Properties

Label 1134.2.f.h.379.1
Level $1134$
Weight $2$
Character 1134.379
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(379,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 379.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1134.379
Dual form 1134.2.f.h.757.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(1.50000 + 2.59808i) q^{5} +(-0.500000 + 0.866025i) q^{7} +1.00000 q^{8} -3.00000 q^{10} +(3.00000 - 5.19615i) q^{11} +(0.500000 + 0.866025i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(-0.500000 + 0.866025i) q^{16} +3.00000 q^{17} +2.00000 q^{19} +(1.50000 - 2.59808i) q^{20} +(3.00000 + 5.19615i) q^{22} +(3.00000 + 5.19615i) q^{23} +(-2.00000 + 3.46410i) q^{25} -1.00000 q^{26} +1.00000 q^{28} +(4.50000 - 7.79423i) q^{29} +(5.00000 + 8.66025i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.50000 + 2.59808i) q^{34} -3.00000 q^{35} -7.00000 q^{37} +(-1.00000 + 1.73205i) q^{38} +(1.50000 + 2.59808i) q^{40} +(-3.00000 - 5.19615i) q^{41} +(2.00000 - 3.46410i) q^{43} -6.00000 q^{44} -6.00000 q^{46} +(-3.00000 + 5.19615i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(-2.00000 - 3.46410i) q^{50} +(0.500000 - 0.866025i) q^{52} -6.00000 q^{53} +18.0000 q^{55} +(-0.500000 + 0.866025i) q^{56} +(4.50000 + 7.79423i) q^{58} +(3.00000 + 5.19615i) q^{59} +(-5.50000 + 9.52628i) q^{61} -10.0000 q^{62} +1.00000 q^{64} +(-1.50000 + 2.59808i) q^{65} +(-1.00000 - 1.73205i) q^{67} +(-1.50000 - 2.59808i) q^{68} +(1.50000 - 2.59808i) q^{70} +12.0000 q^{71} -7.00000 q^{73} +(3.50000 - 6.06218i) q^{74} +(-1.00000 - 1.73205i) q^{76} +(3.00000 + 5.19615i) q^{77} +(-1.00000 + 1.73205i) q^{79} -3.00000 q^{80} +6.00000 q^{82} +(-3.00000 + 5.19615i) q^{83} +(4.50000 + 7.79423i) q^{85} +(2.00000 + 3.46410i) q^{86} +(3.00000 - 5.19615i) q^{88} +3.00000 q^{89} -1.00000 q^{91} +(3.00000 - 5.19615i) q^{92} +(-3.00000 - 5.19615i) q^{94} +(3.00000 + 5.19615i) q^{95} +(-7.00000 + 12.1244i) q^{97} +1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 3 q^{5} - q^{7} + 2 q^{8} - 6 q^{10} + 6 q^{11} + q^{13} - q^{14} - q^{16} + 6 q^{17} + 4 q^{19} + 3 q^{20} + 6 q^{22} + 6 q^{23} - 4 q^{25} - 2 q^{26} + 2 q^{28} + 9 q^{29}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) 3.00000 5.19615i 0.904534 1.56670i 0.0829925 0.996550i \(-0.473552\pi\)
0.821541 0.570149i \(-0.193114\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) −0.500000 0.866025i −0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 1.50000 2.59808i 0.335410 0.580948i
\(21\) 0 0
\(22\) 3.00000 + 5.19615i 0.639602 + 1.10782i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 4.50000 7.79423i 0.835629 1.44735i −0.0578882 0.998323i \(-0.518437\pi\)
0.893517 0.449029i \(-0.148230\pi\)
\(30\) 0 0
\(31\) 5.00000 + 8.66025i 0.898027 + 1.55543i 0.830014 + 0.557743i \(0.188333\pi\)
0.0680129 + 0.997684i \(0.478334\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) −1.00000 + 1.73205i −0.162221 + 0.280976i
\(39\) 0 0
\(40\) 1.50000 + 2.59808i 0.237171 + 0.410792i
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 0 0
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −2.00000 3.46410i −0.282843 0.489898i
\(51\) 0 0
\(52\) 0.500000 0.866025i 0.0693375 0.120096i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 18.0000 2.42712
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 0 0
\(58\) 4.50000 + 7.79423i 0.590879 + 1.02343i
\(59\) 3.00000 + 5.19615i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) −5.50000 + 9.52628i −0.704203 + 1.21972i 0.262776 + 0.964857i \(0.415362\pi\)
−0.966978 + 0.254858i \(0.917971\pi\)
\(62\) −10.0000 −1.27000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.50000 + 2.59808i −0.186052 + 0.322252i
\(66\) 0 0
\(67\) −1.00000 1.73205i −0.122169 0.211604i 0.798454 0.602056i \(-0.205652\pi\)
−0.920623 + 0.390453i \(0.872318\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) 0 0
\(70\) 1.50000 2.59808i 0.179284 0.310530i
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 3.50000 6.06218i 0.406867 0.704714i
\(75\) 0 0
\(76\) −1.00000 1.73205i −0.114708 0.198680i
\(77\) 3.00000 + 5.19615i 0.341882 + 0.592157i
\(78\) 0 0
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −3.00000 + 5.19615i −0.329293 + 0.570352i −0.982372 0.186938i \(-0.940144\pi\)
0.653079 + 0.757290i \(0.273477\pi\)
\(84\) 0 0
\(85\) 4.50000 + 7.79423i 0.488094 + 0.845403i
\(86\) 2.00000 + 3.46410i 0.215666 + 0.373544i
\(87\) 0 0
\(88\) 3.00000 5.19615i 0.319801 0.553912i
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 3.00000 5.19615i 0.312772 0.541736i
\(93\) 0 0
\(94\) −3.00000 5.19615i −0.309426 0.535942i
\(95\) 3.00000 + 5.19615i 0.307794 + 0.533114i
\(96\) 0 0
\(97\) −7.00000 + 12.1244i −0.710742 + 1.23104i 0.253837 + 0.967247i \(0.418307\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 9.00000 15.5885i 0.895533 1.55111i 0.0623905 0.998052i \(-0.480128\pi\)
0.833143 0.553058i \(-0.186539\pi\)
\(102\) 0 0
