Properties

Label 1134.2.g.m.163.1
Level $1134$
Weight $2$
Character 1134.163
Analytic conductor $9.055$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(163,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 1134.163
Dual form 1134.2.g.m.487.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.794182 + 1.37556i) q^{5} +(1.40545 + 2.24159i) q^{7} -1.00000 q^{8} +(0.794182 + 1.37556i) q^{10} +(0.794182 + 1.37556i) q^{11} -4.81089 q^{13} +(2.64400 - 0.0963576i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-2.69963 - 4.67589i) q^{17} +(-3.54944 + 6.14781i) q^{19} +1.58836 q^{20} +1.58836 q^{22} +(-0.150186 + 0.260130i) q^{23} +(1.23855 + 2.14523i) q^{25} +(-2.40545 + 4.16635i) q^{26} +(1.23855 - 2.33795i) q^{28} -8.27561 q^{29} +(1.35600 + 2.34867i) q^{31} +(0.500000 + 0.866025i) q^{32} -5.39926 q^{34} +(-4.19963 + 0.153051i) q^{35} +(0.500000 - 0.866025i) q^{37} +(3.54944 + 6.14781i) q^{38} +(0.794182 - 1.37556i) q^{40} -5.87636 q^{41} +1.66621 q^{43} +(0.794182 - 1.37556i) q^{44} +(0.150186 + 0.260130i) q^{46} +(-1.33310 + 2.30900i) q^{47} +(-3.04944 + 6.30087i) q^{49} +2.47710 q^{50} +(2.40545 + 4.16635i) q^{52} +(2.44437 + 4.23377i) q^{53} -2.52290 q^{55} +(-1.40545 - 2.24159i) q^{56} +(-4.13781 + 7.16689i) q^{58} +(-3.23855 - 5.60933i) q^{59} +(2.23855 - 3.87728i) q^{61} +2.71201 q^{62} +1.00000 q^{64} +(3.82072 - 6.61769i) q^{65} +(5.02654 + 8.70623i) q^{67} +(-2.69963 + 4.67589i) q^{68} +(-1.96727 + 3.71351i) q^{70} +12.7207 q^{71} +(8.02654 + 13.9024i) q^{73} +(-0.500000 - 0.866025i) q^{74} +7.09888 q^{76} +(-1.96727 + 3.71351i) q^{77} +(-4.19344 + 7.26325i) q^{79} +(-0.794182 - 1.37556i) q^{80} +(-2.93818 + 5.08907i) q^{82} -2.36584 q^{83} +8.57598 q^{85} +(0.833104 - 1.44298i) q^{86} +(-0.794182 - 1.37556i) q^{88} +(1.60507 - 2.78007i) q^{89} +(-6.76145 - 10.7840i) q^{91} +0.300372 q^{92} +(1.33310 + 2.30900i) q^{94} +(-5.63781 - 9.76497i) q^{95} -1.42402 q^{97} +(3.93199 + 5.79133i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} + q^{5} + 2 q^{7} - 6 q^{8} - q^{10} - q^{11} - 16 q^{13} + 4 q^{14} - 3 q^{16} - 4 q^{17} - 3 q^{19} - 2 q^{20} - 2 q^{22} - 7 q^{23} + 2 q^{25} - 8 q^{26} + 2 q^{28} + 10 q^{29}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.794182 + 1.37556i −0.355169 + 0.615171i −0.987147 0.159816i \(-0.948910\pi\)
0.631978 + 0.774986i \(0.282243\pi\)
\(6\) 0 0
\(7\) 1.40545 + 2.24159i 0.531209 + 0.847241i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.794182 + 1.37556i 0.251142 + 0.434991i
\(11\) 0.794182 + 1.37556i 0.239455 + 0.414748i 0.960558 0.278080i \(-0.0896979\pi\)
−0.721103 + 0.692828i \(0.756365\pi\)
\(12\) 0 0
\(13\) −4.81089 −1.33430 −0.667151 0.744923i \(-0.732486\pi\)
−0.667151 + 0.744923i \(0.732486\pi\)
\(14\) 2.64400 0.0963576i 0.706638 0.0257526i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.69963 4.67589i −0.654756 1.13407i −0.981955 0.189115i \(-0.939438\pi\)
0.327199 0.944955i \(-0.393895\pi\)
\(18\) 0 0
\(19\) −3.54944 + 6.14781i −0.814298 + 1.41041i 0.0955331 + 0.995426i \(0.469544\pi\)
−0.909831 + 0.414979i \(0.863789\pi\)
\(20\) 1.58836 0.355169
\(21\) 0 0
\(22\) 1.58836 0.338640
\(23\) −0.150186 + 0.260130i −0.0313159 + 0.0542408i −0.881259 0.472634i \(-0.843303\pi\)
0.849943 + 0.526875i \(0.176636\pi\)
\(24\) 0 0
\(25\) 1.23855 + 2.14523i 0.247710 + 0.429046i
\(26\) −2.40545 + 4.16635i −0.471747 + 0.817089i
\(27\) 0 0
\(28\) 1.23855 2.33795i 0.234064 0.441830i
\(29\) −8.27561 −1.53674 −0.768371 0.640004i \(-0.778933\pi\)
−0.768371 + 0.640004i \(0.778933\pi\)
\(30\) 0 0
\(31\) 1.35600 + 2.34867i 0.243545 + 0.421833i 0.961722 0.274028i \(-0.0883561\pi\)
−0.718176 + 0.695861i \(0.755023\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −5.39926 −0.925965
\(35\) −4.19963 + 0.153051i −0.709867 + 0.0258703i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 3.54944 + 6.14781i 0.575796 + 0.997307i
\(39\) 0 0
\(40\) 0.794182 1.37556i 0.125571 0.217496i
\(41\) −5.87636 −0.917733 −0.458866 0.888505i \(-0.651744\pi\)
−0.458866 + 0.888505i \(0.651744\pi\)
\(42\) 0 0
\(43\) 1.66621 0.254094 0.127047 0.991897i \(-0.459450\pi\)
0.127047 + 0.991897i \(0.459450\pi\)
\(44\) 0.794182 1.37556i 0.119727 0.207374i
\(45\) 0 0
\(46\) 0.150186 + 0.260130i 0.0221437 + 0.0383540i
\(47\) −1.33310 + 2.30900i −0.194453 + 0.336803i −0.946721 0.322055i \(-0.895627\pi\)
0.752268 + 0.658857i \(0.228960\pi\)
\(48\) 0 0
\(49\) −3.04944 + 6.30087i −0.435635 + 0.900124i
\(50\) 2.47710 0.350315
\(51\) 0 0
\(52\) 2.40545 + 4.16635i 0.333575 + 0.577769i
\(53\) 2.44437 + 4.23377i 0.335760 + 0.581553i 0.983630 0.180197i \(-0.0576736\pi\)
−0.647871 + 0.761750i \(0.724340\pi\)
\(54\) 0 0
\(55\) −2.52290 −0.340188
\(56\) −1.40545 2.24159i −0.187811 0.299545i
\(57\) 0 0
\(58\) −4.13781 + 7.16689i −0.543321 + 0.941059i
\(59\) −3.23855 5.60933i −0.421623 0.730273i 0.574475 0.818522i \(-0.305206\pi\)
−0.996098 + 0.0882491i \(0.971873\pi\)
\(60\) 0 0
\(61\) 2.23855 3.87728i 0.286617 0.496435i −0.686383 0.727240i \(-0.740803\pi\)
0.973000 + 0.230805i \(0.0741360\pi\)
\(62\) 2.71201 0.344425
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.82072 6.61769i 0.473902 0.820823i
\(66\) 0 0
\(67\) 5.02654 + 8.70623i 0.614090 + 1.06363i 0.990543 + 0.137199i \(0.0438101\pi\)
−0.376454 + 0.926435i \(0.622857\pi\)
\(68\) −2.69963 + 4.67589i −0.327378 + 0.567035i
\(69\) 0 0
\(70\) −1.96727 + 3.71351i −0.235134 + 0.443849i
\(71\) 12.7207 1.50967 0.754833 0.655917i \(-0.227718\pi\)
0.754833 + 0.655917i \(0.227718\pi\)
\(72\) 0 0
\(73\) 8.02654 + 13.9024i 0.939436 + 1.62715i 0.766527 + 0.642213i \(0.221983\pi\)
0.172909 + 0.984938i \(0.444683\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) 0 0
\(76\) 7.09888 0.814298
\(77\) −1.96727 + 3.71351i −0.224191 + 0.423194i
\(78\) 0 0
\(79\) −4.19344 + 7.26325i −0.471799 + 0.817179i −0.999479 0.0322635i \(-0.989728\pi\)
0.527681 + 0.849443i \(0.323062\pi\)
\(80\) −0.794182 1.37556i −0.0887922 0.153793i
\(81\) 0 0
\(82\) −2.93818 + 5.08907i −0.324467 + 0.561994i
\(83\) −2.36584 −0.259684 −0.129842 0.991535i \(-0.541447\pi\)
