Properties

Label 1134.2.f.j
Level $1134$
Weight $2$
Character orbit 1134.f
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} -2 \zeta_{6} q^{5} + ( 1 - \zeta_{6} ) q^{7} - q^{8} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} -2 \zeta_{6} q^{5} + ( 1 - \zeta_{6} ) q^{7} - q^{8} -2 q^{10} + ( -4 + 4 \zeta_{6} ) q^{11} -6 \zeta_{6} q^{13} -\zeta_{6} q^{14} + ( -1 + \zeta_{6} ) q^{16} -2 q^{17} -4 q^{19} + ( -2 + 2 \zeta_{6} ) q^{20} + 4 \zeta_{6} q^{22} + 8 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} -6 q^{26} - q^{28} + ( -2 + 2 \zeta_{6} ) q^{29} + \zeta_{6} q^{32} + ( -2 + 2 \zeta_{6} ) q^{34} -2 q^{35} -10 q^{37} + ( -4 + 4 \zeta_{6} ) q^{38} + 2 \zeta_{6} q^{40} -6 \zeta_{6} q^{41} + ( 4 - 4 \zeta_{6} ) q^{43} + 4 q^{44} + 8 q^{46} -\zeta_{6} q^{49} -\zeta_{6} q^{50} + ( -6 + 6 \zeta_{6} ) q^{52} -6 q^{53} + 8 q^{55} + ( -1 + \zeta_{6} ) q^{56} + 2 \zeta_{6} q^{58} + 4 \zeta_{6} q^{59} + ( -6 + 6 \zeta_{6} ) q^{61} + q^{64} + ( -12 + 12 \zeta_{6} ) q^{65} -4 \zeta_{6} q^{67} + 2 \zeta_{6} q^{68} + ( -2 + 2 \zeta_{6} ) q^{70} -8 q^{71} + 10 q^{73} + ( -10 + 10 \zeta_{6} ) q^{74} + 4 \zeta_{6} q^{76} + 4 \zeta_{6} q^{77} + 2 q^{80} -6 q^{82} + ( -4 + 4 \zeta_{6} ) q^{83} + 4 \zeta_{6} q^{85} -4 \zeta_{6} q^{86} + ( 4 - 4 \zeta_{6} ) q^{88} + 6 q^{89} -6 q^{91} + ( 8 - 8 \zeta_{6} ) q^{92} + 8 \zeta_{6} q^{95} + ( 14 - 14 \zeta_{6} ) q^{97} - q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{5} + q^{7} - 2 q^{8} + O(q^{10}) \) \( 2 q + q^{2} - q^{4} - 2 q^{5} + q^{7} - 2 q^{8} - 4 q^{10} - 4 q^{11} - 6 q^{13} - q^{14} - q^{16} - 4 q^{17} - 8 q^{19} - 2 q^{20} + 4 q^{22} + 8 q^{23} + q^{25} - 12 q^{26} - 2 q^{28} - 2 q^{29} + q^{32} - 2 q^{34} - 4 q^{35} - 20 q^{37} - 4 q^{38} + 2 q^{40} - 6 q^{41} + 4 q^{43} + 8 q^{44} + 16 q^{46} - q^{49} - q^{50} - 6 q^{52} - 12 q^{53} + 16 q^{55} - q^{56} + 2 q^{58} + 4 q^{59} - 6 q^{61} + 2 q^{64} - 12 q^{65} - 4 q^{67} + 2 q^{68} - 2 q^{70} - 16 q^{71} + 20 q^{73} - 10 q^{74} + 4 q^{76} + 4 q^{77} + 4 q^{80} - 12 q^{82} - 4 q^{83} + 4 q^{85} - 4 q^{86} + 4 q^{88} + 12 q^{89} - 12 q^{91} + 8 q^{92} + 8 q^{95} + 14 q^{97} - 2 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i −1.00000 1.73205i 0 0.500000 0.866025i −1.00000 0 −2.00000
757.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.00000 + 1.73205i 0 0.500000 + 0.866025i −1.00000 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.f.j 2
3.b odd 2 1 1134.2.f.g 2
9.c even 3 1 126.2.a.a 1
9.c even 3 1 inner 1134.2.f.j 2
9.d odd 6 1 42.2.a.a 1
9.d odd 6 1 1134.2.f.g 2
36.f odd 6 1 1008.2.a.j 1
36.h even 6 1 336.2.a.d 1
45.h odd 6 1 1050.2.a.i 1
45.j even 6 1 3150.2.a.bo 1
45.k odd 12 2 3150.2.g.r 2
45.l even 12 2 1050.2.g.a 2
