Properties

Label 1134.2.g.i.163.2
Level $1134$
Weight $2$
Character 1134.163
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(163,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.2
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1134.163
Dual form 1134.2.g.i.487.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(1.62132 - 2.09077i) q^{7} +1.00000 q^{8} +(2.12132 + 3.67423i) q^{11} -2.24264 q^{13} +(1.00000 + 2.44949i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.12132 - 1.94218i) q^{19} -4.24264 q^{22} +(0.621320 - 1.07616i) q^{23} +(2.50000 + 4.33013i) q^{25} +(1.12132 - 1.94218i) q^{26} +(-2.62132 - 0.358719i) q^{28} +4.24264 q^{29} +(-4.62132 - 8.00436i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.00000 - 3.46410i) q^{37} +(1.12132 + 1.94218i) q^{38} +11.4853 q^{41} +10.4853 q^{43} +(2.12132 - 3.67423i) q^{44} +(0.621320 + 1.07616i) q^{46} +(-2.37868 + 4.11999i) q^{47} +(-1.74264 - 6.77962i) q^{49} -5.00000 q^{50} +(1.12132 + 1.94218i) q^{52} +(2.12132 + 3.67423i) q^{53} +(1.62132 - 2.09077i) q^{56} +(-2.12132 + 3.67423i) q^{58} +(1.12132 - 1.94218i) q^{61} +9.24264 q^{62} +1.00000 q^{64} +(-0.121320 - 0.210133i) q^{67} +1.24264 q^{71} +(3.50000 + 6.06218i) q^{73} +(2.00000 + 3.46410i) q^{74} -2.24264 q^{76} +(11.1213 + 1.52192i) q^{77} +(-0.378680 + 0.655892i) q^{79} +(-5.74264 + 9.94655i) q^{82} +16.2426 q^{83} +(-5.24264 + 9.08052i) q^{86} +(2.12132 + 3.67423i) q^{88} +(-5.74264 + 9.94655i) q^{89} +(-3.63604 + 4.68885i) q^{91} -1.24264 q^{92} +(-2.37868 - 4.11999i) q^{94} +4.48528 q^{97} +(6.74264 + 1.88064i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} - 2 q^{7} + 4 q^{8} + 8 q^{13} + 4 q^{14} - 2 q^{16} - 4 q^{19} - 6 q^{23} + 10 q^{25} - 4 q^{26} - 2 q^{28} - 10 q^{31} - 2 q^{32} + 8 q^{37} - 4 q^{38} + 12 q^{41} + 8 q^{43} - 6 q^{46}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 1.62132 2.09077i 0.612801 0.790237i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 2.12132 + 3.67423i 0.639602 + 1.10782i 0.985520 + 0.169559i \(0.0542342\pi\)
−0.345918 + 0.938265i \(0.612432\pi\)
\(12\) 0 0
\(13\) −2.24264 −0.621997 −0.310998 0.950410i \(-0.600663\pi\)
−0.310998 + 0.950410i \(0.600663\pi\)
\(14\) 1.00000 + 2.44949i 0.267261 + 0.654654i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 1.12132 1.94218i 0.257249 0.445568i −0.708255 0.705956i \(-0.750517\pi\)
0.965504 + 0.260389i \(0.0838508\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.24264 −0.904534
\(23\) 0.621320 1.07616i 0.129554 0.224395i −0.793950 0.607983i \(-0.791979\pi\)
0.923504 + 0.383589i \(0.125312\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 1.12132 1.94218i 0.219909 0.380894i
\(27\) 0 0
\(28\) −2.62132 0.358719i −0.495383 0.0677916i
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) −4.62132 8.00436i −0.830014 1.43763i −0.898027 0.439941i \(-0.854999\pi\)
0.0680129 0.997684i \(-0.478334\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 3.46410i 0.328798 0.569495i −0.653476 0.756948i \(-0.726690\pi\)
0.982274 + 0.187453i \(0.0600231\pi\)
\(38\) 1.12132 + 1.94218i 0.181902 + 0.315064i
\(39\) 0 0
\(40\) 0 0
\(41\) 11.4853 1.79370 0.896850 0.442335i \(-0.145850\pi\)
0.896850 + 0.442335i \(0.145850\pi\)
\(42\) 0 0
\(43\) 10.4853 1.59899 0.799495 0.600672i \(-0.205100\pi\)
0.799495 + 0.600672i \(0.205100\pi\)
\(44\) 2.12132 3.67423i 0.319801 0.553912i
\(45\) 0 0
\(46\) 0.621320 + 1.07616i 0.0916087 + 0.158671i
\(47\) −2.37868 + 4.11999i −0.346966 + 0.600963i −0.985709 0.168457i \(-0.946121\pi\)
0.638743 + 0.769420i \(0.279455\pi\)
\(48\) 0 0
\(49\) −1.74264 6.77962i −0.248949 0.968517i
\(50\) −5.00000 −0.707107
\(51\) 0 0
\(52\) 1.12132 + 1.94218i 0.155499 + 0.269332i
\(53\) 2.12132 + 3.67423i 0.291386 + 0.504695i 0.974138 0.225955i \(-0.0725503\pi\)
−0.682752 + 0.730650i \(0.739217\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.62132 2.09077i 0.216658 0.279391i
\(57\) 0 0
\(58\) −2.12132 + 3.67423i −0.278543 + 0.482451i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 1.12132 1.94218i 0.143570 0.248671i −0.785268 0.619156i \(-0.787475\pi\)
0.928839 + 0.370484i \(0.120808\pi\)
\(62\) 9.24264 1.17382
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −0.121320 0.210133i −0.0148216 0.0256718i 0.858519 0.512781i \(-0.171385\pi\)
−0.873341 + 0.487109i \(0.838051\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.24264 0.147474 0.0737372 0.997278i \(-0.476507\pi\)
0.0737372 + 0.997278i \(0.476507\pi\)
\(72\) 0 0
\(73\) 3.50000 + 6.06218i 0.409644 + 0.709524i 0.994850 0.101361i \(-0.0323196\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 2.00000 + 3.46410i 0.232495 + 0.402694i
\(75\) 0 0
\(76\) −2.24264 −0.257249
\(77\) 11.1213 + 1.52192i 1.26739 + 0.173439i
\(78\) 0 0
\(79\) −0.378680 + 0.655892i −0.0426048 + 0.0737937i −0.886541 0.462649i \(-0.846899\pi\)
0.843937 + 0.536443i \(0.180232\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −5.74264 + 9.94655i −0.634169 + 1.09841i
\(83\) 16.2426 1.78286 0.891431 0.453157i \(-0.149702\pi\)
0.891431 + 0.453157i \(0.149702\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.24264 + 9.08052i −0.565328 + 0.979178i
\(87\) 0 0
\(88\) 2.12132 + 3.67423i 0.226134 + 0.391675i
\(89\) −5.74264 + 9.94655i −0.608719 + 1.05433i 0.382733 + 0.923859i \(0.374983\pi\)