\(103\) 8.00000 + 13.8564i 0.788263 + 1.36531i 0.927030 + 0.374987i \(0.122353\pi\)
−0.138767 + 0.990325i \(0.544314\pi\)
\(104\) 0.500000 + 0.866025i 0.0490290 + 0.0849208i
\(105\) 0 0
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) −9.00000 + 15.5885i −0.858116 + 1.48630i
\(111\) 0 0
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) 7.50000 + 12.9904i 0.705541 + 1.22203i 0.966496 + 0.256681i \(0.0826291\pi\)
−0.260955 + 0.965351i \(0.584038\pi\)
\(114\) 0 0
\(115\) −9.00000 + 15.5885i −0.839254 + 1.45363i
\(116\) −9.00000 −0.835629
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) −1.50000 + 2.59808i −0.137505 + 0.238165i
\(120\) 0 0
\(121\) −12.5000 21.6506i −1.13636 1.96824i
\(122\) −5.50000 9.52628i −0.497947 0.862469i
\(123\) 0 0
\(124\) 5.00000 8.66025i 0.449013 0.777714i
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.50000 2.59808i −0.131559 0.227866i
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) −1.00000 + 1.73205i −0.0867110 + 0.150188i
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) −7.00000 12.1244i −0.593732 1.02837i −0.993724 0.111856i \(-0.964321\pi\)
0.399992 0.916519i \(-0.369013\pi\)
\(140\) 1.50000 + 2.59808i 0.126773 + 0.219578i
\(141\) 0 0
\(142\) −6.00000 + 10.3923i −0.503509 + 0.872103i
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 27.0000 2.24223
\(146\) 3.50000 6.06218i 0.289662 0.501709i
\(147\) 0 0
\(148\) 3.50000 + 6.06218i 0.287698 + 0.498308i
\(149\) −1.50000 2.59808i −0.122885 0.212843i 0.798019 0.602632i \(-0.205881\pi\)
−0.920904 + 0.389789i \(0.872548\pi\)
\(150\) 0 0
\(151\) −1.00000 + 1.73205i −0.0813788 + 0.140952i −0.903842 0.427865i \(-0.859266\pi\)
0.822464 + 0.568818i \(0.192599\pi\)
\(152\) 2.00000 0.162221
\(153\) 0 0
\(154\) −6.00000 −0.483494
\(155\) −15.0000 + 25.9808i −1.20483 + 2.08683i
\(156\) 0 0
\(157\) −11.5000 19.9186i −0.917800 1.58968i −0.802749 0.596316i \(-0.796630\pi\)
−0.115050 0.993360i \(-0.536703\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) 0 0
\(160\) 1.50000 2.59808i 0.118585 0.205396i
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) −3.00000 + 5.19615i −0.234261 + 0.405751i
\(165\) 0 0
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) −3.00000 5.19615i −0.232147 0.402090i 0.726293 0.687386i \(-0.241242\pi\)
−0.958440 + 0.285295i \(0.907908\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) −9.00000 −0.690268
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −4.50000 + 7.79423i −0.342129 + 0.592584i −0.984828 0.173534i \(-0.944481\pi\)
0.642699 + 0.766119i \(0.277815\pi\)
\(174\) 0 0
\(175\) −2.00000 3.46410i −0.151186 0.261861i
\(176\) 3.00000 + 5.19615i 0.226134 + 0.391675i
\(177\) 0 0
\(178\) −1.50000 + 2.59808i −0.112430 + 0.194734i
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0.500000 0.866025i 0.0370625 0.0641941i
\(183\) 0 0
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) −10.5000 18.1865i −0.771975 1.33710i
\(186\) 0 0
\(187\) 9.00000 15.5885i 0.658145 1.13994i
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) −5.50000 9.52628i −0.395899 0.685717i 0.597317 0.802005i \(-0.296234\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(194\) −7.00000 12.1244i −0.502571 0.870478i
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.0357143 + 0.0618590i
\(197\) −9.00000 −0.641223 −0.320612 0.947211i \(-0.603888\pi\)
−0.320612 + 0.947211i \(0.603888\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) −2.00000 + 3.46410i −0.141421 + 0.244949i
\(201\) 0 0
\(202\) 9.00000 + 15.5885i 0.633238 + 1.09680i
\(203\) 4.50000 + 7.79423i 0.315838 + 0.547048i
\(204\) 0 0
\(205\) 9.00000 15.5885i 0.628587 1.08875i
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 6.00000 10.3923i 0.415029 0.718851i
\(210\) 0 0
\(211\) −1.00000 1.73205i −0.0688428 0.119239i 0.829549 0.558433i \(-0.188597\pi\)
−0.898392 + 0.439194i \(0.855264\pi\)
\(212\) 3.00000 + 5.19615i 0.206041 + 0.356873i
\(213\) 0 0
\(214\) 0 0
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) −10.0000 −0.678844
\(218\) −2.50000 + 4.33013i −0.169321 + 0.293273i
\(219\) 0 0
\(220\) −9.00000 15.5885i −0.606780 1.05097i
\(221\) 1.50000 + 2.59808i 0.100901 + 0.174766i
\(222\) 0 0
\(223\) 14.0000 24.2487i 0.937509 1.62381i 0.167412 0.985887i \(-0.446459\pi\)
0.770097 0.637927i \(-0.220208\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −15.0000 −0.997785
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 0 0
\(229\) 12.5000 + 21.6506i 0.826023 + 1.43071i 0.901135 + 0.433539i \(0.142735\pi\)
−0.0751115 + 0.997175i \(0.523931\pi\)
\(230\) −9.00000 15.5885i −0.593442 1.02787i
\(231\) 0 0
\(232\) 4.50000 7.79423i 0.295439 0.511716i
\(233\) 21.0000 1.37576 0.687878 0.725826i \(-0.258542\pi\)
0.687878 + 0.725826i \(0.258542\pi\)
\(234\) 0 0
\(235\) −18.0000 −1.17419
\(236\) 3.00000 5.19615i 0.195283 0.338241i
\(237\) 0 0
\(238\) −1.50000 2.59808i −0.0972306 0.168408i
\(239\) −9.00000 15.5885i −0.582162 1.00833i −0.995223 0.0976302i \(-0.968874\pi\)