63.g even 3 1 882.2.g.h 2
63.h even 3 1 882.2.g.h 2
63.i even 6 1 294.2.e.a 2
63.j odd 6 1 294.2.e.c 2
63.k odd 6 1 882.2.g.j 2
63.l odd 6 1 882.2.a.b 1
63.n odd 6 1 294.2.e.c 2
63.o even 6 1 294.2.a.g 1
63.s even 6 1 294.2.e.a 2
63.t odd 6 1 882.2.g.j 2
72.j odd 6 1 1344.2.a.q 1
72.l even 6 1 1344.2.a.i 1
72.n even 6 1 4032.2.a.e 1
72.p odd 6 1 4032.2.a.m 1
99.g even 6 1 5082.2.a.d 1
117.n odd 6 1 7098.2.a.f 1
144.u even 12 2 5376.2.c.e 2
144.w odd 12 2 5376.2.c.bc 2
180.n even 6 1 8400.2.a.k 1
252.o even 6 1 2352.2.q.i 2
252.r odd 6 1 2352.2.q.n 2
252.s odd 6 1 2352.2.a.l 1
252.bb even 6 1 2352.2.q.i 2
252.bi even 6 1 7056.2.a.k 1
252.bn odd 6 1 2352.2.q.n 2
315.z even 6 1 7350.2.a.f 1
504.cc even 6 1 9408.2.a.n 1
504.co odd 6 1 9408.2.a.bw 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.a.a 1 9.d odd 6 1
126.2.a.a 1 9.c even 3 1
294.2.a.g 1 63.o even 6 1
294.2.e.a 2 63.i even 6 1
294.2.e.a 2 63.s even 6 1
294.2.e.c 2 63.j odd 6 1
294.2.e.c 2 63.n odd 6 1
336.2.a.d 1 36.h even 6 1
882.2.a.b 1 63.l odd 6 1
882.2.g.h 2 63.g even 3 1
882.2.g.h 2 63.h even 3 1
882.2.g.j 2 63.k odd 6 1
882.2.g.j 2 63.t odd 6 1
1008.2.a.j 1 36.f odd 6 1
1050.2.a.i 1 45.h odd 6 1
1050.2.g.a 2 45.l even 12 2
1134.2.f.g 2 3.b odd 2 1
1134.2.f.g 2 9.d odd 6 1
1134.2.f.j 2 1.a even 1 1 trivial
1134.2.f.j 2 9.c even 3 1 inner
1344.2.a.i 1 72.l even 6 1
1344.2.a.q 1 72.j odd 6 1
2352.2.a.l 1 252.s odd 6 1
2352.2.q.i 2 252.o even 6 1
2352.2.q.i 2 252.bb even 6 1
2352.2.q.n 2 252.r odd 6 1
2352.2.q.n 2 252.bn odd 6 1
3150.2.a.bo 1 45.j even 6 1
3150.2.g.r 2 45.k odd 12 2
4032.2.a.e 1 72.n even 6 1
4032.2.a.m 1 72.p odd 6 1
5082.2.a.d 1 99.g even 6 1
5376.2.c.e 2 144.u even 12 2
5376.2.c.bc 2 144.w odd 12 2
7056.2.a.k 1 252.bi even 6 1
7098.2.a.f 1 117.n odd 6 1
7350.2.a.f 1 315.z even 6 1
8400.2.a.k 1 180.n even 6 1
9408.2.a.n 1 504.cc even 6 1
9408.2.a.bw 1 504.co odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5}^{2} + 2 T_{5} + 4 \)
\( T_{11}^{2} + 4 T_{11} + 16 \)
\( T_{13}^{2} + 6 T_{13} + 36 \)
\( T_{17} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 4 + 2 T + T^{2} \)
$7$ \( 1 - T + T^{2} \)
$11$ \( 16 + 4 T + T^{2} \)
$13$ \( 36 + 6 T + T^{2} \)
$17$ \( ( 2 + T )^{2} \)
$19$ \( ( 4 + T )^{2} \)
$23$ \( 64 - 8 T + T^{2} \)
$29$ \( 4 + 2 T + T^{2} \)
$31$ \( T^{2} \)
$37$ \( ( 10 + T )^{2} \)
$41$ \( 36 + 6 T + T^{2} \)
$43$ \( 16 - 4 T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( ( 6 + T )^{2} \)
$59$ \( 16 - 4 T + T^{2} \)
$61$ \( 36 + 6 T + T^{2} \)
$67$ \( 16 + 4 T + T^{2} \)
$71$ \( ( 8 + T )^{2} \)
$73$ \( ( -10 + T )^{2} \)
$79$ \( T^{2} \)
$83$ \( 16 + 4 T + T^{2} \)
$89$ \( ( -6 + T )^{2} \)
$97$ \( 196 - 14 T + T^{2} \)
show more
show less