−0.991452 + 0.130473i \(0.958350\pi\)
\(90\) 0 0
\(91\) −3.63604 + 4.68885i −0.381160 + 0.491525i
\(92\) −1.24264 −0.129554
\(93\) 0 0
\(94\) −2.37868 4.11999i −0.245342 0.424945i
\(95\) 0 0
\(96\) 0 0
\(97\) 4.48528 0.455411 0.227706 0.973730i \(-0.426878\pi\)
0.227706 + 0.973730i \(0.426878\pi\)
\(98\) 6.74264 + 1.88064i 0.681110 + 0.189973i
\(99\) 0 0
\(100\) 2.50000 4.33013i 0.250000 0.433013i
\(101\) −8.12132 14.0665i −0.808102 1.39967i −0.914177 0.405315i \(-0.867162\pi\)
0.106076 0.994358i \(-0.466171\pi\)
\(102\) 0 0
\(103\) −4.62132 + 8.00436i −0.455352 + 0.788693i −0.998708 0.0508091i \(-0.983820\pi\)
0.543356 + 0.839502i \(0.317153\pi\)
\(104\) −2.24264 −0.219909
\(105\) 0 0
\(106\) −4.24264 −0.412082
\(107\) −7.24264 + 12.5446i −0.700173 + 1.21273i 0.268233 + 0.963354i \(0.413560\pi\)
−0.968406 + 0.249380i \(0.919773\pi\)
\(108\) 0 0
\(109\) −3.12132 5.40629i −0.298968 0.517828i 0.676932 0.736046i \(-0.263309\pi\)
−0.975900 + 0.218217i \(0.929976\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 + 2.44949i 0.0944911 + 0.231455i
\(113\) −3.51472 −0.330637 −0.165318 0.986240i \(-0.552865\pi\)
−0.165318 + 0.986240i \(0.552865\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.12132 3.67423i −0.196960 0.341144i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.50000 + 6.06218i −0.318182 + 0.551107i
\(122\) 1.12132 + 1.94218i 0.101520 + 0.175837i
\(123\) 0 0
\(124\) −4.62132 + 8.00436i −0.415007 + 0.718813i
\(125\) 0 0
\(126\) 0 0
\(127\) 15.2426 1.35257 0.676283 0.736642i \(-0.263590\pi\)
0.676283 + 0.736642i \(0.263590\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 8.12132 14.0665i 0.709563 1.22900i −0.255456 0.966821i \(-0.582226\pi\)
0.965019 0.262179i \(-0.0844410\pi\)
\(132\) 0 0
\(133\) −2.24264 5.49333i −0.194462 0.476332i
\(134\) 0.242641 0.0209610
\(135\) 0 0
\(136\) 0 0
\(137\) −6.98528 12.0989i −0.596793 1.03368i −0.993291 0.115640i \(-0.963108\pi\)
0.396498 0.918035i \(-0.370225\pi\)
\(138\) 0 0
\(139\) 20.7279 1.75812 0.879060 0.476712i \(-0.158171\pi\)
0.879060 + 0.476712i \(0.158171\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.621320 + 1.07616i −0.0521400 + 0.0903092i
\(143\) −4.75736 8.23999i −0.397830 0.689062i
\(144\) 0 0
\(145\) 0 0
\(146\) −7.00000 −0.579324
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) −3.87868 + 6.71807i −0.317754 + 0.550366i −0.980019 0.198904i \(-0.936262\pi\)
0.662265 + 0.749270i \(0.269595\pi\)
\(150\) 0 0
\(151\) 5.62132 + 9.73641i 0.457457 + 0.792338i 0.998826 0.0484470i \(-0.0154272\pi\)
−0.541369 + 0.840785i \(0.682094\pi\)
\(152\) 1.12132 1.94218i 0.0909511 0.157532i
\(153\) 0 0
\(154\) −6.87868 + 8.87039i −0.554300 + 0.714796i
\(155\) 0 0
\(156\) 0 0
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) −0.378680 0.655892i −0.0301261 0.0521800i
\(159\) 0 0
\(160\) 0 0
\(161\) −1.24264 3.04384i −0.0979338 0.239888i
\(162\) 0 0
\(163\) 10.1213 17.5306i 0.792763 1.37311i −0.131487 0.991318i \(-0.541975\pi\)
0.924250 0.381788i \(-0.124692\pi\)
\(164\) −5.74264 9.94655i −0.448425 0.776695i
\(165\) 0 0
\(166\) −8.12132 + 14.0665i −0.630337 + 1.09178i
\(167\) −18.2132 −1.40938 −0.704690 0.709515i \(-0.748914\pi\)
−0.704690 + 0.709515i \(0.748914\pi\)
\(168\) 0 0
\(169\) −7.97056 −0.613120
\(170\) 0 0
\(171\) 0 0
\(172\) −5.24264 9.08052i −0.399748 0.692383i
\(173\) −11.4853 + 19.8931i −0.873210 + 1.51244i −0.0145521 + 0.999894i \(0.504632\pi\)
−0.858658 + 0.512550i \(0.828701\pi\)
\(174\) 0 0
\(175\) 13.1066 + 1.79360i 0.990766 + 0.135583i
\(176\) −4.24264 −0.319801
\(177\) 0 0
\(178\) −5.74264 9.94655i −0.430429 0.745525i
\(179\) 3.87868 + 6.71807i 0.289906 + 0.502132i 0.973787 0.227461i \(-0.0730426\pi\)
−0.683881 + 0.729594i \(0.739709\pi\)
\(180\) 0 0
\(181\) −11.7574 −0.873918 −0.436959 0.899482i \(-0.643944\pi\)
−0.436959 + 0.899482i \(0.643944\pi\)
\(182\) −2.24264 5.49333i −0.166236 0.407192i
\(183\) 0 0
\(184\) 0.621320 1.07616i 0.0458043 0.0793355i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 4.75736 0.346966
\(189\) 0 0
\(190\) 0 0
\(191\) 4.24264 7.34847i 0.306987 0.531717i −0.670715 0.741715i \(-0.734013\pi\)
0.977702 + 0.209999i \(0.0673460\pi\)
\(192\) 0 0
\(193\) 10.7426 + 18.6068i 0.773272 + 1.33935i 0.935760 + 0.352636i \(0.114715\pi\)
−0.162488 + 0.986710i \(0.551952\pi\)
\(194\) −2.24264 + 3.88437i −0.161012 + 0.278881i
\(195\) 0 0
\(196\) −5.00000 + 4.89898i −0.357143 + 0.349927i
\(197\) −16.9706 −1.20910 −0.604551 0.796566i \(-0.706648\pi\)
−0.604551 + 0.796566i \(0.706648\pi\)
\(198\) 0 0
\(199\) 11.6213 + 20.1287i 0.823814 + 1.42689i 0.902823 + 0.430013i \(0.141491\pi\)
−0.0790091 + 0.996874i \(0.525176\pi\)
\(200\) 2.50000 + 4.33013i 0.176777 + 0.306186i
\(201\) 0 0
\(202\) 16.2426 1.14283
\(203\) 6.87868 8.87039i 0.482789 0.622579i
\(204\) 0 0
\(205\) 0 0
\(206\) −4.62132 8.00436i −0.321983 0.557690i
\(207\) 0 0
\(208\) 1.12132 1.94218i 0.0777496 0.134666i
\(209\) 9.51472 0.658147
\(210\) 0 0
\(211\) 10.4853 0.721837 0.360918 0.932597i \(-0.382463\pi\)
0.360918 + 0.932597i \(0.382463\pi\)
\(212\) 2.12132 3.67423i 0.145693 0.252347i
\(213\) 0 0
\(214\) −7.24264 12.5446i −0.495097 0.857533i
\(215\) 0 0
\(216\) 0 0
\(217\) −24.2279 3.31552i −1.64470 0.225072i
\(218\) 6.24264 0.422805