−0.129842 + 0.991535i \(0.541447\pi\)
\(84\) 0 0
\(85\) 8.57598 0.930196
\(86\) 0.833104 1.44298i 0.0898359 0.155600i
\(87\) 0 0
\(88\) −0.794182 1.37556i −0.0846601 0.146636i
\(89\) 1.60507 2.78007i 0.170138 0.294687i −0.768330 0.640054i \(-0.778912\pi\)
0.938468 + 0.345367i \(0.112245\pi\)
\(90\) 0 0
\(91\) −6.76145 10.7840i −0.708793 1.13047i
\(92\) 0.300372 0.0313159
\(93\) 0 0
\(94\) 1.33310 + 2.30900i 0.137499 + 0.238156i
\(95\) −5.63781 9.76497i −0.578427 1.00186i
\(96\) 0 0
\(97\) −1.42402 −0.144587 −0.0722934 0.997383i \(-0.523032\pi\)
−0.0722934 + 0.997383i \(0.523032\pi\)
\(98\) 3.93199 + 5.79133i 0.397191 + 0.585012i
\(99\) 0 0
\(100\) 1.23855 2.14523i 0.123855 0.214523i
\(101\) −6.01671 10.4212i −0.598685 1.03695i −0.993015 0.117984i \(-0.962357\pi\)
0.394330 0.918969i \(-0.370977\pi\)
\(102\) 0 0
\(103\) 3.04944 5.28179i 0.300470 0.520430i −0.675772 0.737111i \(-0.736190\pi\)
0.976243 + 0.216680i \(0.0695230\pi\)
\(104\) 4.81089 0.471747
\(105\) 0 0
\(106\) 4.88874 0.474836
\(107\) −1.54325 + 2.67299i −0.149192 + 0.258408i −0.930929 0.365200i \(-0.881001\pi\)
0.781737 + 0.623608i \(0.214334\pi\)
\(108\) 0 0
\(109\) 1.14400 + 1.98146i 0.109575 + 0.189789i 0.915598 0.402095i \(-0.131718\pi\)
−0.806023 + 0.591884i \(0.798384\pi\)
\(110\) −1.26145 + 2.18490i −0.120275 + 0.208322i
\(111\) 0 0
\(112\) −2.64400 + 0.0963576i −0.249834 + 0.00910494i
\(113\) 19.4647 1.83109 0.915543 0.402219i \(-0.131761\pi\)
0.915543 + 0.402219i \(0.131761\pi\)
\(114\) 0 0
\(115\) −0.238550 0.413181i −0.0222449 0.0385293i
\(116\) 4.13781 + 7.16689i 0.384186 + 0.665429i
\(117\) 0 0
\(118\) −6.47710 −0.596265
\(119\) 6.68725 12.6232i 0.613019 1.15716i
\(120\) 0 0
\(121\) 4.23855 7.34138i 0.385323 0.667399i
\(122\) −2.23855 3.87728i −0.202669 0.351033i
\(123\) 0 0
\(124\) 1.35600 2.34867i 0.121773 0.210917i
\(125\) −11.8764 −1.06225
\(126\) 0 0
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −3.82072 6.61769i −0.335100 0.580410i
\(131\) 1.58836 2.75113i 0.138776 0.240367i −0.788258 0.615345i \(-0.789017\pi\)
0.927034 + 0.374978i \(0.122350\pi\)
\(132\) 0 0
\(133\) −18.7694 + 0.684031i −1.62752 + 0.0593130i
\(134\) 10.0531 0.868454
\(135\) 0 0
\(136\) 2.69963 + 4.67589i 0.231491 + 0.400955i
\(137\) 10.6316 + 18.4145i 0.908320 + 1.57326i 0.816397 + 0.577491i \(0.195968\pi\)
0.0919231 + 0.995766i \(0.470699\pi\)
\(138\) 0 0
\(139\) −13.0531 −1.10715 −0.553574 0.832800i \(-0.686736\pi\)
−0.553574 + 0.832800i \(0.686736\pi\)
\(140\) 2.23236 + 3.56046i 0.188669 + 0.300914i
\(141\) 0 0
\(142\) 6.36033 11.0164i 0.533747 0.924478i
\(143\) −3.82072 6.61769i −0.319505 0.553399i
\(144\) 0 0
\(145\) 6.57234 11.3836i 0.545803 0.945359i
\(146\) 16.0531 1.32856
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) −2.60439 + 4.51093i −0.213360 + 0.369550i −0.952764 0.303712i \(-0.901774\pi\)
0.739404 + 0.673262i \(0.235107\pi\)
\(150\) 0 0
\(151\) 0.261450 + 0.452845i 0.0212765 + 0.0368520i 0.876468 0.481461i \(-0.159894\pi\)
−0.855191 + 0.518313i \(0.826560\pi\)
\(152\) 3.54944 6.14781i 0.287898 0.498654i
\(153\) 0 0
\(154\) 2.23236 + 3.56046i 0.179889 + 0.286910i
\(155\) −4.30766 −0.345999
\(156\) 0 0
\(157\) −4.43199 7.67643i −0.353711 0.612646i 0.633185 0.774000i \(-0.281747\pi\)
−0.986897 + 0.161354i \(0.948414\pi\)
\(158\) 4.19344 + 7.26325i 0.333612 + 0.577833i
\(159\) 0 0
\(160\) −1.58836 −0.125571
\(161\) −0.794182 + 0.0289431i −0.0625903 + 0.00228104i
\(162\) 0 0
\(163\) 10.9814 19.0204i 0.860132 1.48979i −0.0116689 0.999932i \(-0.503714\pi\)
0.871801 0.489860i \(-0.162952\pi\)
\(164\) 2.93818 + 5.08907i 0.229433 + 0.397390i
\(165\) 0 0
\(166\) −1.18292 + 2.04887i −0.0918122 + 0.159023i
\(167\) −3.30037 −0.255390 −0.127695 0.991813i \(-0.540758\pi\)
−0.127695 + 0.991813i \(0.540758\pi\)
\(168\) 0 0
\(169\) 10.1447 0.780360
\(170\) 4.28799 7.42702i 0.328874 0.569626i
\(171\) 0 0
\(172\) −0.833104 1.44298i −0.0635236 0.110026i
\(173\) −9.55377 + 16.5476i −0.726360 + 1.25809i 0.232052 + 0.972703i \(0.425456\pi\)
−0.958412 + 0.285389i \(0.907877\pi\)
\(174\) 0 0
\(175\) −3.06801 + 5.79133i −0.231920 + 0.437783i
\(176\) −1.58836 −0.119727
\(177\) 0 0
\(178\) −1.60507 2.78007i −0.120305 0.208375i
\(179\) −8.03706 13.9206i −0.600718 1.04047i −0.992712 0.120507i \(-0.961548\pi\)
0.391994 0.919968i \(-0.371785\pi\)
\(180\) 0 0
\(181\) 8.05308 0.598581 0.299291 0.954162i \(-0.403250\pi\)
0.299291 + 0.954162i \(0.403250\pi\)
\(182\) −12.7200 + 0.463566i −0.942868 + 0.0343618i
\(183\) 0 0
\(184\) 0.150186 0.260130i 0.0110719 0.0191770i
\(185\) 0.794182 + 1.37556i 0.0583894 + 0.101133i
\(186\) 0 0
\(187\) 4.28799 7.42702i 0.313569 0.543118i
\(188\) 2.66621 0.194453
\(189\) 0 0
\(190\) −11.2756 −0.818019
\(191\) 11.9814 20.7524i 0.866946 1.50159i 0.00184390 0.999998i \(-0.499413\pi\)
0.865102 0.501596i \(-0.167254\pi\)
\(192\) 0 0
\(193\) −4.88255 8.45682i −0.351453 0.608735i 0.635051 0.772470i \(-0.280979\pi\)
−0.986504 + 0.163735i \(0.947646\pi\)
\(194\) −0.712008 + 1.23323i −0.0511192 + 0.0885410i
\(195\) 0 0
\(196\) 6.98143 0.509538i 0.498674 0.0363956i
\(197\) −18.2436 −1.29980 −0.649900 0.760020i \(-0.725189\pi\)
−0.649900 + 0.760020i \(0.725189\pi\)
\(198\) 0 0
\(199\) 9.04944 + 15.6741i 0.641498 + 1.11111i 0.985098 + 0.171991i \(0.0550200\pi\)
−0.343601 + 0.939116i \(0.611647\pi\)
\(200\) −1.23855 2.14523i −0.0875787 0.151691i
\(201\) 0 0
\(202\) −12.0334 −0.846669
\(203\) −11.6309 18.5505i −0.816331 1.30199i
\(204\) 0 0
\(205\) 4.66690 8.08330i 0.325950 0.564562i
\(206\) −3.04944 5.28179i −0.212465 0.368000i
\(207\) 0 0
\(208\) 2.40545 4.16635i 0.166788 0.288885i
\(209\) −11.2756 −0.779950
\(210\) 0 0
\(211\) −0.332415 −0.0228844 −0.0114422 0.999935i \(-0.503642\pi\)
−0.0114422 + 0.999935i \(0.503642\pi\)
\(212\) 2.44437 4.23377i 0.167880 0.290776i
\(213\) 0 0
\(214\) 1.54325 + 2.67299i 0.105495 + 0.182722i
\(215\) −1.32327 + 2.29197i −0.0902464 + 0.156311i
\(216\) 0 0
\(217\) −3.35896 + 6.34053i −0.228021 + 0.430423i
\(218\) 2.28799 0.154962
\(219\) 0 0
\(220\) 1.26145 + 2.18490i 0.0850469 + 0.147306i