0.413061 0.910703i \(-0.364460\pi\)
\(240\) 0 0
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) 25.0000 1.60706
\(243\) 0 0
\(244\) 11.0000 0.704203
\(245\) 1.50000 2.59808i 0.0958315 0.165985i
\(246\) 0 0
\(247\) 1.00000 + 1.73205i 0.0636285 + 0.110208i
\(248\) 5.00000 + 8.66025i 0.317500 + 0.549927i
\(249\) 0 0
\(250\) −1.50000 + 2.59808i −0.0948683 + 0.164317i
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 0 0
\(253\) 36.0000 2.26330
\(254\) 2.00000 3.46410i 0.125491 0.217357i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −13.5000 23.3827i −0.842107 1.45857i −0.888110 0.459631i \(-0.847982\pi\)
0.0460033 0.998941i \(-0.485352\pi\)
\(258\) 0 0
\(259\) 3.50000 6.06218i 0.217479 0.376685i
\(260\) 3.00000 0.186052
\(261\) 0 0
\(262\) 0 0
\(263\) −3.00000 + 5.19615i −0.184988 + 0.320408i −0.943572 0.331166i \(-0.892558\pi\)
0.758585 + 0.651575i \(0.225891\pi\)
\(264\) 0 0
\(265\) −9.00000 15.5885i −0.552866 0.957591i
\(266\) −1.00000 1.73205i −0.0613139 0.106199i
\(267\) 0 0
\(268\) −1.00000 + 1.73205i −0.0610847 + 0.105802i
\(269\) −3.00000 −0.182913 −0.0914566 0.995809i \(-0.529152\pi\)
−0.0914566 + 0.995809i \(0.529152\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 0 0
\(274\) 1.50000 + 2.59808i 0.0906183 + 0.156956i
\(275\) 12.0000 + 20.7846i 0.723627 + 1.25336i
\(276\) 0 0
\(277\) −7.00000 + 12.1244i −0.420589 + 0.728482i −0.995997 0.0893846i \(-0.971510\pi\)
0.575408 + 0.817867i \(0.304843\pi\)
\(278\) 14.0000 0.839664
\(279\) 0 0
\(280\) −3.00000 −0.179284
\(281\) −10.5000 + 18.1865i −0.626377 + 1.08492i 0.361895 + 0.932219i \(0.382130\pi\)
−0.988273 + 0.152699i \(0.951204\pi\)
\(282\) 0 0
\(283\) 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i \(-0.00891551\pi\)
−0.524057 + 0.851683i \(0.675582\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) −3.00000 + 5.19615i −0.177394 + 0.307255i
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −13.5000 + 23.3827i −0.792747 + 1.37308i
\(291\) 0 0
\(292\) 3.50000 + 6.06218i 0.204822 + 0.354762i
\(293\) −10.5000 18.1865i −0.613417 1.06247i −0.990660 0.136355i \(-0.956461\pi\)
0.377244 0.926114i \(-0.376872\pi\)
\(294\) 0 0
\(295\) −9.00000 + 15.5885i −0.524000 + 0.907595i
\(296\) −7.00000 −0.406867
\(297\) 0 0
\(298\) 3.00000 0.173785
\(299\) −3.00000 + 5.19615i −0.173494 + 0.300501i
\(300\) 0 0
\(301\) 2.00000 + 3.46410i 0.115278 + 0.199667i
\(302\) −1.00000 1.73205i −0.0575435 0.0996683i
\(303\) 0 0
\(304\) −1.00000 + 1.73205i −0.0573539 + 0.0993399i
\(305\) −33.0000 −1.88957
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 3.00000 5.19615i 0.170941 0.296078i
\(309\) 0 0
\(310\) −15.0000 25.9808i −0.851943 1.47561i
\(311\) 15.0000 + 25.9808i 0.850572 + 1.47323i 0.880693 + 0.473688i \(0.157077\pi\)
−0.0301210 + 0.999546i \(0.509589\pi\)
\(312\) 0 0
\(313\) 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i \(-0.652902\pi\)
0.999065 0.0432311i \(-0.0137652\pi\)
\(314\) 23.0000 1.29797
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 10.5000 18.1865i 0.589739 1.02146i −0.404528 0.914526i \(-0.632564\pi\)
0.994266 0.106932i \(-0.0341026\pi\)
\(318\) 0 0
\(319\) −27.0000 46.7654i −1.51171 2.61836i
\(320\) 1.50000 + 2.59808i 0.0838525 + 0.145237i
\(321\) 0 0
\(322\) 3.00000 5.19615i 0.167183 0.289570i
\(323\) 6.00000 0.333849
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 8.00000 13.8564i 0.443079 0.767435i
\(327\) 0 0
\(328\) −3.00000 5.19615i −0.165647 0.286910i
\(329\) −3.00000 5.19615i −0.165395 0.286473i
\(330\) 0 0
\(331\) 14.0000 24.2487i 0.769510 1.33283i −0.168320 0.985732i \(-0.553834\pi\)
0.937829 0.347097i \(-0.112833\pi\)
\(332\) 6.00000 0.329293
\(333\) 0 0
\(334\) 6.00000 0.328305
\(335\) 3.00000 5.19615i 0.163908 0.283896i
\(336\) 0 0
\(337\) −7.00000 12.1244i −0.381314 0.660456i 0.609936 0.792451i \(-0.291195\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) 6.00000 + 10.3923i 0.326357 + 0.565267i
\(339\) 0 0
\(340\) 4.50000 7.79423i 0.244047 0.422701i
\(341\) 60.0000 3.24918
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 2.00000 3.46410i 0.107833 0.186772i
\(345\) 0 0
\(346\) −4.50000 7.79423i −0.241921 0.419020i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) −13.0000 + 22.5167i −0.695874 + 1.20529i 0.274011 + 0.961727i \(0.411649\pi\)
−0.969885 + 0.243563i \(0.921684\pi\)
\(350\) 4.00000 0.213809
\(351\) 0 0
\(352\) −6.00000 −0.319801
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 0 0
\(355\) 18.0000 + 31.1769i 0.955341 + 1.65470i
\(356\) −1.50000 2.59808i −0.0794998 0.137698i
\(357\) 0 0
\(358\) −3.00000 + 5.19615i −0.158555 + 0.274625i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −1.00000 + 1.73205i −0.0525588 + 0.0910346i
\(363\) 0 0
\(364\) 0.500000 + 0.866025i 0.0262071 + 0.0453921i
\(365\) −10.5000 18.1865i −0.549595 0.951927i
\(366\) 0 0
\(367\) 5.00000 8.66025i 0.260998 0.452062i −0.705509 0.708700i \(-0.749282\pi\)
0.966507 + 0.256639i \(0.0826151\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) 21.0000 1.09174