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.7279 −0.919290 −0.459645 0.888103i \(-0.652023\pi\)
−0.459645 + 0.888103i \(0.652023\pi\)
\(224\) −2.62132 0.358719i −0.175144 0.0239680i
\(225\) 0 0
\(226\) 1.75736 3.04384i 0.116898 0.202473i
\(227\) −4.75736 8.23999i −0.315757 0.546907i 0.663841 0.747874i \(-0.268925\pi\)
−0.979598 + 0.200966i \(0.935592\pi\)
\(228\) 0 0
\(229\) 4.48528 7.76874i 0.296396 0.513372i −0.678913 0.734219i \(-0.737549\pi\)
0.975309 + 0.220846i \(0.0708819\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.24264 0.278543
\(233\) −1.75736 + 3.04384i −0.115128 + 0.199408i −0.917831 0.396971i \(-0.870061\pi\)
0.802703 + 0.596379i \(0.203395\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.7279 −1.40546 −0.702731 0.711455i \(-0.748036\pi\)
−0.702731 + 0.711455i \(0.748036\pi\)
\(240\) 0 0
\(241\) −12.7426 22.0709i −0.820826 1.42171i −0.905068 0.425266i \(-0.860180\pi\)
0.0842426 0.996445i \(-0.473153\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) 0 0
\(244\) −2.24264 −0.143570
\(245\) 0 0
\(246\) 0 0
\(247\) −2.51472 + 4.35562i −0.160008 + 0.277141i
\(248\) −4.62132 8.00436i −0.293454 0.508277i
\(249\) 0 0
\(250\) 0 0
\(251\) −6.72792 −0.424663 −0.212331 0.977198i \(-0.568106\pi\)
−0.212331 + 0.977198i \(0.568106\pi\)
\(252\) 0 0
\(253\) 5.27208 0.331453
\(254\) −7.62132 + 13.2005i −0.478204 + 0.828274i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 5.74264 9.94655i 0.358216 0.620448i −0.629447 0.777044i \(-0.716718\pi\)
0.987663 + 0.156595i \(0.0500518\pi\)
\(258\) 0 0
\(259\) −4.00000 9.79796i −0.248548 0.608816i
\(260\) 0 0
\(261\) 0 0
\(262\) 8.12132 + 14.0665i 0.501737 + 0.869034i
\(263\) 5.48528 + 9.50079i 0.338237 + 0.585844i 0.984101 0.177609i \(-0.0568361\pi\)
−0.645864 + 0.763452i \(0.723503\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 5.87868 + 0.804479i 0.360445 + 0.0493258i
\(267\) 0 0
\(268\) −0.121320 + 0.210133i −0.00741082 + 0.0128359i
\(269\) −11.4853 19.8931i −0.700270 1.21290i −0.968372 0.249513i \(-0.919730\pi\)
0.268102 0.963391i \(-0.413604\pi\)
\(270\) 0 0
\(271\) −2.24264 + 3.88437i −0.136231 + 0.235959i −0.926067 0.377359i \(-0.876832\pi\)
0.789836 + 0.613318i \(0.210166\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 13.9706 0.843993
\(275\) −10.6066 + 18.3712i −0.639602 + 1.10782i
\(276\) 0 0
\(277\) −11.6066 20.1032i −0.697373 1.20789i −0.969374 0.245589i \(-0.921019\pi\)
0.272001 0.962297i \(-0.412315\pi\)
\(278\) −10.3640 + 17.9509i −0.621589 + 1.07662i
\(279\) 0 0
\(280\) 0 0
\(281\) −28.4558 −1.69753 −0.848767 0.528768i \(-0.822654\pi\)
−0.848767 + 0.528768i \(0.822654\pi\)
\(282\) 0 0
\(283\) 4.48528 + 7.76874i 0.266622 + 0.461803i 0.967987 0.250999i \(-0.0807590\pi\)
−0.701365 + 0.712802i \(0.747426\pi\)
\(284\) −0.621320 1.07616i −0.0368686 0.0638583i
\(285\) 0 0
\(286\) 9.51472 0.562617
\(287\) 18.6213 24.0131i 1.09918 1.41745i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 3.50000 6.06218i 0.204822 0.354762i
\(293\) 22.9706 1.34195 0.670977 0.741478i \(-0.265875\pi\)
0.670977 + 0.741478i \(0.265875\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.00000 3.46410i 0.116248 0.201347i
\(297\) 0 0
\(298\) −3.87868 6.71807i −0.224686 0.389167i
\(299\) −1.39340 + 2.41344i −0.0805823 + 0.139573i
\(300\) 0 0
\(301\) 17.0000 21.9223i 0.979864 1.26358i
\(302\) −11.2426 −0.646941
\(303\) 0 0
\(304\) 1.12132 + 1.94218i 0.0643121 + 0.111392i
\(305\) 0 0
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) −4.24264 10.3923i −0.241747 0.592157i
\(309\) 0 0
\(310\) 0 0
\(311\) −11.4853 19.8931i −0.651271 1.12803i −0.982815 0.184594i \(-0.940903\pi\)
0.331544 0.943440i \(-0.392430\pi\)
\(312\) 0 0
\(313\) −7.98528 + 13.8309i −0.451355 + 0.781769i −0.998470 0.0552876i \(-0.982392\pi\)
0.547116 + 0.837057i \(0.315726\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 0.757359 0.0426048
\(317\) −8.48528 + 14.6969i −0.476581 + 0.825462i −0.999640 0.0268342i \(-0.991457\pi\)
0.523059 + 0.852296i \(0.324791\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 3.25736 + 0.445759i 0.181526 + 0.0248412i
\(323\) 0 0
\(324\) 0 0
\(325\) −5.60660 9.71092i −0.310998 0.538665i
\(326\) 10.1213 + 17.5306i 0.560568 + 0.970932i
\(327\) 0 0
\(328\) 11.4853 0.634169
\(329\) 4.75736 + 11.6531i 0.262282 + 0.642456i
\(330\) 0 0
\(331\) 0.757359 1.31178i 0.0416282 0.0721022i −0.844461 0.535618i \(-0.820079\pi\)
0.886089 + 0.463515i \(0.153412\pi\)
\(332\) −8.12132 14.0665i −0.445715 0.772002i
\(333\) 0 0
\(334\) 9.10660 15.7731i 0.498291 0.863065i
\(335\) 0 0
\(336\) 0 0
\(337\) −12.4853 −0.680117 −0.340058 0.940404i \(-0.610447\pi\)
−0.340058 + 0.940404i \(0.610447\pi\)
\(338\) 3.98528 6.90271i 0.216771 0.375458i
\(339\) 0 0
\(340\) 0 0
\(341\) 19.6066 33.9596i 1.06176 1.83902i
\(342\) 0 0
\(343\) −17.0000 7.34847i −0.917914 0.396780i
\(344\) 10.4853 0.565328
\(345\) 0 0
\(346\) −11.4853 19.8931i −0.617453 1.06946i
\(347\) −9.36396 16.2189i −0.502684 0.870674i −0.999995 0.00310172i \(-0.999013\pi\)
0.497311 0.867572i \(-0.334321\pi\)
\(348\) 0 0
\(349\) −8.97056 −0.480183 −0.240092 0.970750i \(-0.577177\pi\)
−0.240092 + 0.970750i \(0.577177\pi\)
\(350\) −8.10660 + 10.4539i −0.433316 + 0.558782i
\(351\) 0 0
\(352\) 2.12132 3.67423i 0.113067 0.195837i