\(221\) 12.9876 + 22.4952i 0.873642 + 1.51319i
\(222\) 0 0
\(223\) −6.33242 −0.424050 −0.212025 0.977264i \(-0.568006\pi\)
−0.212025 + 0.977264i \(0.568006\pi\)
\(224\) −1.23855 + 2.33795i −0.0827541 + 0.156211i
\(225\) 0 0
\(226\) 9.73236 16.8569i 0.647387 1.12131i
\(227\) 11.6545 + 20.1862i 0.773537 + 1.33981i 0.935613 + 0.353028i \(0.114848\pi\)
−0.162075 + 0.986778i \(0.551819\pi\)
\(228\) 0 0
\(229\) 2.47710 4.29046i 0.163691 0.283522i −0.772498 0.635017i \(-0.780993\pi\)
0.936190 + 0.351495i \(0.114327\pi\)
\(230\) −0.477100 −0.0314590
\(231\) 0 0
\(232\) 8.27561 0.543321
\(233\) −7.13781 + 12.3630i −0.467613 + 0.809930i −0.999315 0.0370017i \(-0.988219\pi\)
0.531702 + 0.846932i \(0.321553\pi\)
\(234\) 0 0
\(235\) −2.11745 3.66754i −0.138127 0.239244i
\(236\) −3.23855 + 5.60933i −0.210812 + 0.365136i
\(237\) 0 0
\(238\) −7.58836 12.1029i −0.491881 0.784515i
\(239\) −4.97524 −0.321822 −0.160911 0.986969i \(-0.551443\pi\)
−0.160911 + 0.986969i \(0.551443\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) −4.23855 7.34138i −0.272464 0.471922i
\(243\) 0 0
\(244\) −4.47710 −0.286617
\(245\) −6.24543 9.19874i −0.399006 0.587686i
\(246\) 0 0
\(247\) 17.0760 29.5765i 1.08652 1.88191i
\(248\) −1.35600 2.34867i −0.0861063 0.149141i
\(249\) 0 0
\(250\) −5.93818 + 10.2852i −0.375563 + 0.650495i
\(251\) 2.43268 0.153549 0.0767746 0.997048i \(-0.475538\pi\)
0.0767746 + 0.997048i \(0.475538\pi\)
\(252\) 0 0
\(253\) −0.477100 −0.0299950
\(254\) −6.71998 + 11.6393i −0.421649 + 0.730318i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.493810 0.855304i 0.0308030 0.0533524i −0.850213 0.526439i \(-0.823527\pi\)
0.881016 + 0.473087i \(0.156860\pi\)
\(258\) 0 0
\(259\) 2.64400 0.0963576i 0.164290 0.00598737i
\(260\) −7.64145 −0.473902
\(261\) 0 0
\(262\) −1.58836 2.75113i −0.0981295 0.169965i
\(263\) −8.59269 14.8830i −0.529848 0.917724i −0.999394 0.0348158i \(-0.988916\pi\)
0.469545 0.882908i \(-0.344418\pi\)
\(264\) 0 0
\(265\) −7.76509 −0.477006
\(266\) −8.79232 + 16.5968i −0.539092 + 1.01762i
\(267\) 0 0
\(268\) 5.02654 8.70623i 0.307045 0.531817i
\(269\) 11.4523 + 19.8360i 0.698262 + 1.20942i 0.969069 + 0.246791i \(0.0793761\pi\)
−0.270807 + 0.962634i \(0.587291\pi\)
\(270\) 0 0
\(271\) 7.00364 12.1307i 0.425441 0.736885i −0.571021 0.820936i \(-0.693452\pi\)
0.996462 + 0.0840504i \(0.0267857\pi\)
\(272\) 5.39926 0.327378
\(273\) 0 0
\(274\) 21.2632 1.28456
\(275\) −1.96727 + 3.40741i −0.118631 + 0.205474i
\(276\) 0 0
\(277\) −14.1476 24.5044i −0.850049 1.47233i −0.881163 0.472813i \(-0.843239\pi\)
0.0311139 0.999516i \(-0.490095\pi\)
\(278\) −6.52654 + 11.3043i −0.391436 + 0.677987i
\(279\) 0 0
\(280\) 4.19963 0.153051i 0.250976 0.00914654i
\(281\) 17.5956 1.04967 0.524834 0.851204i \(-0.324127\pi\)
0.524834 + 0.851204i \(0.324127\pi\)
\(282\) 0 0
\(283\) 9.26145 + 16.0413i 0.550536 + 0.953556i 0.998236 + 0.0593725i \(0.0189100\pi\)
−0.447700 + 0.894184i \(0.647757\pi\)
\(284\) −6.36033 11.0164i −0.377416 0.653704i
\(285\) 0 0
\(286\) −7.64145 −0.451848
\(287\) −8.25890 13.1724i −0.487508 0.777541i
\(288\) 0 0
\(289\) −6.07598 + 10.5239i −0.357411 + 0.619054i
\(290\) −6.57234 11.3836i −0.385941 0.668470i
\(291\) 0 0
\(292\) 8.02654 13.9024i 0.469718 0.813575i
\(293\) 14.0851 0.822862 0.411431 0.911441i \(-0.365029\pi\)
0.411431 + 0.911441i \(0.365029\pi\)
\(294\) 0 0
\(295\) 10.2880 0.598990
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) 0 0
\(298\) 2.60439 + 4.51093i 0.150868 + 0.261311i
\(299\) 0.722528 1.25146i 0.0417849 0.0723736i
\(300\) 0 0
\(301\) 2.34176 + 3.73495i 0.134977 + 0.215279i
\(302\) 0.522900 0.0300895
\(303\) 0 0
\(304\) −3.54944 6.14781i −0.203574 0.352601i
\(305\) 3.55563 + 6.15854i 0.203595 + 0.352637i
\(306\) 0 0
\(307\) −5.85532 −0.334180 −0.167090 0.985942i \(-0.553437\pi\)
−0.167090 + 0.985942i \(0.553437\pi\)
\(308\) 4.19963 0.153051i 0.239296 0.00872089i
\(309\) 0 0
\(310\) −2.15383 + 3.73054i −0.122329 + 0.211880i
\(311\) −0.405446 0.702253i −0.0229907 0.0398211i 0.854301 0.519778i \(-0.173985\pi\)
−0.877292 + 0.479957i \(0.840652\pi\)
\(312\) 0 0
\(313\) −5.28799 + 9.15907i −0.298895 + 0.517701i −0.975883 0.218292i \(-0.929951\pi\)
0.676988 + 0.735994i \(0.263285\pi\)
\(314\) −8.86398 −0.500223
\(315\) 0 0
\(316\) 8.38688 0.471799
\(317\) −6.09820 + 10.5624i −0.342509 + 0.593243i −0.984898 0.173136i \(-0.944610\pi\)
0.642389 + 0.766379i \(0.277943\pi\)
\(318\) 0 0
\(319\) −6.57234 11.3836i −0.367981 0.637361i
\(320\) −0.794182 + 1.37556i −0.0443961 + 0.0768963i
\(321\) 0 0
\(322\) −0.372026 + 0.702253i −0.0207322 + 0.0391350i
\(323\) 38.3287 2.13267
\(324\) 0 0
\(325\) −5.95853 10.3205i −0.330520 0.572477i
\(326\) −10.9814 19.0204i −0.608205 1.05344i
\(327\) 0 0
\(328\) 5.87636 0.324467
\(329\) −7.04944 + 0.256909i −0.388648 + 0.0141639i
\(330\) 0 0
\(331\) 7.83310 13.5673i 0.430546 0.745728i −0.566374 0.824148i \(-0.691654\pi\)
0.996920 + 0.0784202i \(0.0249876\pi\)
\(332\) 1.18292 + 2.04887i 0.0649211 + 0.112447i
\(333\) 0 0
\(334\) −1.65019 + 2.85821i −0.0902942 + 0.156394i
\(335\) −15.9680 −0.872423
\(336\) 0 0
\(337\) 8.42402 0.458885 0.229443 0.973322i \(-0.426310\pi\)
0.229443 + 0.973322i \(0.426310\pi\)
\(338\) 5.07234 8.78555i 0.275899 0.477871i
\(339\) 0 0
\(340\) −4.28799 7.42702i −0.232549 0.402787i
\(341\) −2.15383 + 3.73054i −0.116636 + 0.202020i
\(342\) 0 0
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) −1.66621 −0.0898359
\(345\) 0 0
\(346\) 9.55377 + 16.5476i 0.513614 + 0.889606i
\(347\) −0.283662 0.491316i −0.0152277 0.0263752i 0.858311 0.513130i \(-0.171514\pi\)
−0.873539 + 0.486754i \(0.838181\pi\)
\(348\) 0 0
\(349\) 0.00728378 0.000389892 0.000194946 1.00000i \(-0.499938\pi\)
0.000194946 1.00000i \(0.499938\pi\)
\(350\) 3.48143 + 5.55264i 0.186090 + 0.296801i
\(351\) 0 0
\(352\) −0.794182 + 1.37556i −0.0423300 + 0.0733178i
\(353\) −3.32691 5.76238i −0.177074 0.306701i 0.763803 0.645449i \(-0.223330\pi\)
−0.940877 + 0.338748i \(0.889996\pi\)
\(354\) 0 0
\(355\) −10.1025 + 17.4981i −0.536186 + 0.928702i
\(356\) −3.21015 −0.170138
\(357\) 0 0