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) 11.0000 + 19.0526i 0.569558 + 0.986504i 0.996610 + 0.0822766i \(0.0262191\pi\)
−0.427051 + 0.904227i \(0.640448\pi\)
\(374\) 9.00000 + 15.5885i 0.465379 + 0.806060i
\(375\) 0 0
\(376\) −3.00000 + 5.19615i −0.154713 + 0.267971i
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) 3.00000 5.19615i 0.153897 0.266557i
\(381\) 0 0
\(382\) −3.00000 5.19615i −0.153493 0.265858i
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) −9.00000 + 15.5885i −0.458682 + 0.794461i
\(386\) 11.0000 0.559885
\(387\) 0 0
\(388\) 14.0000 0.710742
\(389\) 15.0000 25.9808i 0.760530 1.31728i −0.182047 0.983290i \(-0.558272\pi\)
0.942578 0.333987i \(-0.108394\pi\)
\(390\) 0 0
\(391\) 9.00000 + 15.5885i 0.455150 + 0.788342i
\(392\) −0.500000 0.866025i −0.0252538 0.0437409i
\(393\) 0 0
\(394\) 4.50000 7.79423i 0.226707 0.392668i
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) −13.0000 −0.652451 −0.326226 0.945292i \(-0.605777\pi\)
−0.326226 + 0.945292i \(0.605777\pi\)
\(398\) 5.00000 8.66025i 0.250627 0.434099i
\(399\) 0 0
\(400\) −2.00000 3.46410i −0.100000 0.173205i
\(401\) −10.5000 18.1865i −0.524345 0.908192i −0.999598 0.0283431i \(-0.990977\pi\)
0.475253 0.879849i \(-0.342356\pi\)
\(402\) 0 0
\(403\) −5.00000 + 8.66025i −0.249068 + 0.431398i
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) −9.00000 −0.446663
\(407\) −21.0000 + 36.3731i −1.04093 + 1.80295i
\(408\) 0 0
\(409\) −2.50000 4.33013i −0.123617 0.214111i 0.797574 0.603220i \(-0.206116\pi\)
−0.921192 + 0.389109i \(0.872783\pi\)
\(410\) 9.00000 + 15.5885i 0.444478 + 0.769859i
\(411\) 0 0
\(412\) 8.00000 13.8564i 0.394132 0.682656i
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −18.0000 −0.883585
\(416\) 0.500000 0.866025i 0.0245145 0.0424604i
\(417\) 0 0
\(418\) 6.00000 + 10.3923i 0.293470 + 0.508304i
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) −8.50000 + 14.7224i −0.414265 + 0.717527i −0.995351 0.0963145i \(-0.969295\pi\)
0.581086 + 0.813842i \(0.302628\pi\)
\(422\) 2.00000 0.0973585
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) −5.50000 9.52628i −0.266164 0.461009i
\(428\) 0 0
\(429\) 0 0
\(430\) −6.00000 + 10.3923i −0.289346 + 0.501161i
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) 17.0000 0.816968 0.408484 0.912766i \(-0.366058\pi\)
0.408484 + 0.912766i \(0.366058\pi\)
\(434\) 5.00000 8.66025i 0.240008 0.415705i
\(435\) 0 0
\(436\) −2.50000 4.33013i −0.119728 0.207375i
\(437\) 6.00000 + 10.3923i 0.287019 + 0.497131i
\(438\) 0 0
\(439\) 14.0000 24.2487i 0.668184 1.15733i −0.310228 0.950662i \(-0.600405\pi\)
0.978412 0.206666i \(-0.0662612\pi\)
\(440\) 18.0000 0.858116
\(441\) 0 0
\(442\) −3.00000 −0.142695
\(443\) 15.0000 25.9808i 0.712672 1.23438i −0.251179 0.967941i \(-0.580818\pi\)
0.963851 0.266443i \(-0.0858483\pi\)
\(444\) 0 0
\(445\) 4.50000 + 7.79423i 0.213320 + 0.369482i
\(446\) 14.0000 + 24.2487i 0.662919 + 1.14821i
\(447\) 0 0
\(448\) −0.500000 + 0.866025i −0.0236228 + 0.0409159i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) −36.0000 −1.69517
\(452\) 7.50000 12.9904i 0.352770 0.611016i
\(453\) 0 0
\(454\) 12.0000 + 20.7846i 0.563188 + 0.975470i
\(455\) −1.50000 2.59808i −0.0703211 0.121800i
\(456\) 0 0
\(457\) −11.5000 + 19.9186i −0.537947 + 0.931752i 0.461067 + 0.887365i \(0.347467\pi\)
−0.999014 + 0.0443868i \(0.985867\pi\)
\(458\) −25.0000 −1.16817
\(459\) 0 0
\(460\) 18.0000 0.839254
\(461\) −3.00000 + 5.19615i −0.139724 + 0.242009i −0.927392 0.374091i \(-0.877955\pi\)
0.787668 + 0.616100i \(0.211288\pi\)
\(462\) 0 0
\(463\) 11.0000 + 19.0526i 0.511213 + 0.885448i 0.999916 + 0.0129968i \(0.00413714\pi\)
−0.488702 + 0.872451i \(0.662530\pi\)
\(464\) 4.50000 + 7.79423i 0.208907 + 0.361838i
\(465\) 0 0
\(466\) −10.5000 + 18.1865i −0.486403 + 0.842475i
\(467\) −30.0000 −1.38823 −0.694117 0.719862i \(-0.744205\pi\)
−0.694117 + 0.719862i \(0.744205\pi\)
\(468\) 0 0
\(469\) 2.00000 0.0923514
\(470\) 9.00000 15.5885i 0.415139 0.719042i
\(471\) 0 0
\(472\) 3.00000 + 5.19615i 0.138086 + 0.239172i
\(473\) −12.0000 20.7846i −0.551761 0.955677i
\(474\) 0 0
\(475\) −4.00000 + 6.92820i −0.183533 + 0.317888i
\(476\) 3.00000 0.137505
\(477\) 0 0
\(478\) 18.0000 0.823301
\(479\) 3.00000 5.19615i 0.137073 0.237418i −0.789314 0.613990i \(-0.789564\pi\)
0.926388 + 0.376571i \(0.122897\pi\)
\(480\) 0 0
\(481\) −3.50000 6.06218i −0.159586 0.276412i
\(482\) 9.50000 + 16.4545i 0.432713 + 0.749481i
\(483\) 0 0
\(484\) −12.5000 + 21.6506i −0.568182 + 0.984120i
\(485\) −42.0000 −1.90712
\(486\) 0 0
\(487\) −34.0000 −1.54069 −0.770344 0.637629i \(-0.779915\pi\)
−0.770344 + 0.637629i \(0.779915\pi\)
\(488\) −5.50000 + 9.52628i −0.248973 + 0.431234i
\(489\) 0 0
\(490\) 1.50000 + 2.59808i 0.0677631 + 0.117369i
\(491\) 6.00000 + 10.3923i 0.270776 + 0.468998i 0.969061 0.246822i \(-0.0793863\pi\)
−0.698285 + 0.715820i \(0.746053\pi\)
\(492\) 0 0
\(493\) 13.5000 23.3827i 0.608009 1.05310i