\(353\) −10.5000 18.1865i −0.558859 0.967972i −0.997592 0.0693543i \(-0.977906\pi\)
0.438733 0.898617i \(-0.355427\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11.4853 0.608719
\(357\) 0 0
\(358\) −7.75736 −0.409989
\(359\) −9.62132 + 16.6646i −0.507794 + 0.879525i 0.492165 + 0.870502i \(0.336206\pi\)
−0.999959 + 0.00902308i \(0.997128\pi\)
\(360\) 0 0
\(361\) 6.98528 + 12.0989i 0.367646 + 0.636782i
\(362\) 5.87868 10.1822i 0.308977 0.535163i
\(363\) 0 0
\(364\) 5.87868 + 0.804479i 0.308127 + 0.0421662i
\(365\) 0 0
\(366\) 0 0
\(367\) 6.86396 + 11.8887i 0.358296 + 0.620587i 0.987676 0.156511i \(-0.0500246\pi\)
−0.629380 + 0.777097i \(0.716691\pi\)
\(368\) 0.621320 + 1.07616i 0.0323886 + 0.0560986i
\(369\) 0 0
\(370\) 0 0
\(371\) 11.1213 + 1.52192i 0.577390 + 0.0790140i
\(372\) 0 0
\(373\) −17.6066 + 30.4955i −0.911635 + 1.57900i −0.0998811 + 0.994999i \(0.531846\pi\)
−0.811754 + 0.583999i \(0.801487\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.37868 + 4.11999i −0.122671 + 0.212472i
\(377\) −9.51472 −0.490033
\(378\) 0 0
\(379\) 26.7279 1.37292 0.686461 0.727167i \(-0.259163\pi\)
0.686461 + 0.727167i \(0.259163\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4.24264 + 7.34847i 0.217072 + 0.375980i
\(383\) −9.10660 + 15.7731i −0.465326 + 0.805968i −0.999216 0.0395860i \(-0.987396\pi\)
0.533891 + 0.845554i \(0.320729\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −21.4853 −1.09357
\(387\) 0 0
\(388\) −2.24264 3.88437i −0.113853 0.197199i
\(389\) −0.878680 1.52192i −0.0445508 0.0771643i 0.842890 0.538086i \(-0.180852\pi\)
−0.887441 + 0.460921i \(0.847519\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.74264 6.77962i −0.0880166 0.342422i
\(393\) 0 0
\(394\) 8.48528 14.6969i 0.427482 0.740421i
\(395\) 0 0
\(396\) 0 0
\(397\) 5.87868 10.1822i 0.295042 0.511029i −0.679952 0.733256i \(-0.738000\pi\)
0.974995 + 0.222228i \(0.0713329\pi\)
\(398\) −23.2426 −1.16505
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) −6.25736 + 10.8381i −0.312478 + 0.541227i −0.978898 0.204349i \(-0.934492\pi\)
0.666420 + 0.745576i \(0.267826\pi\)
\(402\) 0 0
\(403\) 10.3640 + 17.9509i 0.516266 + 0.894198i
\(404\) −8.12132 + 14.0665i −0.404051 + 0.699836i
\(405\) 0 0
\(406\) 4.24264 + 10.3923i 0.210559 + 0.515761i
\(407\) 16.9706 0.841200
\(408\) 0 0
\(409\) −17.5000 30.3109i −0.865319 1.49878i −0.866730 0.498778i \(-0.833782\pi\)
0.00141047 0.999999i \(-0.499551\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 9.24264 0.455352
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 1.12132 + 1.94218i 0.0549773 + 0.0952234i
\(417\) 0 0
\(418\) −4.75736 + 8.23999i −0.232690 + 0.403031i
\(419\) −16.2426 −0.793505 −0.396752 0.917926i \(-0.629863\pi\)
−0.396752 + 0.917926i \(0.629863\pi\)
\(420\) 0 0
\(421\) −5.75736 −0.280597 −0.140298 0.990109i \(-0.544806\pi\)
−0.140298 + 0.990109i \(0.544806\pi\)
\(422\) −5.24264 + 9.08052i −0.255208 + 0.442033i
\(423\) 0 0
\(424\) 2.12132 + 3.67423i 0.103020 + 0.178437i
\(425\) 0 0
\(426\) 0 0
\(427\) −2.24264 5.49333i −0.108529 0.265841i
\(428\) 14.4853 0.700173
\(429\) 0 0
\(430\) 0 0
\(431\) 14.3787 + 24.9046i 0.692597 + 1.19961i 0.970984 + 0.239144i \(0.0768667\pi\)
−0.278388 + 0.960469i \(0.589800\pi\)
\(432\) 0 0
\(433\) −29.9706 −1.44029 −0.720147 0.693822i \(-0.755926\pi\)
−0.720147 + 0.693822i \(0.755926\pi\)
\(434\) 14.9853 19.3242i 0.719317 0.927593i
\(435\) 0 0
\(436\) −3.12132 + 5.40629i −0.149484 + 0.258914i
\(437\) −1.39340 2.41344i −0.0666553 0.115450i
\(438\) 0 0
\(439\) 6.86396 11.8887i 0.327599 0.567418i −0.654436 0.756117i \(-0.727094\pi\)
0.982035 + 0.188699i \(0.0604272\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.2426 + 22.9369i −0.629177 + 1.08977i 0.358540 + 0.933514i \(0.383275\pi\)
−0.987717 + 0.156252i \(0.950059\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.86396 11.8887i 0.325018 0.562948i
\(447\) 0 0
\(448\) 1.62132 2.09077i 0.0766002 0.0987796i
\(449\) 28.9706 1.36721 0.683603 0.729854i \(-0.260412\pi\)
0.683603 + 0.729854i \(0.260412\pi\)
\(450\) 0 0
\(451\) 24.3640 + 42.1996i 1.14725 + 1.98710i
\(452\) 1.75736 + 3.04384i 0.0826592 + 0.143170i
\(453\) 0 0
\(454\) 9.51472 0.446548
\(455\) 0 0
\(456\) 0 0
\(457\) −14.2426 + 24.6690i −0.666243 + 1.15397i 0.312704 + 0.949851i \(0.398765\pi\)
−0.978947 + 0.204116i \(0.934568\pi\)
\(458\) 4.48528 + 7.76874i 0.209583 + 0.363009i
\(459\) 0 0
\(460\) 0 0
\(461\) 25.7574 1.19964 0.599820 0.800135i \(-0.295239\pi\)
0.599820 + 0.800135i \(0.295239\pi\)
\(462\) 0 0
\(463\) −17.2426 −0.801333 −0.400667 0.916224i \(-0.631221\pi\)
−0.400667 + 0.916224i \(0.631221\pi\)
\(464\) −2.12132 + 3.67423i −0.0984798 + 0.170572i
\(465\) 0 0
\(466\) −1.75736 3.04384i −0.0814081 0.141003i
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) −0.636039 0.0870399i −0.0293696 0.00401913i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 22.2426 + 38.5254i 1.02272 + 1.77140i
\(474\) 0 0
\(475\) 11.2132 0.514497
\(476\) 0 0
\(477\) 0 0
\(478\) 10.8640 18.8169i 0.496906 0.860666i
\(479\) 2.37868 + 4.11999i 0.108685 + 0.188247i 0.915238 0.402914i \(-0.132003\pi\)
−0.806553 + 0.591162i \(0.798669\pi\)
\(480\) 0 0
\(481\) −4.48528 + 7.76874i −0.204511 + 0.354224i
\(482\) 25.4853 1.16082