\(358\) −16.0741 −0.849544
\(359\) −0.398568 + 0.690339i −0.0210356 + 0.0364347i −0.876352 0.481672i \(-0.840030\pi\)
0.855316 + 0.518107i \(0.173363\pi\)
\(360\) 0 0
\(361\) −15.6971 27.1881i −0.826162 1.43095i
\(362\) 4.02654 6.97418i 0.211630 0.366555i
\(363\) 0 0
\(364\) −5.95853 + 11.2476i −0.312312 + 0.589535i
\(365\) −25.4981 −1.33463
\(366\) 0 0
\(367\) 7.71634 + 13.3651i 0.402790 + 0.697652i 0.994061 0.108820i \(-0.0347073\pi\)
−0.591272 + 0.806472i \(0.701374\pi\)
\(368\) −0.150186 0.260130i −0.00782898 0.0135602i
\(369\) 0 0
\(370\) 1.58836 0.0825751
\(371\) −6.05494 + 11.4296i −0.314357 + 0.593395i
\(372\) 0 0
\(373\) −5.12110 + 8.87000i −0.265160 + 0.459271i −0.967606 0.252467i \(-0.918758\pi\)
0.702445 + 0.711738i \(0.252092\pi\)
\(374\) −4.28799 7.42702i −0.221727 0.384042i
\(375\) 0 0
\(376\) 1.33310 2.30900i 0.0687496 0.119078i
\(377\) 39.8131 2.05048
\(378\) 0 0
\(379\) 25.0087 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(380\) −5.63781 + 9.76497i −0.289213 + 0.500932i
\(381\) 0 0
\(382\) −11.9814 20.7524i −0.613023 1.06179i
\(383\) 3.13348 5.42734i 0.160113 0.277324i −0.774796 0.632211i \(-0.782147\pi\)
0.934909 + 0.354887i \(0.115481\pi\)
\(384\) 0 0
\(385\) −3.54580 5.65531i −0.180711 0.288221i
\(386\) −9.76509 −0.497030
\(387\) 0 0
\(388\) 0.712008 + 1.23323i 0.0361467 + 0.0626080i
\(389\) 10.8171 + 18.7357i 0.548448 + 0.949940i 0.998381 + 0.0568774i \(0.0181144\pi\)
−0.449933 + 0.893062i \(0.648552\pi\)
\(390\) 0 0
\(391\) 1.62178 0.0820172
\(392\) 3.04944 6.30087i 0.154020 0.318242i
\(393\) 0 0
\(394\) −9.12178 + 15.7994i −0.459549 + 0.795962i
\(395\) −6.66071 11.5367i −0.335137 0.580473i
\(396\) 0 0
\(397\) 2.05308 3.55605i 0.103041 0.178473i −0.809895 0.586575i \(-0.800476\pi\)
0.912936 + 0.408102i \(0.133809\pi\)
\(398\) 18.0989 0.907215
\(399\) 0 0
\(400\) −2.47710 −0.123855
\(401\) −8.37085 + 14.4987i −0.418021 + 0.724033i −0.995740 0.0922024i \(-0.970609\pi\)
0.577720 + 0.816235i \(0.303943\pi\)
\(402\) 0 0
\(403\) −6.52359 11.2992i −0.324963 0.562853i
\(404\) −6.01671 + 10.4212i −0.299343 + 0.518476i
\(405\) 0 0
\(406\) −21.8807 + 0.797418i −1.08592 + 0.0395752i
\(407\) 1.58836 0.0787323
\(408\) 0 0
\(409\) 4.38255 + 7.59079i 0.216703 + 0.375341i 0.953798 0.300449i \(-0.0971364\pi\)
−0.737095 + 0.675789i \(0.763803\pi\)
\(410\) −4.66690 8.08330i −0.230482 0.399206i
\(411\) 0 0
\(412\) −6.09888 −0.300470
\(413\) 8.02221 15.1431i 0.394747 0.745144i
\(414\) 0 0
\(415\) 1.87890 3.25436i 0.0922318 0.159750i
\(416\) −2.40545 4.16635i −0.117937 0.204272i
\(417\) 0 0
\(418\) −5.63781 + 9.76497i −0.275754 + 0.477620i
\(419\) 0.420297 0.0205329 0.0102664 0.999947i \(-0.496732\pi\)
0.0102664 + 0.999947i \(0.496732\pi\)
\(420\) 0 0
\(421\) −6.57598 −0.320494 −0.160247 0.987077i \(-0.551229\pi\)
−0.160247 + 0.987077i \(0.551229\pi\)
\(422\) −0.166208 + 0.287880i −0.00809086 + 0.0140138i
\(423\) 0 0
\(424\) −2.44437 4.23377i −0.118709 0.205610i
\(425\) 6.68725 11.5827i 0.324379 0.561841i
\(426\) 0 0
\(427\) 11.8374 0.431403i 0.572854 0.0208770i
\(428\) 3.08650 0.149192
\(429\) 0 0
\(430\) 1.32327 + 2.29197i 0.0638138 + 0.110529i
\(431\) 11.0439 + 19.1287i 0.531968 + 0.921395i 0.999304 + 0.0373155i \(0.0118806\pi\)
−0.467336 + 0.884080i \(0.654786\pi\)
\(432\) 0 0
\(433\) −9.43268 −0.453306 −0.226653 0.973976i \(-0.572778\pi\)
−0.226653 + 0.973976i \(0.572778\pi\)
\(434\) 3.81158 + 6.07921i 0.182962 + 0.291811i
\(435\) 0 0
\(436\) 1.14400 1.98146i 0.0547875 0.0948947i
\(437\) −1.06615 1.84663i −0.0510010 0.0883363i
\(438\) 0 0
\(439\) 15.6032 27.0256i 0.744701 1.28986i −0.205634 0.978629i \(-0.565926\pi\)
0.950334 0.311231i \(-0.100741\pi\)
\(440\) 2.52290 0.120275
\(441\) 0 0
\(442\) 25.9752 1.23552
\(443\) −6.52723 + 11.3055i −0.310118 + 0.537140i −0.978388 0.206779i \(-0.933702\pi\)
0.668270 + 0.743919i \(0.267035\pi\)
\(444\) 0 0
\(445\) 2.54944 + 4.41576i 0.120855 + 0.209327i
\(446\) −3.16621 + 5.48403i −0.149924 + 0.259676i
\(447\) 0 0
\(448\) 1.40545 + 2.24159i 0.0664011 + 0.105905i
\(449\) −9.91706 −0.468015 −0.234008 0.972235i \(-0.575184\pi\)
−0.234008 + 0.972235i \(0.575184\pi\)
\(450\) 0 0
\(451\) −4.66690 8.08330i −0.219756 0.380628i
\(452\) −9.73236 16.8569i −0.457772 0.792884i
\(453\) 0 0
\(454\) 23.3090 1.09395
\(455\) 20.2040 0.736312i 0.947176 0.0345188i
\(456\) 0 0
\(457\) 12.2615 21.2375i 0.573566 0.993446i −0.422629 0.906303i \(-0.638893\pi\)
0.996196 0.0871436i \(-0.0277739\pi\)
\(458\) −2.47710 4.29046i −0.115747 0.200480i
\(459\) 0 0
\(460\) −0.238550 + 0.413181i −0.0111224 + 0.0192646i
\(461\) −3.51052 −0.163501 −0.0817506 0.996653i \(-0.526051\pi\)
−0.0817506 + 0.996653i \(0.526051\pi\)
\(462\) 0 0
\(463\) −17.3883 −0.808101 −0.404050 0.914737i \(-0.632398\pi\)
−0.404050 + 0.914737i \(0.632398\pi\)
\(464\) 4.13781 7.16689i 0.192093 0.332715i
\(465\) 0 0
\(466\) 7.13781 + 12.3630i 0.330652 + 0.572707i
\(467\) 6.69894 11.6029i 0.309990 0.536918i −0.668370 0.743829i \(-0.733008\pi\)
0.978360 + 0.206911i \(0.0663410\pi\)
\(468\) 0 0
\(469\) −12.4512 + 23.5036i −0.574945 + 1.08529i
\(470\) −4.23491 −0.195342
\(471\) 0 0
\(472\) 3.23855 + 5.60933i 0.149066 + 0.258190i
\(473\) 1.32327 + 2.29197i 0.0608441 + 0.105385i
\(474\) 0 0
\(475\) −17.5846 −0.806839
\(476\) −14.2756 + 0.520259i −0.654322 + 0.0238460i
\(477\) 0 0
\(478\) −2.48762 + 4.30868i −0.113781 + 0.197075i
\(479\) −10.4029 18.0183i −0.475321 0.823279i 0.524280 0.851546i \(-0.324335\pi\)
−0.999600 + 0.0282667i \(0.991001\pi\)
\(480\) 0 0
\(481\) −2.40545 + 4.16635i −0.109679 + 0.189969i
\(482\) 13.0000 0.592134
\(483\) 0 0
\(484\) −8.47710 −0.385323
\(485\) 1.13093 1.95882i 0.0513528 0.0889456i
\(486\) 0 0
\(487\) 16.2472 + 28.1410i 0.736231 + 1.27519i 0.954181 + 0.299230i \(0.0967298\pi\)
−0.217950 + 0.975960i \(0.569937\pi\)
\(488\) −2.23855 + 3.87728i −0.101334 + 0.175516i
\(489\) 0 0
\(490\) −11.0891 + 0.809332i −0.500952 + 0.0365619i
\(491\) 19.3214 0.871963 0.435982 0.899956i \(-0.356401\pi\)
0.435982 + 0.899956i \(0.356401\pi\)
\(492\) 0 0
\(493\) 22.3411 + 38.6959i 1.00619 + 1.74277i
