Properties

Label 1134.2.f.q
Level $1134$
Weight $2$
Character orbit 1134.f
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{12}^{2} ) q^{2} -\zeta_{12}^{2} q^{4} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{5} + ( -1 + \zeta_{12}^{2} ) q^{7} + q^{8} +O(q^{10})\) \( q + ( -1 + \zeta_{12}^{2} ) q^{2} -\zeta_{12}^{2} q^{4} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{5} + ( -1 + \zeta_{12}^{2} ) q^{7} + q^{8} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{10} + ( -3 + \zeta_{12} + 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{11} + \zeta_{12}^{2} q^{13} -\zeta_{12}^{2} q^{14} + ( -1 + \zeta_{12}^{2} ) q^{16} + ( 3 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{17} + ( -1 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{19} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{20} + ( \zeta_{12} - 3 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{22} + ( -\zeta_{12} - 3 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{23} + ( 2 - 2 \zeta_{12}^{2} ) q^{25} - q^{26} + q^{28} + ( -3 + 2 \zeta_{12} + 3 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{29} + ( 3 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{31} -\zeta_{12}^{2} q^{32} + ( -3 + 2 \zeta_{12} + 3 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{34} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{35} + ( 2 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{37} + ( 1 - 3 \zeta_{12} - \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{38} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{40} + ( -2 \zeta_{12} - 6 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{41} + ( -2 + 6 \zeta_{12} + 2 \zeta_{12}^{2} - 12 \zeta_{12}^{3} ) q^{43} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{44} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{46} + ( 3 + 3 \zeta_{12} - 3 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{47} -\zeta_{12}^{2} q^{49} + 2 \zeta_{12}^{2} q^{50} + ( 1 - \zeta_{12}^{2} ) q^{52} + ( 6 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{53} + ( -3 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{55} + ( -1 + \zeta_{12}^{2} ) q^{56} + ( 2 \zeta_{12} - 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{58} + ( -3 \zeta_{12} + 3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{59} + ( 1 + 6 \zeta_{12} - \zeta_{12}^{2} - 12 \zeta_{12}^{3} ) q^{61} + ( -1 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{62} + q^{64} + ( \zeta_{12} - 2 \zeta_{12}^{3} ) q^{65} + ( 3 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{67} + ( 2 \zeta_{12} - 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{68} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{70} + ( 6 + 12 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{71} + ( -4 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{73} + ( -2 - 3 \zeta_{12} + 2 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{74} + ( -3 \zeta_{12} + \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{76} + ( \zeta_{12} - 3 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{77} + ( 1 - 3 \zeta_{12} - \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{79} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{80} + ( 6 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{82} + ( -3 - \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{83} + ( -3 \zeta_{12} + 6 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{85} + ( 6 \zeta_{12} - 2 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{86} + ( -3 + \zeta_{12} + 