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) 5.62132 + 9.73641i 0.254726 + 0.441199i 0.964821 0.262907i \(-0.0846813\pi\)
−0.710095 + 0.704106i \(0.751348\pi\)
\(488\) 1.12132 1.94218i 0.0507598 0.0879185i
\(489\) 0 0
\(490\) 0 0
\(491\) −18.7279 −0.845179 −0.422590 0.906321i \(-0.638879\pi\)
−0.422590 + 0.906321i \(0.638879\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −2.51472 4.35562i −0.113143 0.195969i
\(495\) 0 0
\(496\) 9.24264 0.415007
\(497\) 2.01472 2.59808i 0.0903725 0.116540i
\(498\) 0 0
\(499\) −7.36396 + 12.7548i −0.329656 + 0.570981i −0.982444 0.186560i \(-0.940266\pi\)
0.652787 + 0.757541i \(0.273599\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.36396 5.82655i 0.150141 0.260052i
\(503\) 18.2132 0.812087 0.406043 0.913854i \(-0.366908\pi\)
0.406043 + 0.913854i \(0.366908\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2.63604 + 4.56575i −0.117186 + 0.202972i
\(507\) 0 0
\(508\) −7.62132 13.2005i −0.338141 0.585678i
\(509\) −8.12132 + 14.0665i −0.359971 + 0.623488i −0.987956 0.154738i \(-0.950547\pi\)
0.627984 + 0.778226i \(0.283880\pi\)
\(510\) 0 0
\(511\) 18.3492 + 2.51104i 0.811723 + 0.111082i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 5.74264 + 9.94655i 0.253297 + 0.438723i
\(515\) 0 0
\(516\) 0 0
\(517\) −20.1838 −0.887681
\(518\) 10.4853 + 1.43488i 0.460697 + 0.0630449i
\(519\) 0 0
\(520\) 0 0
\(521\) 17.2279 + 29.8396i 0.754769 + 1.30730i 0.945489 + 0.325654i \(0.105584\pi\)
−0.190720 + 0.981644i \(0.561082\pi\)
\(522\) 0 0
\(523\) 5.87868 10.1822i 0.257057 0.445235i −0.708395 0.705816i \(-0.750581\pi\)
0.965452 + 0.260581i \(0.0839139\pi\)
\(524\) −16.2426 −0.709563
\(525\) 0 0
\(526\) −10.9706 −0.478339
\(527\) 0 0
\(528\) 0 0
\(529\) 10.7279 + 18.5813i 0.466431 + 0.807883i
\(530\) 0 0
\(531\) 0 0
\(532\) −3.63604 + 4.68885i −0.157642 + 0.203287i
\(533\) −25.7574 −1.11568
\(534\) 0 0
\(535\) 0 0
\(536\) −0.121320 0.210133i −0.00524024 0.00907636i
\(537\) 0 0
\(538\) 22.9706 0.990331
\(539\) 21.2132 20.7846i 0.913717 0.895257i
\(540\) 0 0
\(541\) −9.48528 + 16.4290i −0.407804 + 0.706337i −0.994643 0.103366i \(-0.967039\pi\)
0.586839 + 0.809703i \(0.300372\pi\)
\(542\) −2.24264 3.88437i −0.0963297 0.166848i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10.4853 0.448318 0.224159 0.974553i \(-0.428036\pi\)
0.224159 + 0.974553i \(0.428036\pi\)
\(548\) −6.98528 + 12.0989i −0.298396 + 0.516838i
\(549\) 0 0
\(550\) −10.6066 18.3712i −0.452267 0.783349i
\(551\) 4.75736 8.23999i 0.202670 0.351035i
\(552\) 0 0
\(553\) 0.757359 + 1.85514i 0.0322062 + 0.0788887i
\(554\) 23.2132 0.986235
\(555\) 0 0
\(556\) −10.3640 17.9509i −0.439530 0.761288i
\(557\) 3.51472 + 6.08767i 0.148923 + 0.257943i 0.930830 0.365453i \(-0.119086\pi\)
−0.781906 + 0.623396i \(0.785753\pi\)
\(558\) 0 0
\(559\) −23.5147 −0.994567
\(560\) 0 0
\(561\) 0 0
\(562\) 14.2279 24.6435i 0.600169 1.03952i
\(563\) 3.36396 + 5.82655i 0.141774 + 0.245560i 0.928165 0.372170i \(-0.121386\pi\)
−0.786391 + 0.617729i \(0.788053\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −8.97056 −0.377061
\(567\) 0 0
\(568\) 1.24264 0.0521400
\(569\) 21.4706 37.1881i 0.900093 1.55901i 0.0727207 0.997352i \(-0.476832\pi\)
0.827372 0.561654i \(-0.189835\pi\)
\(570\) 0 0
\(571\) −6.48528 11.2328i −0.271401 0.470080i 0.697820 0.716273i \(-0.254153\pi\)
−0.969221 + 0.246193i \(0.920820\pi\)
\(572\) −4.75736 + 8.23999i −0.198915 + 0.344531i
\(573\) 0 0
\(574\) 11.4853 + 28.1331i 0.479386 + 1.17425i
\(575\) 6.21320 0.259108
\(576\) 0 0
\(577\) 15.9706 + 27.6618i 0.664863 + 1.15158i 0.979322 + 0.202306i \(0.0648435\pi\)
−0.314459 + 0.949271i \(0.601823\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) 0 0
\(580\) 0 0
\(581\) 26.3345 33.9596i 1.09254 1.40888i
\(582\) 0 0
\(583\) −9.00000 + 15.5885i −0.372742 + 0.645608i
\(584\) 3.50000 + 6.06218i 0.144831 + 0.250855i
\(585\) 0 0
\(586\) −11.4853 + 19.8931i −0.474453 + 0.821776i
\(587\) 39.2132 1.61850 0.809251 0.587463i \(-0.199873\pi\)
0.809251 + 0.587463i \(0.199873\pi\)
\(588\) 0 0
\(589\) −20.7279 −0.854079
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 + 3.46410i 0.0821995 + 0.142374i
\(593\) −5.74264 + 9.94655i −0.235822 + 0.408456i −0.959511 0.281670i \(-0.909112\pi\)
0.723689 + 0.690126i \(0.242445\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.75736 0.317754
\(597\) 0 0
\(598\) −1.39340 2.41344i −0.0569803 0.0986928i
\(599\) 5.48528 + 9.50079i 0.224123 + 0.388192i 0.956056 0.293185i \(-0.0947151\pi\)
−0.731933 + 0.681376i \(0.761382\pi\)
\(600\) 0 0
\(601\) 15.9706 0.651453 0.325726 0.945464i \(-0.394391\pi\)
0.325726 + 0.945464i \(0.394391\pi\)
\(602\) 10.4853 + 25.6836i 0.427348 + 1.04678i
\(603\) 0 0
\(604\) 5.62132 9.73641i 0.228728 0.396169i
\(605\) 0 0
\(606\) 0 0
\(607\) 2.51472 4.35562i 0.102069 0.176789i −0.810468 0.585783i \(-0.800787\pi\)
0.912537 + 0.408994i \(0.134120\pi\)
\(608\) −2.24264 −0.0909511
\(609\) 0 0
\(610\) 0 0
\(611\) 5.33452 9.23967i 0.215812 0.373797i
\(612\) 0 0
\(613\) −14.9706 25.9298i −0.604655 1.04729i −0.992106 0.125403i \(-0.959978\pi\)
0.387451 0.921891i \(-0.373356\pi\)
\(614\) 14.0000 24.2487i 0.564994 0.978598i
\(615\) 0 0
\(616\) 11.1213 + 1.52192i 0.448091 + 0.0613198i
\(617\) 22.4558 0.904038 0.452019 0.892008i \(-0.350704\pi\)