\(494\) −2.00000 −0.0899843
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) −6.00000 + 10.3923i −0.269137 + 0.466159i
\(498\) 0 0
\(499\) −7.00000 12.1244i −0.313363 0.542761i 0.665725 0.746197i \(-0.268122\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(500\) −1.50000 2.59808i −0.0670820 0.116190i
\(501\) 0 0
\(502\) 3.00000 5.19615i 0.133897 0.231916i
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 54.0000 2.40297
\(506\) −18.0000 + 31.1769i −0.800198 + 1.38598i
\(507\) 0 0
\(508\) 2.00000 + 3.46410i 0.0887357 + 0.153695i
\(509\) −15.0000 25.9808i −0.664863 1.15158i −0.979322 0.202306i \(-0.935156\pi\)
0.314459 0.949271i \(-0.398177\pi\)
\(510\) 0 0
\(511\) 3.50000 6.06218i 0.154831 0.268175i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 27.0000 1.19092
\(515\) −24.0000 + 41.5692i −1.05757 + 1.83176i
\(516\) 0 0
\(517\) 18.0000 + 31.1769i 0.791639 + 1.37116i
\(518\) 3.50000 + 6.06218i 0.153781 + 0.266357i
\(519\) 0 0
\(520\) −1.50000 + 2.59808i −0.0657794 + 0.113933i
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −3.00000 5.19615i −0.130806 0.226563i
\(527\) 15.0000 + 25.9808i 0.653410 + 1.13174i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 18.0000 0.781870
\(531\) 0 0
\(532\) 2.00000 0.0867110
\(533\) 3.00000 5.19615i 0.129944 0.225070i
\(534\) 0 0
\(535\) 0 0
\(536\) −1.00000 1.73205i −0.0431934 0.0748132i
\(537\) 0 0
\(538\) 1.50000 2.59808i 0.0646696 0.112011i
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −43.0000 −1.84871 −0.924357 0.381528i \(-0.875398\pi\)
−0.924357 + 0.381528i \(0.875398\pi\)
\(542\) −7.00000 + 12.1244i −0.300676 + 0.520786i
\(543\) 0 0
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) 7.50000 + 12.9904i 0.321265 + 0.556447i
\(546\) 0 0
\(547\) −1.00000 + 1.73205i −0.0427569 + 0.0740571i −0.886612 0.462514i \(-0.846947\pi\)
0.843855 + 0.536571i \(0.180281\pi\)
\(548\) −3.00000 −0.128154
\(549\) 0 0
\(550\) −24.0000 −1.02336
\(551\) 9.00000 15.5885i 0.383413 0.664091i
\(552\) 0 0
\(553\) −1.00000 1.73205i −0.0425243 0.0736543i
\(554\) −7.00000 12.1244i −0.297402 0.515115i
\(555\) 0 0
\(556\) −7.00000 + 12.1244i −0.296866 + 0.514187i
\(557\) −9.00000 −0.381342 −0.190671 0.981654i \(-0.561066\pi\)
−0.190671 + 0.981654i \(0.561066\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 1.50000 2.59808i 0.0633866 0.109789i
\(561\) 0 0
\(562\) −10.5000 18.1865i −0.442916 0.767153i
\(563\) −12.0000 20.7846i −0.505740 0.875967i −0.999978 0.00664037i \(-0.997886\pi\)
0.494238 0.869326i \(-0.335447\pi\)
\(564\) 0 0
\(565\) −22.5000 + 38.9711i −0.946582 + 1.63953i
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) 1.50000 2.59808i 0.0628833 0.108917i −0.832870 0.553469i \(-0.813304\pi\)
0.895753 + 0.444552i \(0.146637\pi\)
\(570\) 0 0
\(571\) 11.0000 + 19.0526i 0.460336 + 0.797325i 0.998978 0.0452101i \(-0.0143957\pi\)
−0.538642 + 0.842535i \(0.681062\pi\)
\(572\) −3.00000 5.19615i −0.125436 0.217262i
\(573\) 0 0
\(574\) −3.00000 + 5.19615i −0.125218 + 0.216883i
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) 4.00000 6.92820i 0.166378 0.288175i
\(579\) 0 0
\(580\) −13.5000 23.3827i −0.560557 0.970913i
\(581\) −3.00000 5.19615i −0.124461 0.215573i
\(582\) 0 0
\(583\) −18.0000 + 31.1769i −0.745484 + 1.29122i
\(584\) −7.00000 −0.289662
\(585\) 0 0
\(586\) 21.0000 0.867502
\(587\) −9.00000 + 15.5885i −0.371470 + 0.643404i −0.989792 0.142520i \(-0.954479\pi\)
0.618322 + 0.785925i \(0.287813\pi\)
\(588\) 0 0
\(589\) 10.0000 + 17.3205i 0.412043 + 0.713679i
\(590\) −9.00000 15.5885i −0.370524 0.641767i
\(591\) 0 0
\(592\) 3.50000 6.06218i 0.143849 0.249154i
\(593\) 3.00000 0.123195 0.0615976 0.998101i \(-0.480380\pi\)
0.0615976 + 0.998101i \(0.480380\pi\)
\(594\) 0 0
\(595\) −9.00000 −0.368964
\(596\) −1.50000 + 2.59808i −0.0614424 + 0.106421i
\(597\) 0 0
\(598\) −3.00000 5.19615i −0.122679 0.212486i
\(599\) 15.0000 + 25.9808i 0.612883 + 1.06155i 0.990752 + 0.135686i \(0.0433238\pi\)
−0.377869 + 0.925859i \(0.623343\pi\)
\(600\) 0 0
\(601\) 3.50000 6.06218i 0.142768 0.247281i −0.785770 0.618519i \(-0.787733\pi\)
0.928538 + 0.371237i \(0.121066\pi\)
\(602\) −4.00000 −0.163028
\(603\) 0 0
\(604\) 2.00000 0.0813788
\(605\) 37.5000 64.9519i 1.52459 2.64067i
\(606\) 0 0
\(607\) 11.0000 + 19.0526i 0.446476 + 0.773320i 0.998154 0.0607380i \(-0.0193454\pi\)
−0.551678 + 0.834058i \(0.686012\pi\)
\(608\) −1.00000 1.73205i −0.0405554 0.0702439i
\(609\) 0 0
\(610\) 16.5000 28.5788i 0.668065 1.15712i
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 8.00000 13.8564i 0.322854 0.559199i
\(615\) 0 0
\(616\) 3.00000 + 5.19615i 0.120873 + 0.209359i
\(617\) 7.50000 + 12.9904i 0.301939 + 0.522973i 0.976575 0.215177i \(-0.0690329\pi\)
−0.674636 + 0.738150i \(0.735700\pi\)
\(618\) 0 0
\(619\) 2.00000 3.46410i 0.0803868 0.139234i −0.823029 0.567999i \(-0.807718\pi\)
0.903416 + 0.428765i \(0.141051\pi\)
\(620\) 30.0000 1.20483
\(621\) 0 0
\(622\) −30.0000 −1.20289