\(494\) −17.0760 29.5765i −0.768285 1.33071i
\(495\) 0 0
\(496\) −2.71201 −0.121773
\(497\) 17.8782 + 28.5145i 0.801948 + 1.27905i
\(498\) 0 0
\(499\) 5.57530 9.65670i 0.249585 0.432293i −0.713826 0.700323i \(-0.753039\pi\)
0.963411 + 0.268030i \(0.0863726\pi\)
\(500\) 5.93818 + 10.2852i 0.265563 + 0.459969i
\(501\) 0 0
\(502\) 1.21634 2.10676i 0.0542878 0.0940293i
\(503\) −40.7651 −1.81763 −0.908813 0.417204i \(-0.863010\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(504\) 0 0
\(505\) 19.1135 0.850537
\(506\) −0.238550 + 0.413181i −0.0106048 + 0.0183681i
\(507\) 0 0
\(508\) 6.71998 + 11.6393i 0.298151 + 0.516413i
\(509\) −0.722528 + 1.25146i −0.0320255 + 0.0554698i −0.881594 0.472009i \(-0.843529\pi\)
0.849568 + 0.527478i \(0.176862\pi\)
\(510\) 0 0
\(511\) −19.8825 + 37.5313i −0.879552 + 1.66028i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −0.493810 0.855304i −0.0217810 0.0377259i
\(515\) 4.84362 + 8.38940i 0.213436 + 0.369681i
\(516\) 0 0
\(517\) −4.23491 −0.186251
\(518\) 1.23855 2.33795i 0.0544188 0.102723i
\(519\) 0 0
\(520\) −3.82072 + 6.61769i −0.167550 + 0.290205i
\(521\) 9.64214 + 16.7007i 0.422430 + 0.731670i 0.996177 0.0873630i \(-0.0278440\pi\)
−0.573747 + 0.819033i \(0.694511\pi\)
\(522\) 0 0
\(523\) −18.3454 + 31.7752i −0.802189 + 1.38943i 0.115984 + 0.993251i \(0.462998\pi\)
−0.918173 + 0.396180i \(0.870335\pi\)
\(524\) −3.17673 −0.138776
\(525\) 0 0
\(526\) −17.1854 −0.749319
\(527\) 7.32141 12.6811i 0.318926 0.552396i
\(528\) 0 0
\(529\) 11.4549 + 19.8404i 0.498039 + 0.862628i
\(530\) −3.88255 + 6.72477i −0.168647 + 0.292105i
\(531\) 0 0
\(532\) 9.97710 + 15.9128i 0.432562 + 0.689907i
\(533\) 28.2705 1.22453
\(534\) 0 0
\(535\) −2.45125 4.24568i −0.105977 0.183557i
\(536\) −5.02654 8.70623i −0.217114 0.376052i
\(537\) 0 0
\(538\) 22.9047 0.987491
\(539\) −11.0891 + 0.809332i −0.477639 + 0.0348604i
\(540\) 0 0
\(541\) −1.62543 + 2.81532i −0.0698825 + 0.121040i −0.898849 0.438258i \(-0.855596\pi\)
0.828967 + 0.559298i \(0.188929\pi\)
\(542\) −7.00364 12.1307i −0.300832 0.521057i
\(543\) 0 0
\(544\) 2.69963 4.67589i 0.115746 0.200477i
\(545\) −3.63416 −0.155670
\(546\) 0 0
\(547\) 5.91706 0.252995 0.126498 0.991967i \(-0.459626\pi\)
0.126498 + 0.991967i \(0.459626\pi\)
\(548\) 10.6316 18.4145i 0.454160 0.786628i
\(549\) 0 0
\(550\) 1.96727 + 3.40741i 0.0838846 + 0.145292i
\(551\) 29.3738 50.8769i 1.25137 2.16743i
\(552\) 0 0
\(553\) −22.1749 + 0.808139i −0.942971 + 0.0343656i
\(554\) −28.2953 −1.20215
\(555\) 0 0
\(556\) 6.52654 + 11.3043i 0.276787 + 0.479409i
\(557\) 12.8040 + 22.1772i 0.542523 + 0.939678i 0.998758 + 0.0498188i \(0.0158644\pi\)
−0.456235 + 0.889859i \(0.650802\pi\)
\(558\) 0 0
\(559\) −8.01594 −0.339038
\(560\) 1.96727 3.71351i 0.0831322 0.156924i
\(561\) 0 0
\(562\) 8.79782 15.2383i 0.371114 0.642788i
\(563\) 23.3189 + 40.3895i 0.982773 + 1.70221i 0.651443 + 0.758698i \(0.274164\pi\)
0.331330 + 0.943515i \(0.392503\pi\)
\(564\) 0 0
\(565\) −15.4585 + 26.7750i −0.650345 + 1.12643i
\(566\) 18.5229 0.778576
\(567\) 0 0
\(568\) −12.7207 −0.533747
\(569\) −15.5989 + 27.0181i −0.653939 + 1.13266i 0.328219 + 0.944602i \(0.393551\pi\)
−0.982159 + 0.188054i \(0.939782\pi\)
\(570\) 0 0
\(571\) 7.83812 + 13.5760i 0.328015 + 0.568139i 0.982118 0.188267i \(-0.0602869\pi\)
−0.654103 + 0.756406i \(0.726954\pi\)
\(572\) −3.82072 + 6.61769i −0.159752 + 0.276699i
\(573\) 0 0
\(574\) −15.5371 + 0.566231i −0.648504 + 0.0236340i
\(575\) −0.744051 −0.0310291
\(576\) 0 0
\(577\) 6.99567 + 12.1169i 0.291234 + 0.504431i 0.974102 0.226110i \(-0.0726010\pi\)
−0.682868 + 0.730542i \(0.739268\pi\)
\(578\) 6.07598 + 10.5239i 0.252728 + 0.437737i
\(579\) 0 0
\(580\) −13.1447 −0.545803
\(581\) −3.32505 5.30323i −0.137947 0.220015i
\(582\) 0 0
\(583\) −3.88255 + 6.72477i −0.160799 + 0.278511i
\(584\) −8.02654 13.9024i −0.332141 0.575285i
\(585\) 0 0
\(586\) 7.04256 12.1981i 0.290926 0.503898i
\(587\) −2.89602 −0.119532 −0.0597658 0.998212i \(-0.519035\pi\)
−0.0597658 + 0.998212i \(0.519035\pi\)
\(588\) 0 0
\(589\) −19.2522 −0.793274
\(590\) 5.14400 8.90966i 0.211775 0.366805i
\(591\) 0 0
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) −2.04394 + 3.54021i −0.0839346 + 0.145379i −0.904937 0.425546i \(-0.860082\pi\)
0.821002 + 0.570925i \(0.193415\pi\)
\(594\) 0 0
\(595\) 12.0531 + 19.2238i 0.494128 + 0.788100i
\(596\) 5.20877 0.213360
\(597\) 0 0
\(598\) −0.722528 1.25146i −0.0295464 0.0511758i
\(599\) 9.88255 + 17.1171i 0.403790 + 0.699385i 0.994180 0.107734i \(-0.0343593\pi\)
−0.590390 + 0.807118i \(0.701026\pi\)
\(600\) 0 0
\(601\) 26.8640 1.09580 0.547902 0.836542i \(-0.315427\pi\)
0.547902 + 0.836542i \(0.315427\pi\)
\(602\) 4.40545 0.160552i 0.179553 0.00654360i
\(603\) 0 0
\(604\) 0.261450 0.452845i 0.0106383 0.0184260i
\(605\) 6.73236 + 11.6608i 0.273709 + 0.474079i
\(606\) 0 0
\(607\) 7.62110 13.2001i 0.309331 0.535777i −0.668885 0.743366i \(-0.733228\pi\)
0.978216 + 0.207589i \(0.0665617\pi\)
\(608\) −7.09888 −0.287898
\(609\) 0 0
\(610\) 7.11126 0.287927
\(611\) 6.41342 11.1084i 0.259459 0.449396i
\(612\) 0 0
\(613\) −1.36033 2.35617i −0.0549434 0.0951648i 0.837246 0.546827i \(-0.184165\pi\)
−0.892189 + 0.451662i \(0.850831\pi\)
\(614\) −2.92766 + 5.07085i −0.118151 + 0.204643i
\(615\) 0 0
\(616\) 1.96727 3.71351i 0.0792635 0.149622i
\(617\) 18.4362 0.742215 0.371108 0.928590i \(-0.378978\pi\)
0.371108 + 0.928590i \(0.378978\pi\)
\(618\) 0 0
\(619\) −0.0537728 0.0931373i −0.00216131 0.00374350i 0.864943 0.501871i \(-0.167355\pi\)
−0.867104 + 0.498127i \(0.834021\pi\)
\(620\) 2.15383 + 3.73054i 0.0864998 + 0.149822i
\(621\) 0 0
\(622\) −0.810892 −0.0325138
\(623\) 8.48762 0.309322i 0.340049 0.0123927i
\(624\) 0 0
\(625\) 3.23924 5.61053i 0.129570 0.224421i
\(626\) 5.28799 + 9.15907i 0.211351 + 0.366070i
\(627\) 0 0
\(628\) −4.43199 + 7.67643i −0.176856 + 0.306323i
\(629\) −5.39926 −0.215282
\(630\) 0 0
\(631\) 35.7266 1.42225 0.711126 0.703064i \(-0.248185\pi\)
0.711126 + 0.703064i \(0.248185\pi\)
\(632\) 4.19344 7.26325i 0.166806 0.288916i
\(633\) 0 0