0.452019 + 0.892008i \(0.350704\pi\)
\(618\) 0 0
\(619\) 9.24264 + 16.0087i 0.371493 + 0.643445i 0.989795 0.142495i \(-0.0455126\pi\)
−0.618302 + 0.785940i \(0.712179\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 22.9706 0.921036
\(623\) 11.4853 + 28.1331i 0.460148 + 1.12713i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) −7.98528 13.8309i −0.319156 0.552794i
\(627\) 0 0
\(628\) −7.00000 + 12.1244i −0.279330 + 0.483814i
\(629\) 0 0
\(630\) 0 0
\(631\) −7.51472 −0.299156 −0.149578 0.988750i \(-0.547792\pi\)
−0.149578 + 0.988750i \(0.547792\pi\)
\(632\) −0.378680 + 0.655892i −0.0150631 + 0.0260900i
\(633\) 0 0
\(634\) −8.48528 14.6969i −0.336994 0.583690i
\(635\) 0 0
\(636\) 0 0
\(637\) 3.90812 + 15.2042i 0.154845 + 0.602414i
\(638\) −18.0000 −0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) −23.2279 40.2319i −0.917448 1.58907i −0.803278 0.595605i \(-0.796912\pi\)
−0.114170 0.993461i \(-0.536421\pi\)
\(642\) 0 0
\(643\) −21.2721 −0.838889 −0.419444 0.907781i \(-0.637775\pi\)
−0.419444 + 0.907781i \(0.637775\pi\)
\(644\) −2.01472 + 2.59808i −0.0793910 + 0.102379i
\(645\) 0 0
\(646\) 0 0
\(647\) −13.8640 24.0131i −0.545049 0.944052i −0.998604 0.0528236i \(-0.983178\pi\)
0.453555 0.891228i \(-0.350155\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 11.2132 0.439818
\(651\) 0 0
\(652\) −20.2426 −0.792763
\(653\) −12.0000 + 20.7846i −0.469596 + 0.813365i −0.999396 0.0347583i \(-0.988934\pi\)
0.529799 + 0.848123i \(0.322267\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −5.74264 + 9.94655i −0.224212 + 0.388347i
\(657\) 0 0
\(658\) −12.4706 1.70656i −0.486153 0.0665285i
\(659\) 3.21320 0.125169 0.0625843 0.998040i \(-0.480066\pi\)
0.0625843 + 0.998040i \(0.480066\pi\)
\(660\) 0 0
\(661\) −17.0919 29.6040i −0.664797 1.15146i −0.979340 0.202219i \(-0.935185\pi\)
0.314543 0.949243i \(-0.398149\pi\)
\(662\) 0.757359 + 1.31178i 0.0294356 + 0.0509840i
\(663\) 0 0
\(664\) 16.2426 0.630337
\(665\) 0 0
\(666\) 0 0
\(667\) 2.63604 4.56575i 0.102068 0.176787i
\(668\) 9.10660 + 15.7731i 0.352345 + 0.610279i
\(669\) 0 0
\(670\) 0 0
\(671\) 9.51472 0.367312
\(672\) 0 0
\(673\) −10.5147 −0.405313 −0.202656 0.979250i \(-0.564957\pi\)
−0.202656 + 0.979250i \(0.564957\pi\)
\(674\) 6.24264 10.8126i 0.240458 0.416485i
\(675\) 0 0
\(676\) 3.98528 + 6.90271i 0.153280 + 0.265489i
\(677\) −12.8787 + 22.3065i −0.494968 + 0.857309i −0.999983 0.00580089i \(-0.998154\pi\)
0.505015 + 0.863110i \(0.331487\pi\)
\(678\) 0 0
\(679\) 7.27208 9.37769i 0.279077 0.359883i
\(680\) 0 0
\(681\) 0 0
\(682\) 19.6066 + 33.9596i 0.750776 + 1.30038i
\(683\) 8.84924 + 15.3273i 0.338607 + 0.586484i 0.984171 0.177222i \(-0.0567110\pi\)
−0.645564 + 0.763706i \(0.723378\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 14.8640 11.0482i 0.567509 0.421822i
\(687\) 0 0
\(688\) −5.24264 + 9.08052i −0.199874 + 0.346192i
\(689\) −4.75736 8.23999i −0.181241 0.313919i
\(690\) 0 0
\(691\) 1.12132 1.94218i 0.0426570 0.0738842i −0.843909 0.536487i \(-0.819751\pi\)
0.886566 + 0.462603i \(0.153084\pi\)
\(692\) 22.9706 0.873210
\(693\) 0 0
\(694\) 18.7279 0.710902
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 4.48528 7.76874i 0.169770 0.294051i
\(699\) 0 0
\(700\) −5.00000 12.2474i −0.188982 0.462910i
\(701\) 22.2426 0.840093 0.420046 0.907503i \(-0.362014\pi\)
0.420046 + 0.907503i \(0.362014\pi\)
\(702\) 0 0
\(703\) −4.48528 7.76874i −0.169166 0.293003i
\(704\) 2.12132 + 3.67423i 0.0799503 + 0.138478i
\(705\) 0 0
\(706\) 21.0000 0.790345
\(707\) −42.5772 5.82655i −1.60128 0.219130i
\(708\) 0 0
\(709\) 16.8492 29.1837i 0.632787 1.09602i −0.354193 0.935172i \(-0.615244\pi\)
0.986979 0.160846i \(-0.0514223\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −5.74264 + 9.94655i −0.215215 + 0.372763i
\(713\) −11.4853 −0.430127
\(714\) 0 0
\(715\) 0 0
\(716\) 3.87868 6.71807i 0.144953 0.251066i
\(717\) 0 0
\(718\) −9.62132 16.6646i −0.359064 0.621918i
\(719\) 13.8640 24.0131i 0.517039 0.895537i −0.482766 0.875750i \(-0.660368\pi\)
0.999804 0.0197874i \(-0.00629894\pi\)
\(720\) 0 0
\(721\) 9.24264 + 22.6398i 0.344214 + 0.843148i
\(722\) −13.9706 −0.519931
\(723\) 0 0
\(724\) 5.87868 + 10.1822i 0.218479 + 0.378417i
\(725\) 10.6066 + 18.3712i 0.393919 + 0.682288i
\(726\) 0 0
\(727\) −0.272078 −0.0100908 −0.00504541 0.999987i \(-0.501606\pi\)
−0.00504541 + 0.999987i \(0.501606\pi\)
\(728\) −3.63604 + 4.68885i −0.134761 + 0.173780i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 2.51472 4.35562i 0.0928833 0.160879i −0.815840 0.578278i \(-0.803725\pi\)
0.908723 + 0.417399i \(0.137058\pi\)
\(734\) −13.7279 −0.506707
\(735\) 0 0
\(736\) −1.24264 −0.0458043
\(737\) 0.514719 0.891519i 0.0189599 0.0328395i
\(738\) 0 0
\(739\) 3.24264 + 5.61642i 0.119282 + 0.206603i 0.919484 0.393129i \(-0.128607\pi\)
−0.800201 + 0.599732i \(0.795274\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −6.87868 + 8.87039i −0.252524 + 0.325642i
\(743\) 43.2426 1.58642 0.793209 0.608949i \(-0.208409\pi\)
0.793209 + 0.608949i \(0.208409\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −17.6066 30.4955i −0.644623 1.11652i
\(747\) 0 0
\(748\) 0 0
\(749\) 14.4853 + 35.4815i 0.529281 + 1.29647i
\(750\) 0 0
\(751\) 4.37868 7.58410i 0.159780 0.276748i −0.775009 0.631950i \(-0.782255\pi\)