\(623\) −1.50000 + 2.59808i −0.0600962 + 0.104090i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 9.50000 + 16.4545i 0.379696 + 0.657653i
\(627\) 0 0
\(628\) −11.5000 + 19.9186i −0.458900 + 0.794838i
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) −1.00000 + 1.73205i −0.0397779 + 0.0688973i
\(633\) 0 0
\(634\) 10.5000 + 18.1865i 0.417008 + 0.722280i
\(635\) −6.00000 10.3923i −0.238103 0.412406i
\(636\) 0 0
\(637\) 0.500000 0.866025i 0.0198107 0.0343132i
\(638\) 54.0000 2.13788
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) −4.50000 + 7.79423i −0.177739 + 0.307854i −0.941106 0.338112i \(-0.890212\pi\)
0.763367 + 0.645966i \(0.223545\pi\)
\(642\) 0 0
\(643\) 11.0000 + 19.0526i 0.433798 + 0.751360i 0.997197 0.0748254i \(-0.0238399\pi\)
−0.563399 + 0.826185i \(0.690507\pi\)
\(644\) 3.00000 + 5.19615i 0.118217 + 0.204757i
\(645\) 0 0
\(646\) −3.00000 + 5.19615i −0.118033 + 0.204440i
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 2.00000 3.46410i 0.0784465 0.135873i
\(651\) 0 0
\(652\) 8.00000 + 13.8564i 0.313304 + 0.542659i
\(653\) −9.00000 15.5885i −0.352197 0.610023i 0.634437 0.772975i \(-0.281232\pi\)
−0.986634 + 0.162951i \(0.947899\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 6.00000 0.233904
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) 6.50000 + 11.2583i 0.252821 + 0.437898i 0.964301 0.264807i \(-0.0853084\pi\)
−0.711481 + 0.702706i \(0.751975\pi\)
\(662\) 14.0000 + 24.2487i 0.544125 + 0.942453i
\(663\) 0 0
\(664\) −3.00000 + 5.19615i −0.116423 + 0.201650i
\(665\) −6.00000 −0.232670
\(666\) 0 0
\(667\) 54.0000 2.09089
\(668\) −3.00000 + 5.19615i −0.116073 + 0.201045i
\(669\) 0 0
\(670\) 3.00000 + 5.19615i 0.115900 + 0.200745i
\(671\) 33.0000 + 57.1577i 1.27395 + 2.20655i
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.0192736 0.0333828i −0.856228 0.516599i \(-0.827198\pi\)
0.875501 + 0.483216i \(0.160531\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 3.00000 5.19615i 0.115299 0.199704i −0.802600 0.596518i \(-0.796551\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(678\) 0 0
\(679\) −7.00000 12.1244i −0.268635 0.465290i
\(680\) 4.50000 + 7.79423i 0.172567 + 0.298895i
\(681\) 0 0
\(682\) −30.0000 + 51.9615i −1.14876 + 1.98971i
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) −0.500000 + 0.866025i −0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) 2.00000 + 3.46410i 0.0762493 + 0.132068i
\(689\) −3.00000 5.19615i −0.114291 0.197958i
\(690\) 0 0
\(691\) 2.00000 3.46410i 0.0760836 0.131781i −0.825473 0.564441i \(-0.809092\pi\)
0.901557 + 0.432660i \(0.142425\pi\)
\(692\) 9.00000 0.342129
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 21.0000 36.3731i 0.796575 1.37971i
\(696\) 0 0
\(697\) −9.00000 15.5885i −0.340899 0.590455i
\(698\) −13.0000 22.5167i −0.492057 0.852268i
\(699\) 0 0
\(700\) −2.00000 + 3.46410i −0.0755929 + 0.130931i
\(701\) 27.0000 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 3.00000 5.19615i 0.113067 0.195837i
\(705\) 0 0
\(706\) −9.00000 15.5885i −0.338719 0.586679i
\(707\) 9.00000 + 15.5885i 0.338480 + 0.586264i
\(708\) 0 0
\(709\) −2.50000 + 4.33013i −0.0938895 + 0.162621i −0.909145 0.416481i \(-0.863263\pi\)
0.815255 + 0.579102i \(0.196597\pi\)
\(710\) −36.0000 −1.35106
\(711\) 0 0
\(712\) 3.00000 0.112430
\(713\) −30.0000 + 51.9615i −1.12351 + 1.94597i
\(714\) 0 0
\(715\) 9.00000 + 15.5885i 0.336581 + 0.582975i
\(716\) −3.00000 5.19615i −0.112115 0.194189i
\(717\) 0 0
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 7.50000 12.9904i 0.279121 0.483452i
\(723\) 0 0
\(724\) −1.00000 1.73205i −0.0371647 0.0643712i
\(725\) 18.0000 + 31.1769i 0.668503 + 1.15788i
\(726\) 0 0
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) −1.00000 −0.0370625
\(729\) 0 0
\(730\) 21.0000 0.777245
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) 0 0
\(733\) −13.0000 22.5167i −0.480166 0.831672i 0.519575 0.854425i \(-0.326090\pi\)
−0.999741 + 0.0227529i \(0.992757\pi\)
\(734\) 5.00000 + 8.66025i 0.184553 + 0.319656i
\(735\) 0 0
\(736\) 3.00000 5.19615i 0.110581 0.191533i
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) 50.0000 1.83928 0.919640 0.392763i \(-0.128481\pi\)
0.919640 + 0.392763i \(0.128481\pi\)
\(740\) −10.5000 + 18.1865i −0.385988 + 0.668550i
\(741\) 0 0
\(742\) 3.00000 + 5.19615i 0.110133 + 0.190757i
\(743\) −12.0000 20.7846i −0.440237 0.762513i 0.557470 0.830197i \(-0.311772\pi\)
−0.997707 + 0.0676840i \(0.978439\pi\)
\(744\) 0 0
\(745\) 4.50000 7.79423i 0.164867 0.285558i
\(746\) −22.0000 −0.805477
\(747\) 0 0
\(748\) −18.0000 −0.658145
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 + 3.46410i 0.0729810 + 0.126407i 0.900207 0.435463i \(-0.143415\pi\)
−0.827225 + 0.561870i \(0.810082\pi\)
\(752\) −3.00000 5.19615i −0.109399 0.189484i
\(753\) 0 0
\(754\) −4.50000 + 7.79423i −0.163880 + 0.283849i
\(755\) −6.00000 −0.218362
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −1.00000 + 1.73205i −0.0363216 + 0.0629109i
\(759\) 0 0