\(634\) 6.09820 + 10.5624i 0.242190 + 0.419486i
\(635\) 10.6738 18.4875i 0.423576 0.733655i
\(636\) 0 0
\(637\) 14.6705 30.3128i 0.581268 1.20104i
\(638\) −13.1447 −0.520403
\(639\) 0 0
\(640\) 0.794182 + 1.37556i 0.0313928 + 0.0543739i
\(641\) −8.65638 14.9933i −0.341906 0.592199i 0.642880 0.765967i \(-0.277739\pi\)
−0.984787 + 0.173767i \(0.944406\pi\)
\(642\) 0 0
\(643\) −28.9642 −1.14224 −0.571119 0.820867i \(-0.693491\pi\)
−0.571119 + 0.820867i \(0.693491\pi\)
\(644\) 0.422156 + 0.673310i 0.0166353 + 0.0265321i
\(645\) 0 0
\(646\) 19.1643 33.1936i 0.754011 1.30599i
\(647\) 1.27816 + 2.21384i 0.0502497 + 0.0870350i 0.890056 0.455851i \(-0.150665\pi\)
−0.839807 + 0.542886i \(0.817332\pi\)
\(648\) 0 0
\(649\) 5.14400 8.90966i 0.201920 0.349735i
\(650\) −11.9171 −0.467426
\(651\) 0 0
\(652\) −21.9629 −0.860132
\(653\) −14.9883 + 25.9605i −0.586538 + 1.01591i 0.408144 + 0.912918i \(0.366176\pi\)
−0.994682 + 0.102996i \(0.967157\pi\)
\(654\) 0 0
\(655\) 2.52290 + 4.36979i 0.0985779 + 0.170742i
\(656\) 2.93818 5.08907i 0.114717 0.198695i
\(657\) 0 0
\(658\) −3.30223 + 6.23345i −0.128734 + 0.243005i
\(659\) 15.2632 0.594571 0.297286 0.954789i \(-0.403919\pi\)
0.297286 + 0.954789i \(0.403919\pi\)
\(660\) 0 0
\(661\) 13.6261 + 23.6011i 0.529994 + 0.917977i 0.999388 + 0.0349881i \(0.0111393\pi\)
−0.469393 + 0.882989i \(0.655527\pi\)
\(662\) −7.83310 13.5673i −0.304442 0.527309i
\(663\) 0 0
\(664\) 2.36584 0.0918122
\(665\) 13.9654 26.3618i 0.541555 1.02227i
\(666\) 0 0
\(667\) 1.24288 2.15273i 0.0481245 0.0833541i
\(668\) 1.65019 + 2.85821i 0.0638476 + 0.110587i
\(669\) 0 0
\(670\) −7.98398 + 13.8287i −0.308448 + 0.534248i
\(671\) 7.11126 0.274527
\(672\) 0 0
\(673\) −46.4559 −1.79074 −0.895372 0.445319i \(-0.853090\pi\)
−0.895372 + 0.445319i \(0.853090\pi\)
\(674\) 4.21201 7.29541i 0.162240 0.281009i
\(675\) 0 0
\(676\) −5.07234 8.78555i −0.195090 0.337906i
\(677\) −2.54944 + 4.41576i −0.0979830 + 0.169712i −0.910850 0.412738i \(-0.864572\pi\)
0.812867 + 0.582450i \(0.197906\pi\)
\(678\) 0 0
\(679\) −2.00138 3.19206i −0.0768058 0.122500i
\(680\) −8.57598 −0.328874
\(681\) 0 0
\(682\) 2.15383 + 3.73054i 0.0824743 + 0.142850i
\(683\) −7.77197 13.4614i −0.297386 0.515088i 0.678151 0.734923i \(-0.262782\pi\)
−0.975537 + 0.219835i \(0.929448\pi\)
\(684\) 0 0
\(685\) −33.7738 −1.29043
\(686\) −7.45558 + 16.9533i −0.284655 + 0.647280i
\(687\) 0 0
\(688\) −0.833104 + 1.44298i −0.0317618 + 0.0550130i
\(689\) −11.7596 20.3682i −0.448005 0.775967i
\(690\) 0 0
\(691\) −11.6483 + 20.1755i −0.443123 + 0.767512i −0.997919 0.0644744i \(-0.979463\pi\)
0.554796 + 0.831986i \(0.312796\pi\)
\(692\) 19.1075 0.726360
\(693\) 0 0
\(694\) −0.567323 −0.0215353
\(695\) 10.3665 17.9553i 0.393225 0.681085i
\(696\) 0 0
\(697\) 15.8640 + 27.4772i 0.600891 + 1.04077i
\(698\) 0.00364189 0.00630794i 0.000137848 0.000238759i
\(699\) 0 0
\(700\) 6.54944 0.238687i 0.247546 0.00902153i
\(701\) −45.6464 −1.72404 −0.862020 0.506874i \(-0.830801\pi\)
−0.862020 + 0.506874i \(0.830801\pi\)
\(702\) 0 0
\(703\) 3.54944 + 6.14781i 0.133870 + 0.231869i
\(704\) 0.794182 + 1.37556i 0.0299319 + 0.0518435i
\(705\) 0 0
\(706\) −6.65383 −0.250420
\(707\) 14.9040 28.1335i 0.560522 1.05807i
\(708\) 0 0
\(709\) −9.00069 + 15.5897i −0.338028 + 0.585482i −0.984062 0.177827i \(-0.943093\pi\)
0.646034 + 0.763309i \(0.276427\pi\)
\(710\) 10.1025 + 17.4981i 0.379141 + 0.656692i
\(711\) 0 0
\(712\) −1.60507 + 2.78007i −0.0601527 + 0.104188i
\(713\) −0.814611 −0.0305074
\(714\) 0 0
\(715\) 12.1374 0.453913
\(716\) −8.03706 + 13.9206i −0.300359 + 0.520237i
\(717\) 0 0
\(718\) 0.398568 + 0.690339i 0.0148744 + 0.0257632i
\(719\) 18.4389 31.9371i 0.687654 1.19105i −0.284941 0.958545i \(-0.591974\pi\)
0.972595 0.232506i \(-0.0746926\pi\)
\(720\) 0 0
\(721\) 16.1254 0.587674i 0.600542 0.0218861i
\(722\) −31.3942 −1.16837
\(723\) 0 0
\(724\) −4.02654 6.97418i −0.149645 0.259193i
\(725\) −10.2498 17.7531i −0.380666 0.659334i
\(726\) 0 0
\(727\) −30.4858 −1.13065 −0.565327 0.824867i \(-0.691250\pi\)
−0.565327 + 0.824867i \(0.691250\pi\)
\(728\) 6.76145 + 10.7840i 0.250596 + 0.399683i
\(729\) 0 0
\(730\) −12.7491 + 22.0820i −0.471864 + 0.817293i
\(731\) −4.49814 7.79101i −0.166370 0.288161i
\(732\) 0 0
\(733\) −3.07530 + 5.32657i −0.113589 + 0.196741i −0.917215 0.398393i \(-0.869568\pi\)
0.803626 + 0.595135i \(0.202901\pi\)
\(734\) 15.4327 0.569630
\(735\) 0 0
\(736\) −0.300372 −0.0110719
\(737\) −7.98398 + 13.8287i −0.294094 + 0.509385i
\(738\) 0 0
\(739\) −20.3912 35.3186i −0.750103 1.29922i −0.947772 0.318947i \(-0.896671\pi\)
0.197670 0.980269i \(-0.436663\pi\)
\(740\) 0.794182 1.37556i 0.0291947 0.0505667i
\(741\) 0 0
\(742\) 6.87085 + 10.9585i 0.252237 + 0.402301i
\(743\) −14.5054 −0.532152 −0.266076 0.963952i \(-0.585727\pi\)
−0.266076 + 0.963952i \(0.585727\pi\)
\(744\) 0 0
\(745\) −4.13671 7.16500i −0.151557 0.262505i
\(746\) 5.12110 + 8.87000i 0.187497 + 0.324754i
\(747\) 0 0
\(748\) −8.57598 −0.313569
\(749\) −8.16071 + 0.297408i −0.298186 + 0.0108671i
\(750\) 0 0
\(751\) −2.09455 + 3.62787i −0.0764314 + 0.132383i −0.901708 0.432346i \(-0.857686\pi\)
0.825276 + 0.564729i \(0.191019\pi\)
\(752\) −1.33310 2.30900i −0.0486133 0.0842007i
\(753\) 0 0
\(754\) 19.9065 34.4791i 0.724953 1.25566i
\(755\) −0.830556 −0.0302270
\(756\) 0 0
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) 12.5043 21.6581i 0.454178 0.786659i
\(759\) 0 0
\(760\) 5.63781 + 9.76497i 0.204505 + 0.354213i
\(761\) −1.81708 + 3.14728i −0.0658692 + 0.114089i −0.897079 0.441870i \(-0.854315\pi\)
0.831210 + 0.555959i \(0.187649\pi\)
\(762\) 0 0
\(763\) −2.83379 + 5.34920i −0.102590 + 0.193654i
\(764\) −23.9629 −0.866946
\(765\) 0 0
\(766\) −3.13348 5.42734i −0.113217 0.196098i
\(767\) 15.5803 + 26.9859i 0.562573 + 0.974404i
\(768\) 0 0
\(769\) 39.9344 1.44007 0.720035 0.693937i \(-0.244126\pi\)
0.720035 + 0.693937i \(0.244126\pi\)
\(770\) −6.67054 + 0.243101i −0.240390 + 0.00876074i
\(771\) 0 0
\(772\) −4.88255 + 8.45682i −0.175727 + 0.304368i
\(773\) 18.0698 + 31.2978i 0.649925 + 1.12570i 0.983140 + 0.182853i \(0.0585332\pi\)