0.934789 + 0.355203i \(0.115588\pi\)
\(752\) −2.37868 4.11999i −0.0867415 0.150241i
\(753\) 0 0
\(754\) 4.75736 8.23999i 0.173253 0.300083i
\(755\) 0 0
\(756\) 0 0
\(757\) −20.9706 −0.762188 −0.381094 0.924536i \(-0.624453\pi\)
−0.381094 + 0.924536i \(0.624453\pi\)
\(758\) −13.3640 + 23.1471i −0.485401 + 0.840739i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5000 + 18.1865i −0.380625 + 0.659261i −0.991152 0.132734i \(-0.957624\pi\)
0.610527 + 0.791995i \(0.290958\pi\)
\(762\) 0 0
\(763\) −16.3640 2.23936i −0.592415 0.0810702i
\(764\) −8.48528 −0.306987
\(765\) 0 0
\(766\) −9.10660 15.7731i −0.329035 0.569905i
\(767\) 0 0
\(768\) 0 0
\(769\) 4.48528 0.161743 0.0808717 0.996725i \(-0.474230\pi\)
0.0808717 + 0.996725i \(0.474230\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10.7426 18.6068i 0.386636 0.669673i
\(773\) 1.39340 + 2.41344i 0.0501171 + 0.0868053i 0.889996 0.455969i \(-0.150707\pi\)
−0.839879 + 0.542774i \(0.817374\pi\)
\(774\) 0 0
\(775\) 23.1066 40.0218i 0.830014 1.43763i
\(776\) 4.48528 0.161012
\(777\) 0 0
\(778\) 1.75736 0.0630044
\(779\) 12.8787 22.3065i 0.461427 0.799214i
\(780\) 0 0
\(781\) 2.63604 + 4.56575i 0.0943249 + 0.163376i
\(782\) 0 0
\(783\) 0 0
\(784\) 6.74264 + 1.88064i 0.240809 + 0.0671656i
\(785\) 0 0
\(786\) 0 0
\(787\) −5.60660 9.71092i −0.199854 0.346157i 0.748627 0.662991i \(-0.230713\pi\)
−0.948481 + 0.316834i \(0.897380\pi\)
\(788\) 8.48528 + 14.6969i 0.302276 + 0.523557i
\(789\) 0 0
\(790\) 0 0
\(791\) −5.69848 + 7.34847i −0.202615 + 0.261281i
\(792\) 0 0
\(793\) −2.51472 + 4.35562i −0.0893003 + 0.154673i
\(794\) 5.87868 + 10.1822i 0.208627 + 0.361352i
\(795\) 0 0
\(796\) 11.6213 20.1287i 0.411907 0.713443i
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.50000 4.33013i 0.0883883 0.153093i
\(801\) 0 0
\(802\) −6.25736 10.8381i −0.220955 0.382705i
\(803\) −14.8492 + 25.7196i −0.524018 + 0.907626i
\(804\) 0 0
\(805\) 0 0
\(806\) −20.7279 −0.730110
\(807\) 0 0
\(808\) −8.12132 14.0665i −0.285707 0.494859i
\(809\) 4.50000 + 7.79423i 0.158212 + 0.274030i 0.934224 0.356687i \(-0.116094\pi\)
−0.776012 + 0.630718i \(0.782761\pi\)
\(810\) 0 0
\(811\) 27.4558 0.964105 0.482053 0.876142i \(-0.339891\pi\)
0.482053 + 0.876142i \(0.339891\pi\)
\(812\) −11.1213 1.52192i −0.390282 0.0534088i
\(813\) 0 0
\(814\) −8.48528 + 14.6969i −0.297409 + 0.515127i
\(815\) 0 0
\(816\) 0 0
\(817\) 11.7574 20.3643i 0.411338 0.712458i
\(818\) 35.0000 1.22375
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0919 + 38.2643i −0.771012 + 1.33543i 0.165997 + 0.986126i \(0.446916\pi\)
−0.937009 + 0.349306i \(0.886417\pi\)
\(822\) 0 0
\(823\) 9.34924 + 16.1934i 0.325894 + 0.564465i 0.981693 0.190471i \(-0.0610014\pi\)
−0.655799 + 0.754936i \(0.727668\pi\)
\(824\) −4.62132 + 8.00436i −0.160991 + 0.278845i
\(825\) 0 0
\(826\) 0 0
\(827\) −16.9706 −0.590124 −0.295062 0.955478i \(-0.595340\pi\)
−0.295062 + 0.955478i \(0.595340\pi\)
\(828\) 0 0
\(829\) −8.97056 15.5375i −0.311561 0.539639i 0.667140 0.744932i \(-0.267518\pi\)
−0.978700 + 0.205294i \(0.934185\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.24264 −0.0777496
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −4.75736 8.23999i −0.164537 0.284986i
\(837\) 0 0
\(838\) 8.12132 14.0665i 0.280546 0.485921i
\(839\) 32.4853 1.12152 0.560758 0.827980i \(-0.310510\pi\)
0.560758 + 0.827980i \(0.310510\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 2.87868 4.98602i 0.0992059 0.171830i
\(843\) 0 0
\(844\) −5.24264 9.08052i −0.180459 0.312564i
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000 + 17.1464i 0.240523 + 0.589158i
\(848\) −4.24264 −0.145693
\(849\) 0 0
\(850\) 0 0
\(851\) −2.48528 4.30463i −0.0851943 0.147561i
\(852\) 0 0
\(853\) −48.1838 −1.64978 −0.824890 0.565293i \(-0.808763\pi\)
−0.824890 + 0.565293i \(0.808763\pi\)
\(854\) 5.87868 + 0.804479i 0.201164 + 0.0275287i
\(855\) 0 0
\(856\) −7.24264 + 12.5446i −0.247548 + 0.428766i
\(857\) −5.74264 9.94655i −0.196165 0.339768i 0.751117 0.660169i \(-0.229515\pi\)
−0.947282 + 0.320402i \(0.896182\pi\)
\(858\) 0 0
\(859\) 7.84924 13.5953i 0.267813 0.463865i −0.700484 0.713668i \(-0.747032\pi\)
0.968297 + 0.249803i \(0.0803658\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −28.7574 −0.979480
\(863\) −21.1066 + 36.5577i −0.718477 + 1.24444i 0.243126 + 0.969995i \(0.421827\pi\)
−0.961603 + 0.274444i \(0.911506\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.9853 25.9553i 0.509221 0.881996i
\(867\) 0 0
\(868\) 9.24264 + 22.6398i 0.313716 + 0.768443i
\(869\) −3.21320 −0.109000
\(870\) 0 0
\(871\) 0.272078 + 0.471253i 0.00921901 + 0.0159678i
\(872\) −3.12132 5.40629i −0.105701 0.183080i
\(873\) 0 0
\(874\) 2.78680 0.0942648
\(875\) 0 0
\(876\) 0 0
\(877\) 16.8492 29.1837i 0.568958 0.985465i −0.427711 0.903916i \(-0.640680\pi\)
0.996669 0.0815494i \(-0.0259868\pi\)
\(878\) 6.86396 + 11.8887i 0.231647 + 0.401225i
\(879\) 0 0
\(880\) 0 0
\(881\) −53.4853 −1.80196 −0.900982 0.433856i \(-0.857153\pi\)
−0.900982 + 0.433856i \(0.857153\pi\)
\(882\) 0 0
\(883\) −9.69848 −0.326380 −0.163190 0.986595i \(-0.552178\pi\)
−0.163190 + 0.986595i \(0.552178\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −13.2426 22.9369i −0.444895 0.770581i