\(760\) 3.00000 + 5.19615i 0.108821 + 0.188484i
\(761\) 16.5000 + 28.5788i 0.598125 + 1.03598i 0.993098 + 0.117289i \(0.0374205\pi\)
−0.394973 + 0.918693i \(0.629246\pi\)
\(762\) 0 0
\(763\) −2.50000 + 4.33013i −0.0905061 + 0.156761i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 0 0
\(767\) −3.00000 + 5.19615i −0.108324 + 0.187622i
\(768\) 0 0
\(769\) −2.50000 4.33013i −0.0901523 0.156148i 0.817423 0.576038i \(-0.195402\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(770\) −9.00000 15.5885i −0.324337 0.561769i
\(771\) 0 0
\(772\) −5.50000 + 9.52628i −0.197949 + 0.342858i
\(773\) 9.00000 0.323708 0.161854 0.986815i \(-0.448253\pi\)
0.161854 + 0.986815i \(0.448253\pi\)
\(774\) 0 0
\(775\) −40.0000 −1.43684
\(776\) −7.00000 + 12.1244i −0.251285 + 0.435239i
\(777\) 0 0
\(778\) 15.0000 + 25.9808i 0.537776 + 0.931455i
\(779\) −6.00000 10.3923i −0.214972 0.372343i
\(780\) 0 0
\(781\) 36.0000 62.3538i 1.28818 2.23120i
\(782\) −18.0000 −0.643679
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 34.5000 59.7558i 1.23136 2.13277i
\(786\) 0 0
\(787\) −4.00000 6.92820i −0.142585 0.246964i 0.785885 0.618373i \(-0.212208\pi\)
−0.928469 + 0.371409i \(0.878875\pi\)
\(788\) 4.50000 + 7.79423i 0.160306 + 0.277658i
\(789\) 0 0
\(790\) 3.00000 5.19615i 0.106735 0.184871i
\(791\) −15.0000 −0.533339
\(792\) 0 0
\(793\) −11.0000 −0.390621
\(794\) 6.50000 11.2583i 0.230676 0.399543i
\(795\) 0 0
\(796\) 5.00000 + 8.66025i 0.177220 + 0.306955i
\(797\) −4.50000 7.79423i −0.159398 0.276086i 0.775254 0.631650i \(-0.217622\pi\)
−0.934652 + 0.355564i \(0.884289\pi\)
\(798\) 0 0
\(799\) −9.00000 + 15.5885i −0.318397 + 0.551480i
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) 21.0000 0.741536
\(803\) −21.0000 + 36.3731i −0.741074 + 1.28358i
\(804\) 0 0
\(805\) −9.00000 15.5885i −0.317208 0.549421i
\(806\) −5.00000 8.66025i −0.176117 0.305044i
\(807\) 0 0
\(808\) 9.00000 15.5885i 0.316619 0.548400i
\(809\) −15.0000 −0.527372 −0.263686 0.964609i \(-0.584938\pi\)
−0.263686 + 0.964609i \(0.584938\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 4.50000 7.79423i 0.157919 0.273524i
\(813\) 0 0
\(814\) −21.0000 36.3731i −0.736050 1.27488i
\(815\) −24.0000 41.5692i −0.840683 1.45611i
\(816\) 0 0
\(817\) 4.00000 6.92820i 0.139942 0.242387i
\(818\) 5.00000 0.174821
\(819\) 0 0
\(820\) −18.0000 −0.628587
\(821\) 22.5000 38.9711i 0.785255 1.36010i −0.143591 0.989637i \(-0.545865\pi\)
0.928846 0.370465i \(-0.120802\pi\)
\(822\) 0 0
\(823\) 8.00000 + 13.8564i 0.278862 + 0.483004i 0.971102 0.238664i \(-0.0767093\pi\)
−0.692240 + 0.721668i \(0.743376\pi\)
\(824\) 8.00000 + 13.8564i 0.278693 + 0.482711i
\(825\) 0 0
\(826\) 3.00000 5.19615i 0.104383 0.180797i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 9.00000 15.5885i 0.312395 0.541083i
\(831\) 0 0
\(832\) 0.500000 + 0.866025i 0.0173344 + 0.0300240i
\(833\) −1.50000 2.59808i −0.0519719 0.0900180i
\(834\) 0 0
\(835\) 9.00000 15.5885i 0.311458 0.539461i
\(836\) −12.0000 −0.415029
\(837\) 0 0
\(838\) 12.0000 0.414533
\(839\) −24.0000 + 41.5692i −0.828572 + 1.43513i 0.0705865 + 0.997506i \(0.477513\pi\)
−0.899158 + 0.437623i \(0.855820\pi\)
\(840\) 0 0
\(841\) −26.0000 45.0333i −0.896552 1.55287i
\(842\) −8.50000 14.7224i −0.292929 0.507369i
\(843\) 0 0
\(844\) −1.00000 + 1.73205i −0.0344214 + 0.0596196i
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 25.0000 0.859010
\(848\) 3.00000 5.19615i 0.103020 0.178437i
\(849\) 0 0
\(850\) −6.00000 10.3923i −0.205798 0.356453i
\(851\) −21.0000 36.3731i −0.719871 1.24685i
\(852\) 0 0
\(853\) 5.00000 8.66025i 0.171197 0.296521i −0.767642 0.640879i \(-0.778570\pi\)
0.938839 + 0.344358i \(0.111903\pi\)
\(854\) 11.0000 0.376412
\(855\) 0 0
\(856\) 0 0
\(857\) 4.50000 7.79423i 0.153717 0.266246i −0.778874 0.627180i \(-0.784209\pi\)
0.932591 + 0.360935i \(0.117542\pi\)
\(858\) 0 0
\(859\) 2.00000 + 3.46410i 0.0682391 + 0.118194i 0.898126 0.439738i \(-0.144929\pi\)
−0.829887 + 0.557931i \(0.811595\pi\)
\(860\) −6.00000 10.3923i −0.204598 0.354375i
\(861\) 0 0
\(862\) 18.0000 31.1769i 0.613082 1.06189i
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) −27.0000 −0.918028
\(866\) −8.50000 + 14.7224i −0.288842 + 0.500289i
\(867\) 0 0
\(868\) 5.00000 + 8.66025i 0.169711 + 0.293948i
\(869\) 6.00000 + 10.3923i 0.203536 + 0.352535i
\(870\) 0 0
\(871\) 1.00000 1.73205i 0.0338837 0.0586883i
\(872\) 5.00000 0.169321
\(873\) 0 0
\(874\) −12.0000 −0.405906
\(875\) −1.50000 + 2.59808i −0.0507093 + 0.0878310i
\(876\) 0 0
\(877\) −20.5000 35.5070i −0.692236 1.19899i −0.971104 0.238658i \(-0.923292\pi\)
0.278868 0.960329i \(-0.410041\pi\)
\(878\) 14.0000 + 24.2487i 0.472477 + 0.818354i
\(879\) 0 0
\(880\) −9.00000 + 15.5885i −0.303390 + 0.525487i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) 1.50000 2.59808i 0.0504505 0.0873828i
\(885\) 0 0
\(886\) 15.0000 + 25.9808i 0.503935 + 0.872841i
\(887\) −21.0000 36.3731i −0.705111 1.22129i −0.966651 0.256096i \(-0.917564\pi\)
