$97$ \( 4 + 2 T + T^{2} \)
show more
show less