Properties

Label 1134.2.f.k
Level $1134$
Weight $2$
Character orbit 1134.f
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + ( -1 + \zeta_{6} ) q^{7} - q^{8} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + ( -1 + \zeta_{6} ) q^{7} - q^{8} -5 \zeta_{6} q^{13} + \zeta_{6} q^{14} + ( -1 + \zeta_{6} ) q^{16} -3 q^{17} + 2 q^{19} -9 \zeta_{6} q^{23} + ( 5 - 5 \zeta_{6} ) q^{25} -5 q^{26} + q^{28} + ( -3 + 3 \zeta_{6} ) q^{29} -5 \zeta_{6} q^{31} + \zeta_{6} q^{32} + ( -3 + 3 \zeta_{6} ) q^{34} + 2 q^{37} + ( 2 - 2 \zeta_{6} ) q^{38} -6 \zeta_{6} q^{41} + ( 1 - \zeta_{6} ) q^{43} -9 q^{46} + ( -6 + 6 \zeta_{6} ) q^{47} -\zeta_{6} q^{49} -5 \zeta_{6} q^{50} + ( -5 + 5 \zeta_{6} ) q^{52} -3 q^{53} + ( 1 - \zeta_{6} ) q^{56} + 3 \zeta_{6} q^{58} -3 \zeta_{6} q^{59} + ( 10 - 10 \zeta_{6} ) q^{61} -5 q^{62} + q^{64} + 13 \zeta_{6} q^{67} + 3 \zeta_{6} q^{68} -9 q^{71} + 2 q^{73} + ( 2 - 2 \zeta_{6} ) q^{74} -2 \zeta_{6} q^{76} + ( 10 - 10 \zeta_{6} ) q^{79} -6 q^{82} + ( -12 + 12 \zeta_{6} ) q^{83} -\zeta_{6} q^{86} -15 q^{89} + 5 q^{91} + ( -9 + 9 \zeta_{6} ) q^{92} + 6 \zeta_{6} q^{94} + ( -8 + 8 \zeta_{6} ) q^{97} - q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - q^{7} - 2 q^{8} + O(q^{10}) \) \( 2 q + q^{2} - q^{4} - q^{7} - 2 q^{8} - 5 q^{13} + q^{14} - q^{16} - 6 q^{17} + 4 q^{19} - 9 q^{23} + 5 q^{25} - 10 q^{26} + 2 q^{28} - 3 q^{29} - 5 q^{31} + q^{32} - 3 q^{34} + 4 q^{37} + 2 q^{38} - 6 q^{41} + q^{43} - 18 q^{46} - 6 q^{47} - q^{49} - 5 q^{50} - 5 q^{52} - 6 q^{53} + q^{56} + 3 q^{58} - 3 q^{59} + 10 q^{61} - 10 q^{62} + 2 q^{64} + 13 q^{67} + 3 q^{68} - 18 q^{71} + 4 q^{73} + 2 q^{74} - 2 q^{76} + 10 q^{79} - 12 q^{82} - 12 q^{83} - q^{86} - 30 q^{89} + 10 q^{91} - 9 q^{92} + 6 q^{94} - 8 q^{97} - 2 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 0 0 −0.500000 + 0.866025i −1.00000 0 0
757.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 −0.500000 0.866025i −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.f.k 2
3.b odd 2 1 1134.2.f.e 2
9.c even 3 1 378.2.a.d 1
9.c even 3 1 inner 1134.2.f.k 2
9.d odd 6 1 378.2.a.e yes 1
9.d odd 6 1 1134.2.f.e 2
36.f odd 6 1 3024.2.a.o 1
36.h even 6 1 3024.2.a.p 1
45.h odd 6 1 9450.2.a.l 1
45.j even 6 1 9450.2.a.cl 1
63.l odd 6 1 2646.2.a.f 1
63.o even 6 1 2646.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.a.d 1 9.c even 3 1
378.2.a.e yes 1 9.d odd 6 1
1134.2.f.e 2 3.b odd 2 1
1134.2.f.e 2 9.d odd 6 1
1134.2.f.k 2 1.a even 1 1 trivial
1134.2.f.k 2 9.c even 3 1 inner
2646.2.a.f 1 63.l odd 6 1
2646.2.a.y 1 63.o even 6 1
3024.2.a.o 1 36.f odd 6 1
3024.2.a.p 1 36.h even 6 1
9450.2.a.l 1 45.h odd 6 1
9450.2.a.cl 1 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5} \)
\( T_{11} \)
\( T_{13}^{2} + 5 T_{13} + 25 \)
\( T_{17} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 1 + T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 25 + 5 T + T^{2} \)
$17$ \( ( 3 + T )^{2} \)
$19$ \( ( -2 + T )^{2} \)
$23$ \( 81 + 9 T + T^{2} \)
$29$ \( 9 + 3 T + T^{2} \)
$31$ \( 25 + 5 T + T^{2} \)
$37$ \( ( -2 + T )^{2} \)
$41$ \( 36 + 6 T + T^{2} \)
$43$ \( 1 - T + T^{2} \)
$47$ \( 36 + 6 T + T^{2} \)
$53$ \( ( 3 + T )^{2} \)
$59$ \( 9 + 3 T + T^{2} \)
$61$ \( 100 - 10 T + T^{2} \)
$67$ \( 169 - 13 T + T^{2} \)
$71$ \( ( 9 + T )^{2} \)
$73$ \( ( -2 + T )^{2} \)
$79$ \( 100 - 10 T + T^{2} \)
$83$ \( 144 + 12 T + T^{2} \)
$89$ \( ( 15 + T )^{2} \)
$97$ \( 64 + 8 T + T^{2} \)
show more
show less