0.261540 0.965193i \(-0.415770\pi\)
\(888\) 0 0
\(889\) 2.00000 3.46410i 0.0670778 0.116182i
\(890\) −9.00000 −0.301681
\(891\) 0 0
\(892\) −28.0000 −0.937509
\(893\) −6.00000 + 10.3923i −0.200782 + 0.347765i
\(894\) 0 0
\(895\) 9.00000 + 15.5885i 0.300837 + 0.521065i
\(896\) −0.500000 0.866025i −0.0167038 0.0289319i
\(897\) 0 0
\(898\) 15.0000 25.9808i 0.500556 0.866989i
\(899\) 90.0000 3.00167
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 18.0000 31.1769i 0.599334 1.03808i
\(903\) 0 0
\(904\) 7.50000 + 12.9904i 0.249446 + 0.432054i
\(905\) 3.00000 + 5.19615i 0.0997234 + 0.172726i
\(906\) 0 0
\(907\) −10.0000 + 17.3205i −0.332045 + 0.575118i −0.982913 0.184073i \(-0.941072\pi\)
0.650868 + 0.759191i \(0.274405\pi\)
\(908\) −24.0000 −0.796468
\(909\) 0 0
\(910\) 3.00000 0.0994490
\(911\) 18.0000 31.1769i 0.596367 1.03294i −0.396986 0.917825i \(-0.629944\pi\)
0.993352 0.115113i \(-0.0367229\pi\)
\(912\) 0 0
\(913\) 18.0000 + 31.1769i 0.595713 + 1.03181i
\(914\) −11.5000 19.9186i −0.380386 0.658848i
\(915\) 0 0
\(916\) 12.5000 21.6506i 0.413012 0.715357i
\(917\) 0 0
\(918\) 0 0
\(919\) 2.00000 0.0659739 0.0329870 0.999456i \(-0.489498\pi\)
0.0329870 + 0.999456i \(0.489498\pi\)
\(920\) −9.00000 + 15.5885i −0.296721 + 0.513936i
\(921\) 0 0
\(922\) −3.00000 5.19615i −0.0987997 0.171126i
\(923\) 6.00000 + 10.3923i 0.197492 + 0.342067i
\(924\) 0 0
\(925\) 14.0000 24.2487i 0.460317 0.797293i
\(926\) −22.0000 −0.722965
\(927\) 0 0
\(928\) −9.00000 −0.295439
\(929\) 10.5000 18.1865i 0.344494 0.596681i −0.640768 0.767735i \(-0.721384\pi\)
0.985262 + 0.171054i \(0.0547172\pi\)
\(930\) 0 0
\(931\) −1.00000 1.73205i −0.0327737 0.0567657i
\(932\) −10.5000 18.1865i −0.343939 0.595720i
\(933\) 0 0
\(934\) 15.0000 25.9808i 0.490815 0.850117i
\(935\) 54.0000 1.76599
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) −1.00000 + 1.73205i −0.0326512 + 0.0565535i
\(939\) 0 0
\(940\) 9.00000 + 15.5885i 0.293548 + 0.508439i
\(941\) 1.50000 + 2.59808i 0.0488986 + 0.0846949i 0.889439 0.457054i \(-0.151096\pi\)
−0.840540 + 0.541749i \(0.817762\pi\)
\(942\) 0 0
\(943\) 18.0000 31.1769i 0.586161 1.01526i
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) −18.0000 + 31.1769i −0.584921 + 1.01311i 0.409964 + 0.912102i \(0.365541\pi\)
−0.994885 + 0.101012i \(0.967792\pi\)
\(948\) 0 0
\(949\) −3.50000 6.06218i −0.113615 0.196787i
\(950\) −4.00000 6.92820i −0.129777 0.224781i
\(951\) 0 0
\(952\) −1.50000 + 2.59808i −0.0486153 + 0.0842041i
\(953\) −3.00000 −0.0971795 −0.0485898 0.998819i \(-0.515473\pi\)
−0.0485898 + 0.998819i \(0.515473\pi\)
\(954\) 0 0
\(955\) −18.0000 −0.582466
\(956\) −9.00000 + 15.5885i −0.291081 + 0.504167i
\(957\) 0 0
\(958\) 3.00000 + 5.19615i 0.0969256 + 0.167880i
\(959\) 1.50000 + 2.59808i 0.0484375 + 0.0838963i
\(960\) 0 0
\(961\) −34.5000 + 59.7558i −1.11290 + 1.92760i
\(962\) 7.00000 0.225689
\(963\) 0 0
\(964\) −19.0000 −0.611949
\(965\) 16.5000 28.5788i 0.531154 0.919985i
\(966\) 0 0
\(967\) −1.00000 1.73205i −0.0321578 0.0556990i 0.849499 0.527591i \(-0.176905\pi\)
−0.881656 + 0.471892i \(0.843571\pi\)
\(968\) −12.5000 21.6506i −0.401765 0.695878i
\(969\) 0 0
\(970\) 21.0000 36.3731i 0.674269 1.16787i
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) 0 0
\(973\) 14.0000 0.448819
\(974\) 17.0000 29.4449i 0.544715 0.943474i
\(975\) 0 0
\(976\) −5.50000 9.52628i −0.176051 0.304929i
\(977\) −9.00000 15.5885i −0.287936 0.498719i 0.685381 0.728184i \(-0.259636\pi\)
−0.973317 + 0.229465i \(0.926302\pi\)
\(978\) 0 0
\(979\) 9.00000 15.5885i 0.287641 0.498209i
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) −12.0000 −0.382935
\(983\) −18.0000 + 31.1769i −0.574111 + 0.994389i 0.422027 + 0.906583i \(0.361319\pi\)
−0.996138 + 0.0878058i \(0.972015\pi\)
\(984\) 0 0
\(985\) −13.5000 23.3827i −0.430146 0.745034i
\(986\) 13.5000 + 23.3827i 0.429928 + 0.744656i
\(987\) 0 0
\(988\) 1.00000 1.73205i 0.0318142 0.0551039i
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) 5.00000 8.66025i 0.158750 0.274963i
\(993\) 0 0
\(994\) −6.00000 10.3923i −0.190308 0.329624i
\(995\) −15.0000 25.9808i −0.475532 0.823646i
\(996\) 0 0
\(997\) 18.5000 32.0429i 0.585901 1.01481i −0.408862 0.912596i \(-0.634074\pi\)
0.994762 0.102214i \(-0.0325925\pi\)
\(998\) 14.0000 0.443162
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.f.h.379.1 2
3.2 odd 2 1134.2.f.i.379.1 2
9.2 odd 6 1134.2.a.d.1.1 1
9.4 even 3 inner 1134.2.f.h.757.1 2
9.5 odd 6 1134.2.f.i.757.1 2
9.7 even 3 1134.2.a.e.1.1 yes 1
36.7 odd 6 9072.2.a.b.1.1 1
36.11 even 6 9072.2.a.v.1.1 1
63.20 even 6 7938.2.a.d.1.1 1
63.34 odd 6 7938.2.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.a.d.1.1 1 9.2 odd 6
1134.2.a.e.1.1 yes 1 9.7 even 3
1134.2.f.h.379.1 2 1.1 even 1 trivial
1134.2.f.h.757.1 2 9.4 even 3 inner
1134.2.f.i.379.1 2 3.2 odd 2
1134.2.f.i.757.1 2 9.5 odd 6
7938.2.a.d.1.1 1 63.20 even 6
7938.2.a.bc.1.1 1 63.34 odd 6
9072.2.a.b.1.1 1 36.7 odd 6
9072.2.a.v.1.1 1 36.11 even 6