−0.333215 + 0.942851i \(0.608133\pi\)
\(774\) 0 0
\(775\) −3.35896 + 5.81788i −0.120657 + 0.208985i
\(776\) 1.42402 0.0511192
\(777\) 0 0
\(778\) 21.6342 0.775622
\(779\) 20.8578 36.1267i 0.747308 1.29438i
\(780\) 0 0
\(781\) 10.1025 + 17.4981i 0.361497 + 0.626131i
\(782\) 0.810892 1.40451i 0.0289974 0.0502251i
\(783\) 0 0
\(784\) −3.93199 5.79133i −0.140428 0.206833i
\(785\) 14.0792 0.502509
\(786\) 0 0
\(787\) 22.3189 + 38.6574i 0.795582 + 1.37799i 0.922469 + 0.386071i \(0.126168\pi\)
−0.126888 + 0.991917i \(0.540499\pi\)
\(788\) 9.12178 + 15.7994i 0.324950 + 0.562830i
\(789\) 0 0
\(790\) −13.3214 −0.473955
\(791\) 27.3566 + 43.6319i 0.972689 + 1.55137i
\(792\) 0 0
\(793\) −10.7694 + 18.6532i −0.382433 + 0.662394i
\(794\) −2.05308 3.55605i −0.0728612 0.126199i
\(795\) 0 0
\(796\) 9.04944 15.6741i 0.320749 0.555554i
\(797\) −52.5672 −1.86202 −0.931012 0.364988i \(-0.881073\pi\)
−0.931012 + 0.364988i \(0.881073\pi\)
\(798\) 0 0
\(799\) 14.3955 0.509278
\(800\) −1.23855 + 2.14523i −0.0437894 + 0.0758454i
\(801\) 0 0
\(802\) 8.37085 + 14.4987i 0.295585 + 0.511969i
\(803\) −12.7491 + 22.0820i −0.449905 + 0.779258i
\(804\) 0 0
\(805\) 0.590912 1.11543i 0.0208269 0.0393139i
\(806\) −13.0472 −0.459567
\(807\) 0 0
\(808\) 6.01671 + 10.4212i 0.211667 + 0.366618i
\(809\) 7.40290 + 12.8222i 0.260272 + 0.450804i 0.966314 0.257365i \(-0.0828544\pi\)
−0.706042 + 0.708170i \(0.749521\pi\)
\(810\) 0 0
\(811\) 27.0704 0.950571 0.475285 0.879832i \(-0.342345\pi\)
0.475285 + 0.879832i \(0.342345\pi\)
\(812\) −10.2498 + 19.3479i −0.359696 + 0.678980i
\(813\) 0 0
\(814\) 0.794182 1.37556i 0.0278361 0.0482135i
\(815\) 17.4425 + 30.2113i 0.610984 + 1.05826i
\(816\) 0 0
\(817\) −5.91411 + 10.2435i −0.206908 + 0.358376i
\(818\) 8.76509 0.306464
\(819\) 0 0
\(820\) −9.33379 −0.325950
\(821\) −21.9091 + 37.9477i −0.764632 + 1.32438i 0.175808 + 0.984424i \(0.443746\pi\)
−0.940441 + 0.339958i \(0.889587\pi\)
\(822\) 0 0
\(823\) −15.6712 27.1434i −0.546265 0.946158i −0.998526 0.0542727i \(-0.982716\pi\)
0.452262 0.891885i \(-0.350617\pi\)
\(824\) −3.04944 + 5.28179i −0.106232 + 0.184000i
\(825\) 0 0
\(826\) −9.10322 14.5190i −0.316741 0.505180i
\(827\) −14.7665 −0.513480 −0.256740 0.966480i \(-0.582648\pi\)
−0.256740 + 0.966480i \(0.582648\pi\)
\(828\) 0 0
\(829\) −15.0036 25.9871i −0.521098 0.902568i −0.999699 0.0245357i \(-0.992189\pi\)
0.478601 0.878033i \(-0.341144\pi\)
\(830\) −1.87890 3.25436i −0.0652177 0.112960i
\(831\) 0 0
\(832\) −4.81089 −0.166788
\(833\) 37.6945 2.75113i 1.30604 0.0953209i
\(834\) 0 0
\(835\) 2.62110 4.53987i 0.0907068 0.157109i
\(836\) 5.63781 + 9.76497i 0.194988 + 0.337728i
\(837\) 0 0
\(838\) 0.210149 0.363988i 0.00725946 0.0125738i
\(839\) −36.0334 −1.24401 −0.622006 0.783013i \(-0.713682\pi\)
−0.622006 + 0.783013i \(0.713682\pi\)
\(840\) 0 0
\(841\) 39.4858 1.36158
\(842\) −3.28799 + 5.69497i −0.113312 + 0.196262i
\(843\) 0 0
\(844\) 0.166208 + 0.287880i 0.00572110 + 0.00990923i
\(845\) −8.05673 + 13.9547i −0.277160 + 0.480055i
\(846\) 0 0
\(847\) 22.4134 0.816833i 0.770134 0.0280667i
\(848\) −4.88874 −0.167880
\(849\) 0 0
\(850\) −6.68725 11.5827i −0.229371 0.397282i
\(851\) 0.150186 + 0.260130i 0.00514831 + 0.00891713i
\(852\) 0 0
\(853\) 24.5316 0.839945 0.419972 0.907537i \(-0.362040\pi\)
0.419972 + 0.907537i \(0.362040\pi\)
\(854\) 5.54511 10.4672i 0.189750 0.358181i
\(855\) 0 0
\(856\) 1.54325 2.67299i 0.0527473 0.0913610i
\(857\) −14.5240 25.1563i −0.496130 0.859323i 0.503860 0.863785i \(-0.331913\pi\)
−0.999990 + 0.00446273i \(0.998579\pi\)
\(858\) 0 0
\(859\) −12.6476 + 21.9064i −0.431532 + 0.747435i −0.997005 0.0773313i \(-0.975360\pi\)
0.565474 + 0.824766i \(0.308693\pi\)
\(860\) 2.64654 0.0902464
\(861\) 0 0
\(862\) 22.0879 0.752316
\(863\) −1.34981 + 2.33795i −0.0459482 + 0.0795846i −0.888085 0.459680i \(-0.847964\pi\)
0.842137 + 0.539264i \(0.181298\pi\)
\(864\) 0 0
\(865\) −15.1749 26.2836i −0.515961 0.893671i
\(866\) −4.71634 + 8.16894i −0.160268 + 0.277592i
\(867\) 0 0
\(868\) 7.17054 0.261323i 0.243384 0.00886986i
\(869\) −13.3214 −0.451898
\(870\) 0 0
\(871\) −24.1822 41.8847i −0.819381 1.41921i
\(872\) −1.14400 1.98146i −0.0387406 0.0671007i
\(873\) 0 0
\(874\) −2.13231 −0.0721263
\(875\) −16.6916 26.6219i −0.564278 0.899985i
\(876\) 0 0
\(877\) 5.54580 9.60561i 0.187268 0.324358i −0.757070 0.653334i \(-0.773370\pi\)
0.944339 + 0.328975i \(0.106703\pi\)
\(878\) −15.6032 27.0256i −0.526583 0.912069i
\(879\) 0 0
\(880\) 1.26145 2.18490i 0.0425235 0.0736528i
\(881\) −40.3942 −1.36091 −0.680457 0.732788i \(-0.738219\pi\)
−0.680457 + 0.732788i \(0.738219\pi\)
\(882\) 0 0
\(883\) −33.2581 −1.11923 −0.559613 0.828754i \(-0.689050\pi\)
−0.559613 + 0.828754i \(0.689050\pi\)
\(884\) 12.9876 22.4952i 0.436821 0.756596i
\(885\) 0 0
\(886\) 6.52723 + 11.3055i 0.219287 + 0.379816i
\(887\) −20.2836 + 35.1322i −0.681056 + 1.17962i 0.293603 + 0.955928i \(0.405146\pi\)
−0.974659 + 0.223696i \(0.928188\pi\)
\(888\) 0 0
\(889\) −18.8891 30.1269i −0.633521 1.01042i
\(890\) 5.09888 0.170915
\(891\) 0 0
\(892\) 3.16621 + 5.48403i 0.106012 + 0.183619i
\(893\) −9.46355 16.3913i −0.316686 0.548516i
\(894\) 0 0
\(895\) 25.5316 0.853426
\(896\) 2.64400 0.0963576i 0.0883297 0.00321908i
\(897\) 0 0
\(898\) −4.95853 + 8.58843i −0.165468 + 0.286599i
\(899\) −11.2218 19.4367i −0.374267 0.648249i
\(900\) 0 0
\(901\) 13.1978 22.8592i 0.439681 0.761551i
\(902\) −9.33379 −0.310781
\(903\) 0 0
\(904\) −19.4647 −0.647387
\(905\) −6.39561 + 11.0775i −0.212597 + 0.368230i
\(906\) 0 0
\(907\) −15.0567 26.0790i −0.499950 0.865939i 0.500050 0.865997i \(-0.333315\pi\)
−1.00000 5.72941e-5i \(0.999982\pi\)
\(908\) 11.6545 20.1862i 0.386769 0.669903i
\(909\) 0 0
\(910\) 9.46431 17.8653i 0.313739 0.592229i
\(911\) −29.2225 −0.968186 −0.484093 0.875017i \(-0.660850\pi\)
−0.484093 + 0.875017i \(0.660850\pi\)
\(912\) 0 0
\(913\) −1.87890 3.25436i −0.0621826 0.107704i
\(914\) −12.2615 21.2375i −0.405573 0.702473i
\(915\) 0 0
\(916\) −4.95420 −0.163691
\(917\) 8.39926 0.306102i 0.277368 0.0101084i
\(918\) 0 0