\(887\) −7.13604 + 12.3600i −0.239605 + 0.415008i −0.960601 0.277931i \(-0.910351\pi\)
0.720996 + 0.692939i \(0.243685\pi\)
\(888\) 0 0
\(889\) 24.7132 31.8689i 0.828854 1.06885i
\(890\) 0 0
\(891\) 0 0
\(892\) 6.86396 + 11.8887i 0.229822 + 0.398064i
\(893\) 5.33452 + 9.23967i 0.178513 + 0.309194i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 + 2.44949i 0.0334077 + 0.0818317i
\(897\) 0 0
\(898\) −14.4853 + 25.0892i −0.483380 + 0.837239i
\(899\) −19.6066 33.9596i −0.653917 1.13262i
\(900\) 0 0
\(901\) 0 0
\(902\) −48.7279 −1.62246
\(903\) 0 0
\(904\) −3.51472 −0.116898
\(905\) 0 0
\(906\) 0 0
\(907\) −14.9706 25.9298i −0.497089 0.860984i 0.502905 0.864342i \(-0.332265\pi\)
−0.999994 + 0.00335764i \(0.998931\pi\)
\(908\) −4.75736 + 8.23999i −0.157879 + 0.273454i
\(909\) 0 0
\(910\) 0 0
\(911\) −39.7279 −1.31624 −0.658122 0.752911i \(-0.728649\pi\)
−0.658122 + 0.752911i \(0.728649\pi\)
\(912\) 0 0
\(913\) 34.4558 + 59.6793i 1.14032 + 1.97510i
\(914\) −14.2426 24.6690i −0.471105 0.815977i
\(915\) 0 0
\(916\) −8.97056 −0.296396
\(917\) −16.2426 39.7862i −0.536379 1.31386i
\(918\) 0 0
\(919\) 8.72792 15.1172i 0.287908 0.498671i −0.685403 0.728164i \(-0.740374\pi\)
0.973310 + 0.229494i \(0.0737071\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −12.8787 + 22.3065i −0.424137 + 0.734626i
\(923\) −2.78680 −0.0917285
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 8.62132 14.9326i 0.283314 0.490715i
\(927\) 0 0
\(928\) −2.12132 3.67423i −0.0696358 0.120613i
\(929\) 21.9853 38.0796i 0.721314 1.24935i −0.239160 0.970980i \(-0.576872\pi\)
0.960473 0.278372i \(-0.0897947\pi\)
\(930\) 0 0
\(931\) −15.1213 4.21759i −0.495581 0.138226i
\(932\) 3.51472 0.115128
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20.4558 −0.668263 −0.334132 0.942526i \(-0.608443\pi\)
−0.334132 + 0.942526i \(0.608443\pi\)
\(938\) 0.393398 0.507306i 0.0128449 0.0165641i
\(939\) 0 0
\(940\) 0 0
\(941\) −26.3345 45.6127i −0.858481 1.48693i −0.873378 0.487044i \(-0.838075\pi\)
0.0148967 0.999889i \(-0.495258\pi\)
\(942\) 0 0
\(943\) 7.13604 12.3600i 0.232381 0.402496i
\(944\) 0 0
\(945\) 0 0
\(946\) −44.4853 −1.44634
\(947\) 19.2426 33.3292i 0.625302 1.08305i −0.363181 0.931719i \(-0.618309\pi\)
0.988482 0.151336i \(-0.0483575\pi\)
\(948\) 0 0
\(949\) −7.84924 13.5953i −0.254797 0.441322i
\(950\) −5.60660 + 9.71092i −0.181902 + 0.315064i
\(951\) 0 0
\(952\) 0 0
\(953\) −23.4853 −0.760763 −0.380381 0.924830i \(-0.624207\pi\)
−0.380381 + 0.924830i \(0.624207\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 10.8640 + 18.8169i 0.351366 + 0.608583i
\(957\) 0 0
\(958\) −4.75736 −0.153703
\(959\) −36.6213 5.01151i −1.18256 0.161830i
\(960\) 0 0
\(961\) −27.2132 + 47.1347i −0.877845 + 1.52047i
\(962\) −4.48528 7.76874i −0.144611 0.250474i
\(963\) 0 0
\(964\) −12.7426 + 22.0709i −0.410413 + 0.710856i
\(965\) 0 0
\(966\) 0 0
\(967\) 52.6985 1.69467 0.847335 0.531060i \(-0.178206\pi\)
0.847335 + 0.531060i \(0.178206\pi\)
\(968\) −3.50000 + 6.06218i −0.112494 + 0.194846i
\(969\) 0 0
\(970\) 0 0
\(971\) 4.75736 8.23999i 0.152671 0.264434i −0.779538 0.626355i \(-0.784546\pi\)
0.932209 + 0.361922i \(0.117879\pi\)
\(972\) 0 0
\(973\) 33.6066 43.3373i 1.07738 1.38933i
\(974\) −11.2426 −0.360237
\(975\) 0 0
\(976\) 1.12132 + 1.94218i 0.0358926 + 0.0621678i
\(977\) −9.98528 17.2950i −0.319457 0.553317i 0.660917 0.750459i \(-0.270167\pi\)
−0.980375 + 0.197142i \(0.936834\pi\)
\(978\) 0 0
\(979\) −48.7279 −1.55735
\(980\) 0 0
\(981\) 0 0
\(982\) 9.36396 16.2189i 0.298816 0.517565i
\(983\) 16.2426 + 28.1331i 0.518060 + 0.897306i 0.999780 + 0.0209807i \(0.00667886\pi\)
−0.481720 + 0.876325i \(0.659988\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 5.02944 0.160008
\(989\) 6.51472 11.2838i 0.207156 0.358805i
\(990\) 0 0
\(991\) −3.89340 6.74356i −0.123678 0.214216i 0.797537 0.603269i \(-0.206136\pi\)
−0.921215 + 0.389053i \(0.872802\pi\)
\(992\) −4.62132 + 8.00436i −0.146727 + 0.254139i
\(993\) 0 0
\(994\) 1.24264 + 3.04384i 0.0394142 + 0.0965446i
\(995\) 0 0
\(996\) 0 0
\(997\) −7.00000 12.1244i −0.221692 0.383982i 0.733630 0.679549i \(-0.237825\pi\)
−0.955322 + 0.295567i \(0.904491\pi\)
\(998\) −7.36396 12.7548i −0.233102 0.403745i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.g.i.163.2 4
3.2 odd 2 1134.2.g.j.163.2 yes 4
7.2 even 3 7938.2.a.bq.1.1 2
7.4 even 3 inner 1134.2.g.i.487.2 yes 4
7.5 odd 6 7938.2.a.bp.1.1 2
9.2 odd 6 1134.2.e.r.919.1 4
9.4 even 3 1134.2.h.r.541.2 4
9.5 odd 6 1134.2.h.s.541.2 4
9.7 even 3 1134.2.e.s.919.1 4
21.2 odd 6 7938.2.a.bk.1.2 2
21.5 even 6 7938.2.a.bj.1.2 2
21.11 odd 6 1134.2.g.j.487.2 yes 4
63.4 even 3 1134.2.e.s.865.1 4
63.11 odd 6 1134.2.h.s.109.1 4
63.25 even 3 1134.2.h.r.109.1 4
63.32 odd 6 1134.2.e.r.865.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.e.r.865.1 4 63.32 odd 6
1134.2.e.r.919.1 4 9.2 odd 6
1134.2.e.s.865.1 4 63.4 even 3
1134.2.e.s.919.1 4 9.7 even 3
1134.2.g.i.163.2 4 1.1 even 1 trivial
1134.2.g.i.487.2 yes 4 7.4 even 3 inner
1134.2.g.j.163.2 yes 4 3.2 odd 2
1134.2.g.j.487.2 yes 4 21.11 odd 6
1134.2.h.r.109.1 4 63.25 even 3
1134.2.h.r.541.2 4 9.4 even 3
1134.2.h.s.109.1 4 63.11 odd 6
1134.2.h.s.541.2 4 9.5 odd 6
7938.2.a.bj.1.2 2 21.5 even 6
7938.2.a.bk.1.2 2 21.2 odd 6
7938.2.a.bp.1.1 2 7.5 odd 6
7938.2.a.bq.1.1 2 7.2 even 3