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{88} + ( -9 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{89} - q^{91} + ( -3 - \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{92} + ( 3 \zeta_{12} + 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{94} + ( \zeta_{12} - 9 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{95} + ( 16 - 16 \zeta_{12}^{2} ) q^{97} + q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} - 2q^{4} - 2q^{7} + 4q^{8} + O(q^{10}) \) \( 4q - 2q^{2} - 2q^{4} - 2q^{7} + 4q^{8} - 6q^{11} + 2q^{13} - 2q^{14} - 2q^{16} + 12q^{17} - 4q^{19} - 6q^{22} - 6q^{23} + 4q^{25} - 4q^{26} + 4q^{28} - 6q^{29} + 2q^{31} - 2q^{32} - 6q^{34} + 8q^{37} + 2q^{38} - 12q^{41} - 4q^{43} + 12q^{44} + 12q^{46} + 6q^{47} - 2q^{49} + 4q^{50} + 2q^{52} + 24q^{53} - 12q^{55} - 2q^{56} - 6q^{58} + 6q^{59} + 2q^{61} - 4q^{62} + 4q^{64} + 2q^{67} - 6q^{68} + 24q^{71} - 16q^{73} - 4q^{74} + 2q^{76} - 6q^{77} + 2q^{79} + 24q^{82} - 6q^{83} + 12q^{85} - 4q^{86} - 6q^{88} - 36q^{89} - 4q^{91} - 6q^{92} + 6q^{94} - 18q^{95} + 32q^{97} + 4q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-\zeta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −0.866025 1.50000i 0 −0.500000 + 0.866025i 1.00000 0 1.73205
379.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.866025 + 1.50000i 0 −0.500000 + 0.866025i 1.00000 0 −1.73205
757.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −0.866025 + 1.50000i 0 −0.500000 0.866025i 1.00000 0 1.73205
757.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.866025 1.50000i 0 −0.500000 0.866025i 1.00000 0 −1.73205
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.f.q 4
3.b odd 2 1 1134.2.f.t 4
9.c even 3 1 1134.2.a.o yes 2
9.c even 3 1 inner 1134.2.f.q 4
9.d odd 6 1 1134.2.a.j 2
9.d odd 6 1 1134.2.f.t 4
36.f odd 6 1 9072.2.a.bf 2
36.h even 6 1 9072.2.a.bi 2
63.l odd 6 1 7938.2.a.br 2
63.o even 6 1 7938.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1134.2.a.j 2 9.d odd 6 1
1134.2.a.o yes 2 9.c even 3 1
1134.2.f.q 4 1.a even 1 1 trivial
1134.2.f.q 4 9.c even 3 1 inner
1134.2.f.t 4 3.b odd 2 1
1134.2.f.t 4 9.d odd 6 1
7938.2.a.bi 2 63.o even 6 1
7938.2.a.br 2 63.l odd 6 1
9072.2.a.bf 2 36.f odd 6 1
9072.2.a.bi 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5}^{4} + 3 T_{5}^{2} + 9 \)
\( T_{11}^{4} + 6 T_{11}^{3} + 30 T_{11}^{2} + 36 T_{11} + 36 \)
\( T_{13}^{2} - T_{13} + 1 \)
\( T_{17}^{2} - 6 T_{17} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T + T^{2} )^{2} \)
$3$ \( T^{4} \)
$5$ \( 9 + 3 T^{2} + T^{4} \)
$7$ \( ( 1 + T + T^{2} )^{2} \)
$11$ \( 36 + 36 T + 30 T^{2} + 6 T^{3} + T^{4} \)
$13$ \( ( 1 - T + T^{2} )^{2} \)
$17$ \( ( -3 - 6 T + T^{2} )^{2} \)
$19$ \( ( -26 + 2 T + T^{2} )^{2} \)
$23$ \( 36 + 36 T + 30 T^{2} + 6 T^{3} + T^{4} \)
$29$ \( 9 - 18 T + 39 T^{2} + 6 T^{3} + T^{4} \)
$31$ \( 676 + 52 T + 30 T^{2} - 2 T^{3} + T^{4} \)
$37$ \( ( -23 - 4 T + T^{2} )^{2} \)
$41$ \( 576 + 288 T + 120 T^{2} + 12 T^{3} + T^{4} \)
$43$ \( 10816 - 416 T + 120 T^{2} + 4 T^{3} + T^{4} \)
$47$ \( 324 + 108 T + 54 T^{2} - 6 T^{3} + T^{4} \)
$53$ \( ( 24 - 12 T + T^{2} )^{2} \)
$59$ \( 324 + 108 T + 54 T^{2} - 6 T^{3} + T^{4} \)
$61$ \( 11449 + 214 T + 111 T^{2} - 2 T^{3} + T^{4} \)
$67$ \( 676 + 52 T + 30 T^{2} - 2 T^{3} + T^{4} \)
$71$ \( ( -72 - 12 T + T^{2} )^{2} \)
$73$ \( ( -11 + 8 T + T^{2} )^{2} \)
$79$ \( 676 + 52 T + 30 T^{2} - 2 T^{3} + T^{4} \)
$83$ \( 36 + 36 T + 30 T^{2} + 6 T^{3} + T^{4} \)
$89$ \( ( 69 + 18 T + T^{2} )^{2} \)
$97$ \( ( 256 - 16 T + T^{2} )^{2} \)
show more
show less