\(919\) −5.52359 + 9.56714i −0.182206 + 0.315591i −0.942632 0.333835i \(-0.891657\pi\)
0.760425 + 0.649426i \(0.224991\pi\)
\(920\) 0.238550 + 0.413181i 0.00786476 + 0.0136222i
\(921\) 0 0
\(922\) −1.75526 + 3.04020i −0.0578064 + 0.100124i
\(923\) −61.1978 −2.01435
\(924\) 0 0
\(925\) 2.47710 0.0814465
\(926\) −8.69413 + 15.0587i −0.285707 + 0.494859i
\(927\) 0 0
\(928\) −4.13781 7.16689i −0.135830 0.235265i
\(929\) 21.1669 36.6621i 0.694463 1.20285i −0.275898 0.961187i \(-0.588975\pi\)
0.970361 0.241659i \(-0.0776915\pi\)
\(930\) 0 0
\(931\) −27.9127 41.1120i −0.914803 1.34739i
\(932\) 14.2756 0.467613
\(933\) 0 0
\(934\) −6.69894 11.6029i −0.219196 0.379659i
\(935\) 6.81089 + 11.7968i 0.222740 + 0.385797i
\(936\) 0 0
\(937\) −11.7651 −0.384349 −0.192174 0.981361i \(-0.561554\pi\)
−0.192174 + 0.981361i \(0.561554\pi\)
\(938\) 14.1291 + 22.5349i 0.461330 + 0.735790i
\(939\) 0 0
\(940\) −2.11745 + 3.66754i −0.0690637 + 0.119622i
\(941\) −7.28799 12.6232i −0.237582 0.411504i 0.722438 0.691436i \(-0.243021\pi\)
−0.960020 + 0.279932i \(0.909688\pi\)
\(942\) 0 0
\(943\) 0.882546 1.52861i 0.0287397 0.0497785i
\(944\) 6.47710 0.210812
\(945\) 0 0
\(946\) 2.64654 0.0860466
\(947\) −3.12178 + 5.40709i −0.101444 + 0.175707i −0.912280 0.409567i \(-0.865680\pi\)
0.810836 + 0.585274i \(0.199013\pi\)
\(948\) 0 0
\(949\) −38.6148 66.8828i −1.25349 2.17111i
\(950\) −8.79232 + 15.2287i −0.285261 + 0.494086i
\(951\) 0 0
\(952\) −6.68725 + 12.6232i −0.216735 + 0.409119i
\(953\) 28.0173 0.907570 0.453785 0.891111i \(-0.350073\pi\)
0.453785 + 0.891111i \(0.350073\pi\)
\(954\) 0 0
\(955\) 19.0309 + 32.9624i 0.615825 + 1.06664i
\(956\) 2.48762 + 4.30868i 0.0804554 + 0.139353i
\(957\) 0 0
\(958\) −20.8058 −0.672205
\(959\) −26.3356 + 49.7123i −0.850420 + 1.60529i
\(960\) 0 0
\(961\) 11.8225 20.4772i 0.381371 0.660554i
\(962\) 2.40545 + 4.16635i 0.0775547 + 0.134329i
\(963\) 0 0
\(964\) 6.50000 11.2583i 0.209351 0.362606i
\(965\) 15.5105 0.499301
\(966\) 0 0
\(967\) −31.5673 −1.01514 −0.507568 0.861612i \(-0.669456\pi\)
−0.507568 + 0.861612i \(0.669456\pi\)
\(968\) −4.23855 + 7.34138i −0.136232 + 0.235961i
\(969\) 0 0
\(970\) −1.13093 1.95882i −0.0363119 0.0628941i
\(971\) 2.82141 4.88683i 0.0905434 0.156826i −0.817196 0.576359i \(-0.804473\pi\)
0.907740 + 0.419533i \(0.137806\pi\)
\(972\) 0 0
\(973\) −18.3454 29.2596i −0.588127 0.938021i
\(974\) 32.4944 1.04119
\(975\) 0 0
\(976\) 2.23855 + 3.87728i 0.0716542 + 0.124109i
\(977\) −3.24652 5.62314i −0.103865 0.179900i 0.809409 0.587246i \(-0.199788\pi\)
−0.913274 + 0.407346i \(0.866454\pi\)
\(978\) 0 0
\(979\) 5.09888 0.162961
\(980\) −4.84362 + 10.0081i −0.154724 + 0.319696i
\(981\) 0 0
\(982\) 9.66071 16.7328i 0.308286 0.533966i
\(983\) 15.1531 + 26.2460i 0.483310 + 0.837118i 0.999816 0.0191658i \(-0.00610104\pi\)
−0.516506 + 0.856283i \(0.672768\pi\)
\(984\) 0 0
\(985\) 14.4887 25.0952i 0.461649 0.799599i
\(986\) 44.6822 1.42297
\(987\) 0 0
\(988\) −34.1520 −1.08652
\(989\) −0.250241 + 0.433430i −0.00795720 + 0.0137823i
\(990\) 0 0
\(991\) 11.1669 + 19.3416i 0.354728 + 0.614407i 0.987071 0.160281i \(-0.0512401\pi\)
−0.632343 + 0.774688i \(0.717907\pi\)
\(992\) −1.35600 + 2.34867i −0.0430532 + 0.0745703i
\(993\) 0 0
\(994\) 33.6334 1.22573i 1.06679 0.0388779i
\(995\) −28.7476 −0.911361
\(996\) 0 0
\(997\) 4.38255 + 7.59079i 0.138797 + 0.240403i 0.927041 0.374959i \(-0.122343\pi\)
−0.788245 + 0.615362i \(0.789010\pi\)
\(998\) −5.57530 9.65670i −0.176483 0.305677i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.g.m.163.1 6
3.2 odd 2 1134.2.g.l.163.3 6
7.2 even 3 7938.2.a.bv.1.3 3
7.4 even 3 inner 1134.2.g.m.487.1 6
7.5 odd 6 7938.2.a.bw.1.1 3
9.2 odd 6 378.2.e.d.37.3 6
9.4 even 3 126.2.h.d.79.3 yes 6
9.5 odd 6 378.2.h.c.289.1 6
9.7 even 3 126.2.e.c.121.1 yes 6
21.2 odd 6 7938.2.a.ca.1.1 3
21.5 even 6 7938.2.a.bz.1.3 3
21.11 odd 6 1134.2.g.l.487.3 6
36.7 odd 6 1008.2.q.g.625.3 6
36.11 even 6 3024.2.q.g.2305.3 6
36.23 even 6 3024.2.t.h.289.1 6
36.31 odd 6 1008.2.t.h.961.1 6
63.2 odd 6 2646.2.f.l.1765.3 6
63.4 even 3 126.2.e.c.25.1 6
63.5 even 6 2646.2.f.m.883.1 6
63.11 odd 6 378.2.h.c.361.1 6
63.13 odd 6 882.2.h.p.79.1 6
63.16 even 3 882.2.f.n.589.3 6
63.20 even 6 2646.2.e.p.1549.1 6
63.23 odd 6 2646.2.f.l.883.3 6
63.25 even 3 126.2.h.d.67.3 yes 6
63.31 odd 6 882.2.e.o.655.3 6
63.32 odd 6 378.2.e.d.235.3 6
63.34 odd 6 882.2.e.o.373.3 6
63.38 even 6 2646.2.h.o.361.3 6
63.40 odd 6 882.2.f.o.295.1 6
63.41 even 6 2646.2.h.o.667.3 6
63.47 even 6 2646.2.f.m.1765.1 6
63.52 odd 6 882.2.h.p.67.1 6
63.58 even 3 882.2.f.n.295.3 6
63.59 even 6 2646.2.e.p.2125.1 6
63.61 odd 6 882.2.f.o.589.1 6
252.11 even 6 3024.2.t.h.1873.1 6
252.67 odd 6 1008.2.q.g.529.3 6
252.95 even 6 3024.2.q.g.2881.3 6
252.151 odd 6 1008.2.t.h.193.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.1 6 63.4 even 3
126.2.e.c.121.1 yes 6 9.7 even 3
126.2.h.d.67.3 yes 6 63.25 even 3
126.2.h.d.79.3 yes 6 9.4 even 3
378.2.e.d.37.3 6 9.2 odd 6
378.2.e.d.235.3 6 63.32 odd 6
378.2.h.c.289.1 6 9.5 odd 6
378.2.h.c.361.1 6 63.11 odd 6
882.2.e.o.373.3 6 63.34 odd 6
882.2.e.o.655.3 6 63.31 odd 6
882.2.f.n.295.3 6 63.58 even 3
882.2.f.n.589.3 6 63.16 even 3
882.2.f.o.295.1 6 63.40 odd 6
882.2.f.o.589.1 6 63.61 odd 6
882.2.h.p.67.1 6 63.52 odd 6
882.2.h.p.79.1 6 63.13 odd 6
1008.2.q.g.529.3 6 252.67 odd 6
1008.2.q.g.625.3 6 36.7 odd 6
1008.2.t.h.193.1 6 252.151 odd 6
1008.2.t.h.961.1 6 36.31 odd 6
1134.2.g.l.163.3 6 3.2 odd 2
1134.2.g.l.487.3 6 21.11 odd 6
1134.2.g.m.163.1 6 1.1 even 1 trivial
1134.2.g.m.487.1 6 7.4 even 3 inner
2646.2.e.p.1549.1 6 63.20 even 6
2646.2.e.p.2125.1 6 63.59 even 6
2646.2.f.l.883.3 6 63.23 odd 6
2646.2.f.l.1765.3 6 63.2 odd 6
2646.2.f.m.883.1 6 63.5 even 6
2646.2.f.m.1765.1 6 63.47 even 6
2646.2.h.o.361.3 6 63.38 even 6
2646.2.h.o.667.3 6 63.41 even 6
3024.2.q.g.2305.3 6 36.11 even 6
3024.2.q.g.2881.3 6 252.95 even 6
3024.2.t.h.289.1 6 36.23 even 6
3024.2.t.h.1873.1 6 252.11 even 6
7938.2.a.bv.1.3 3 7.2 even 3
7938.2.a.bw.1.1 3 7.5 odd 6
7938.2.a.bz.1.3 3 21.5 even 6
7938.2.a.ca.1.1 3 21.2 odd 6